85 research outputs found

    Surface symmetry-breaking and strain effects on orbital occupancy in transition metal perovskite epitaxial films

    Get PDF
    The electron occupancy of 3d-orbitals determines the properties of transition metal oxides. This can be achieved, for example, through thin-film heterostructure engineering of ABO(3) oxides, enabling emerging properties at interfaces. Interestingly, epitaxial strain may break the degeneracy of 3d-e(g) and t(2g) orbitals, thus favoring a particular orbital filling with consequences for functional properties. Here we disclose the effects of symmetry breaking at free surfaces of ABO(3) perovskite epitaxial films and show that it can be combined with substrate-induced epitaxial strain to tailor at will the electron occupancy of in-plane and out-of-plane surface electronic orbitals. We use X-ray linear dichroism to monitor the relative contributions of surface, strain and atomic terminations to the occupancy of 3z(2)-r(2) and x(2)-y(2) orbitals in La(2/3)Sr(1/3)MnO(3) films. These findings open the possibility of an active tuning of surface electronic and magnetic properties as well as chemical properties (catalytic reactivity, wettability and so on)

    Fieldlike and antidamping spin-orbit torques in as-grown and annealed Ta/CoFeB/MgO layers

    Get PDF
    We present a comprehensive study of the current-induced spin-orbit torques in perpendicularly magnetized Ta/CoFeB/MgO layers. The samples were annealed in steps up to 300 degrees C and characterized using x-ray absorption spectroscopy, transmission electron microscopy, resistivity, and Hall effect measurements. By performing adiabatic harmonic Hall voltage measurements, we show that the transverse (field-like) and longitudinal (antidamping-like) spin-orbit torques are composed of constant and magnetization-dependent contributions, both of which vary strongly with annealing. Such variations correlate with changes of the saturation magnetization and magnetic anisotropy and are assigned to chemical and structural modifications of the layers. The relative variation of the constant and anisotropic torque terms as a function of annealing temperature is opposite for the field-like and antidamping torques. Measurements of the switching probability using sub-{\mu}s current pulses show that the critical current increases with the magnetic anisotropy of the layers, whereas the switching efficiency, measured as the ratio of magnetic anisotropy energy and pulse energy, decreases. The optimal annealing temperature to achieve maximum magnetic anisotropy, saturation magnetization, and switching efficiency is determined to be between 240 degrees and 270 degrees C

    Distribution and Length Frequency of Invasive Lionfish (Pterois sp.) in the Northern Gulf of Mexico

    Get PDF
    The purpose of this communication is to document continued spatial expansion of lionfish farther west into the northern Gulf of Mexico. Furthermore, we provide the first length— mass relationships and length frequency information for lionfishes captured within the northern GOM based on data collected as part of a broader on—going study of lionfish life history in this region

    Low-pressure RF remote plasma cleaning of carbon-contaminated B4C-coated optics

    Get PDF
    Altres ajuts: the research by HMF is supported by funding from the "Generalitat de Catalunya, Departament d'Empresa i Coneixement" within the "Doctorats Industrials" program (dossier no. 2014 DI 037)Boron carbide (BC)-due to its exceptional mechanical properties-is one of the few existing materials that can withstand the extremely high brilliance of the photon beam from free electron lasers (FELs) and is thus of considerable interest for optical applications in this field. However, as in the case of many other optics operated at modern accelerator-, plasma-, or laser-based light source facilities, BC-coated optics are subject to ubiquitous carbon contaminations. These contaminations-that are presumably produced via cracking of CH and CO molecules by photoelectrons emitted from the optical components-represent a serious issue for the operation of the pertinent high performance beamlines due to a severe reduction of photon flux and beam coherence, not necessarily restricted to the photon energy range of the carbon K-edge. Thus, a variety of BC cleaning technologies have been developed at different laboratories with varying success [1]. Here, we present a study regarding the low-pressure RF plasma cleaning of a series of carbon-contaminated BC test samples via an inductively coupled O/Ar and Ar/H remote RF plasma produced using the IBSS GV10x plasma source following previous studies using the same RF plasma source [2, 3]. Results regarding the chemistry, morphology as well as other aspects of the BC optical coatings and surfaces before and after the plasma cleaning process are reported

    The ALBA spectroscopic LEEM-PEEM experimental station : Layout and performance

    Get PDF
    The spectroscopic LEEM-PEEM experimental station at the CIRCE helical undulator beamline, which started user operation at the ALBA Synchrotron Light Facility in 2012, is presented. This station, based on an Elmitec LEEM III microscope with electron imaging energy analyzer, permits surfaces to be imaged with chemical, structural and magnetic sensitivity down to a lateral spatial resolution better than 20nm with X-ray excited photoelectrons and 10nm in LEEM and UV-PEEM modes. Rotation around the surface normal and application of electric and (weak) magnetic fields are possible in the microscope chamber. In situ surface preparation capabilities include ion sputtering, high-temperature flashing, exposure to gases, and metal evaporation with quick evaporator exchange. Results from experiments in a variety of fields and imaging modes will be presented in order to illustrate the ALBA XPEEM capabilities

    Thermocatalytic CO2 Conversion over a Nickel-Loaded Ceria Nanostructured Catalyst: A NAP-XPS Study

    Get PDF
    Despite the increasing economic incentives and environmental advantages associated to their substitution, carbon-rich fossil fuels are expected to remain as the dominant worldwide source of energy through at least the next two decades and perhaps later. Therefore, both the control and reduction of CO2 emissions have become environmental issues of major concern and big challenges for the international scientific community. Among the proposed strategies to achieve these goals, conversion of CO2 by its reduction into high added value products, such as methane or syngas, has been widely agreed to be the most attractive from the environmental and economic points of view. In the present work, thermocatalytic reduction of CO2 with H-2 was studied over a nanostructured ceria-supported nickel catalyst. Ceria nanocubes were employed as support, while the nickel phase was supported by means a surfactant-free controlled chemical precipitation method. The resulting nanocatalyst was characterized in terms of its physicochemical properties, with special attention paid to both surface basicity and reducibility. The nanocatalyst was studied during CO2 reduction by means of Near Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). Two different catalytic behaviors were observed depending on the reaction temperature. At low temperature, with both Ce and Ni in an oxidized state, CH4 formation was observed, whereas at high temperature above 500 degrees C, the reverse water gas shift reaction became dominant, with CO and H2O being the main products. NAP-XPS was revealed as a powerful tool to study the behavior of this nanostructured catalyst under reaction conditions

    Extreme Ultraviolet (EUV) Sources for Lithography based on Synchrotron Radiation

    Get PDF
    The study presented here was initiated by a discussion to investigate the possibility of using synchrotron radiation as a source for the Next Generation Lithography (NGL) based on the EUV-concept (Extreme Ultra-Violet; here 13.5 nm or 11.3 nm radiation, respectively). The requirements are: 50 W, 2% bandwidth and minimal power outside this bandwidth. Three options were investigated. The first two deal with radiation from bending magnets and undulators. The results confirm the earlier work by Oxfords Instrument and others that these light-sources lack in-band power while emitting excessive out-of-band radiation. The third approach is a FEL (Free Electron Laser) driven by a 500 MeV linear accelerator with a superconducting mini-undulator as radiation emitting device. Such a device would produce in-band EUV-power in excess of 50 W with negligible out-of-band power.Comment: Submitted to Nuclear Instruments and Methods

    Direct observation of multivalent states and charge transfer in Ce-doped yttrium iron garnet thin films

    Full text link
    Due to their large magneto-optic responses, rare-earth-doped yttrium iron garnets, Y3Fe5O12 (YIG), are highly regarded for their potential in photonics and magnonics. Here, we consider the case of Ce-doped YIG (Ce-YIG) thin films, in which substitutional Ce3+ ions are magnetic because of their 4f1 ground state. In order to elucidate the impact of Ce substitution on the magnetization of YIG, we have carried out soft x-ray spectroscopy measurements on Ce-YIG films. In particular, we have used the element specificity of x-ray magnetic circular dichroism to extract the individual magnetization curves linked to Ce and Fe ions. Our results show that Ce doping triggers a selective charge transfer from Ce to the Fe tetrahedral sites in the YIG structure. This, in turn, causes a disruption of the electronic and magnetic properties of the parent compound, reducing the exchange coupling between the Ce and Fe magnetic moments and causing atypical magnetic behavior. Our work is relevant for understanding magnetism in rare-earth-doped YIG and, eventually, may enable a quantitative evaluation of the magneto-optical properties of rare-earth incorporation into YIG
    corecore