60 research outputs found

    Autonomous Detection of Particles and Tracks in Optical Images

    Full text link
    During its initial orbital phase in early 2019, the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) asteroid sample return mission detected small particles apparently emanating from the surface of the near-Earth asteroid (101955) Bennu in optical navigation images. Identification and characterization of the physical and dynamical properties of these objects became a mission priority in terms of both spacecraft safety and scientific investigation. Traditional techniques for particle identification and tracking typically rely on manual inspection and are often time-consuming. The large number of particles associated with the Bennu events and the mission criticality rendered manual inspection techniques infeasible for long-term operational support. In this work, we present techniques for autonomously detecting potential particles in monocular images and providing initial correspondences between observations in sequential images, as implemented for the OSIRIS-REx mission.Comment: 23 pages, 10 figure

    Trajectory Estimation for Particles Observed in the Vicinity of (101955) Bennu

    Get PDF
    We analyze the trajectories of 313 particles seen in the near‐Bennu environment between December 2018 and September 2019. Of these, 65% follow sub‐orbital trajectories, 20% undergo more than one orbital revolution around the asteroid, and 15% directly escape on hyperbolic trajectories. The median lifetime of these particles is ~6 h. The trajectories are sensitive to Bennu's gravitational field, which allows us to reliably estimate the spherical harmonic coefficients through degree 8 and to resolve nonuniform mass distribution through degree 3. The particles are perturbed by solar radiation pressure, enabling effective area‐to‐mass ratios to be estimated. By assuming that particles are oblate ellipsoids of revolution, and incorporating photometric measurements, we find a median axis ratio of 0.27 and diameters for equivalent‐volume spheres ranging from 0.22‐‐6.1 cm, with median 0.74 cm. Our size distribution agrees well with that predicted for fragmentation due to diurnal thermal cycling. Detailed models of known accelerations do not produce a match to the observed trajectories, so we also estimate empirical accelerations. These accelerations appear to be related to mismodeling of radiation pressure, but we cannot rule out contributions from mass loss. Most ejections take place at local solar times in the afternoon and evening (12:00‐‐24:00), although they occur at any time of day. We independently identify ten ejection events, some of which have previously been reported. We document a case where a particle ricocheted off the surface, revealing a coefficient of restitution 0.57±0.01 and demonstrating that some apparent ejections are not related to surface processes

    Photometry of Particles Ejected From Active Asteroid (101955) Bennu

    Get PDF
    AbstractNear‐Earth asteroid (101955) Bennu is an active asteroid experiencing mass loss in the form of ejection events emitting up to hundreds of millimeter‐ to centimeter‐scale particles. The close proximity of the Origins, Spectral Interpretations, Resource Identification, and Security–Regolith Explorer spacecraft enabled monitoring of particles for a 10‐month period encompassing Bennu's perihelion and aphelion. We found 18 multiparticle ejection events, with masses ranging from near zero to hundreds of grams (or thousands with uncertainties) and translational kinetic energies ranging from near zero to tens of millijoules (or hundreds with uncertainties). We estimate that Bennu ejects ~104 g per orbit. The largest event took place on 6 January 2019 and consisted of ~200 particles. The observed mass and translational kinetic energy of the event were between 459 and 528 g and 62 and 77 mJ, respectively. Hundreds of particles not associated with the multiparticle ejections were also observed. Photometry of the best‐observed particles, measured at phase angles between ~70° and 120°, was used to derive a linear phase coefficient of 0.013 ± 0.005 magnitudes per degree of phase angle. Ground‐based data back to 1999 show no evidence of past activity for Bennu; however, the currently observed activity is orders of magnitude lower than observed at other active asteroids and too low be observed remotely. There appears to be a gentle decrease in activity with distance from the Sun, suggestive of ejection processes such as meteoroid impacts and thermal fracturing, although observational bias may be a factor

    Early Navigation Performance of the OSIRIS-REx Approach to Bennu

    Get PDF
    The New Frontiers-class OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission is the first American endeavor to return a sample from an asteroid. In preparation for retrieving the sample, OSIRIS-REx is conducting a campaign of challenging proximity-operations maneuvers and scientific observations, bringing the spacecraft closer and closer to the surface of near-Earth asteroid (101955) Bennu. Ultimately, the spacecraft will enter a 900-meter-radius orbit about Bennu and conduct a series of reconnaissance flybys of candidate sample sites before being guided into contact with the surface for the Touch and Go sample collection event. Between August and December 2018, the OSIRIS-REx team acquired the first optical observations of Bennu and used them for navigation. We conducted a series of maneuvers with the main engine, Trajectory Correction Maneuver, and Attitude Control System thruster sets to slow the OSIRIS-REx approach to Bennu and achieve rendezvous on December 3, 2018. This paper describes the trajectory design, navigation conops, and key navigation results from the Approach phase of the OSIRIS-REx mission

    Episodes of particle ejection from the surface of the active asteroid (101955) Bennu

    Get PDF
    Active asteroids are those that show evidence of ongoing mass loss. We report repeated instances of particle ejection from the surface of (101955) Bennu, demonstrating that it is an active asteroid. The ejection events were imaged by the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer) spacecraft. For the three largest events, we estimated the ejected particle velocities and sizes, event times, source regions, and energies. We also determined the trajectories and photometric properties of several gravitationally bound particles that orbited temporarily in the Bennu environment. We consider multiple hypotheses for the mechanisms that lead to particle ejection for the largest events, including rotational disruption, electrostatic lofting, ice sublimation, phyllosilicate dehydration, meteroid impacts, thermal stress fracturing, and secondary impacts

    The dynamic geophysical environment of (101955) Bennu based on OSIRIS-REx measurements

    Get PDF
    The top-shaped morphology characteristic of asteroid (101955) Bennu, often found among fast-spinning asteroids and binary asteroid primaries, may have contributed substantially to binary asteroid formation. Yet a detailed geophysical analysis of this morphology for a fast-spinning asteroid has not been possible prior to the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission. Combining the measured Bennu mass and shape obtained during the Preliminary Survey phase of the OSIRIS-REx mission, we find a notable transition in Bennu’s surface slopes within its rotational Roche lobe, defined as the region where material is energetically trapped to the surface. As the intersection of the rotational Roche lobe with Bennu’s surface has been most recently migrating towards its equator (given Bennu’s increasing spin rate), we infer that Bennu’s surface slopes have been changing across its surface within the last million years. We also find evidence for substantial density heterogeneity within this body, suggesting that its interior is a mixture of voids and boulders. The presence of such heterogeneity and Bennu’s top shape are consistent with spin-induced failure at some point in its past, although the manner of its failure cannot yet be determined. Future measurements by the OSIRIS-REx spacecraft will provide insight into and may resolve questions regarding the formation and evolution of Bennu’s top-shape morphology and its link to the formation of binary asteroids

    Evidence for widespread hydrated minerals on asteroid (101955) Bennu

    Get PDF
    Early spectral data from the Origins, Spectral Interpretation, Resource Identification, and Security-Regolith Explorer (OSIRIS-REx) mission reveal evidence for abundant hydrated minerals on the surface of near-Earth asteroid (101955) Bennu in the form of a near-infrared absorption near 2.7 ”m and thermal infrared spectral features that are most similar to those of aqueously altered CM-type carbonaceous chondrites. We observe these spectral features across the surface of Bennu, and there is no evidence of substantial rotational variability at the spatial scales of tens to hundreds of metres observed to date. In the visible and near-infrared (0.4 to 2.4 ”m) Bennu’s spectrum appears featureless and with a blue (negative) slope, confirming previous ground-based observations. Bennu may represent a class of objects that could have brought volatiles and organic chemistry to Earth

    Comparison of Infectious Agents Susceptibility to Photocatalytic Effects of Nanosized Titanium and Zinc Oxides: A Practical Approach

    Get PDF
    • 

    corecore