26 research outputs found

    A plant virus causes symptoms through the deployment of a host-mimicking protein domain to attract the insect vector.

    Get PDF
    During compatible plant-virus interactions, viruses can interfere with the normal developmental program of their hosts, leading to the appearance of phenotypes that we usually identify as ‘’symptoms of infection’’ (leaf curling and yellowing, stunting, dwarfism, necrosis). Despite their relevance, the molecular mechanisms underlying symptom induction and their biological meaning, if any, remain poorly understood. By using tomato yellow leaf curl virus (TYLCV, Geminivirus) as model, we have isolated C4 as the main protein responsible for the induction of TYLCV-associated symptoms in tomato. C4, by mimicking a host protein domain, the Conserved C-termini in LAZY1 protein family (CCL) domain, physically interacts with the RCC1-like domain-containing plant proteins (RLDs). By interacting with the RLDs through the CCL-like domain, C4 displaces one endogenous interactor, LAZY (LZY), interfering with RLD functions in processes such as auxin signaling and endomembrane trafficking, which correlates with the manifestation of symptoms. Surprisingly, we observed that appearance of C4-mediated symptoms in tomato plants plays no major role in viral replication nor movement, but they serve as attractants for the insect vector, the whitefly Bemisia tabaci, which preferentially feeds on tomato plants exhibiting strong symptoms of viral infection. These results suggest that, during plant-virus co-evolution, symptoms may have appeared as a strategy to promote viral transmission by the insect vector, at least in some specific plant-virus-vector pathosystems.Work in RLD’s lab is partially funded by the Excellence Strategy of the German Federal and State Governments, the ERC-COG GemOmics (101044142), the DeutscheForschungsgemeinschaft (DFG, German Research foundation) (project numbers LO 2314/1-1 and SBF 1101/3, C08), and a Royal Society Newton Advance grant (NA140481 – NAF\R2\180857). EA is the recipient of a Marie Skłodowska-Curie Grant from the European Union’s Horizon 2020 Research and Innovation Program (Grant 896910-GeminiDECODER). Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Relationship between Symptoms and Gene Expression Induced by the Infection of Three Strains of Rice dwarf virus

    Get PDF
    BACKGROUND: Rice dwarf virus (RDV) is the causal agent of rice dwarf disease, which often results in severe yield losses of rice in East Asian countries. The disease symptoms are stunted growth, chlorotic specks on leaves, and delayed and incomplete panicle exsertion. Three RDV strains, O, D84, and S, were reported. RDV-S causes the most severe symptoms, whereas RDV-O causes the mildest. Twenty amino acid substitutions were found in 10 of 12 virus proteins among three RDV strains. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed the gene expression of rice in response to infection with the three RDV strains using a 60-mer oligonucleotide microarray to examine the relationship between symptom severity and gene responses. The number of differentially expressed genes (DEGs) upon the infection of RDV-O, -D84, and -S was 1985, 3782, and 6726, respectively, showing a correlation between the number of DEGs and symptom severity. Many DEGs were related to defense, stress response, and development and morphogenesis processes. For defense and stress response processes, gene silencing-related genes were activated by RDV infection and the degree of activation was similar among plants infected with the three RDV strains. Genes for hormone-regulated defense systems were also activated by RDV infection, and the degree of activation seemed to be correlated with the concentration of RDV in plants. Some development and morphogenesis processes were suppressed by RDV infection, but the degree of suppression was not correlated well with the RDV concentration. CONCLUSIONS/SIGNIFICANCE: Gene responses to RDV infection were regulated differently depending on the gene groups regulated and the strains infecting. It seems that symptom severity is associated with the degree of gene response in defense-related and development- and morphogenesis-related processes. The titer levels of RDV in plants and the amino acid substitutions in RDV proteins could be involved in regulating such gene responses

    The Spread of Tomato Yellow Leaf Curl Virus from the Middle East to the World

    Get PDF
    The ongoing global spread of Tomato yellow leaf curl virus (TYLCV; Genus Begomovirus, Family Geminiviridae) represents a serious looming threat to tomato production in all temperate parts of the world. Whereas determining where and when TYLCV movements have occurred could help curtail its spread and prevent future movements of related viruses, determining the consequences of past TYLCV movements could reveal the ecological and economic risks associated with similar viral invasions. Towards this end we applied Bayesian phylogeographic inference and recombination analyses to available TYLCV sequences (including those of 15 new Iranian full TYLCV genomes) and reconstructed a plausible history of TYLCV's diversification and movements throughout the world. In agreement with historical accounts, our results suggest that the first TYLCVs most probably arose somewhere in the Middle East between the 1930s and 1950s (with 95% highest probability density intervals 1905–1972) and that the global spread of TYLCV only began in the 1980s after the evolution of the TYLCV-Mld and -IL strains. Despite the global distribution of TYLCV we found no convincing evidence anywhere other than the Middle East and the Western Mediterranean of epidemiologically relevant TYLCV variants arising through recombination. Although the region around Iran is both the center of present day TYLCV diversity and the site of the most intensive ongoing TYLCV evolution, the evidence indicates that the region is epidemiologically isolated, which suggests that novel TYLCV variants found there are probably not direct global threats. We instead identify the Mediterranean basin as the main launch-pad of global TYLCV movements

    Changes in sedimentation trends in SW Iberia Holocene estuaries (Spain)

    Get PDF
    An analysis of sedimentation rates during the Holocene in estuaries in the southwestern coast of the Iberian Peninsula using depth/age diagrams reveals the existence of two distinct phases. The first, between ca. 10,000 and 6500 Cal BP, still in the transgressive phase, yields values of sedimentation rates of 5 mm/yr. The second phase extends after the maximum transgressive (ca. 6500 Cal BP) until the present, with sedimentation rates of 1.5–2 mm/yr. These results support the idea that marine sedimentation began during the transgressive phase and continued during the highstand phase, far beyond the time of the transgressive maximum, as postulated in some previous papers. r 2002 Elsevier Science Ltd and INQUA. All rights reserved

    Recessive resistance derived form tomato cv. Tyking-Limits drastically the spread of tomato yellow leaf curl virus.

    Get PDF
    The tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato (Solanum lycopersicum L.) crops throughout tropical and subtropical regions of the world. TYLCD is associated with a complex of single-stranded circular DNA plant viruses of the genus Begomovirus (family Geminiviridae) transmitted by the whitefy Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). The tomato inbred line TX 468-RG is a source of monogenic recessive resistance to begomoviruses derived from the hybrid cv. Tyking F1. A detailed analysis of this germplasm source against tomato yellow leaf curl virus-Israel (TYLCV-IL), a widespread TYLCD-associated virus, showed a significant restriction to systemic virus accumulation even under continuous virus supply. The resistance was effective in limiting the onset of TYLCV-IL in tomato, as significantly lower primary spread of the virus occurred in resistant plants. Also, even if a limited number of resistant plants could result infected, they were less efficient virus sources for secondary spread owing to the impaired TYLCV-IL accumulation. Therefore, the incorporation of this resistance into breeding programs might help TYLCD management by drastically limiting TYLCV-IL spread. © 2015 by the authors; licensee MDPI, Basel, Switzerland.This work was supported by grant AGL2013-48913-C2-1 from the Ministerio de Economia y Competitividad (MINECO) with assistance from the European Regional Development Fund (FEDER), Bilateral CSIC-CNPq project 2011BR0035, and agreement MINECO-CSIC RECUPERA 2020 financed by FEDER. We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI).Peer Reviewe
    corecore