248 research outputs found
Experimental Evidence for the Effect of Small Wind Turbine Proximity and Operation on Bird and Bat Activity
The development of renewable energy technologies such as wind turbines forms a vital part of strategies to reduce greenhouse gas emissions worldwide. Although large wind farms generate the majority of wind energy, the small wind turbine (SWT, units generating <50 kW) sector is growing rapidly. In spite of evidence of effects of large wind farms on birds and bats, effects of SWTs on wildlife have not been studied and are likely to be different due to their potential siting in a wider range of habitats. We present the first study to quantify the effects of SWTs on birds and bats. Using a field experiment, we show that bird activity is similar in two distance bands surrounding a sample of SWTs (between 6-18 m hub height) and is not affected by SWT operation at the fine scale studied. At shorter distances from operating turbines (0-5 m), bat activity (measured as the probability of a bat "pass" per hour) decreases from 84% (71-91%) to 28% (11-54%) as wind speed increases from 0 to 14 m/s. This effect is weaker at greater distances (20-25 m) from operating turbines (activity decreases from 80% (65-89%) to 59% (32-81%)), and absent when they are braked. We conclude that bats avoid operating SWTs but that this effect diminishes within 20 m. Such displacement effects may have important consequences especially in landscapes where suitable habitat is limiting. Planning guidance for SWTs is currently lacking. Based on our results we recommend that they are sited at least 20 m away from potentially valuable bat habitat
Predicting the Effects of Management on Upland Birds, Economy and Employment
Livestock farming systems play a significant role in the economy and conservation of the UK uplands and rely heavily upon public financial support. Changes in that support could have far-reaching impacts on the wildlife interest and socio-economics of upland areas. Predicting the impacts of such changes is difficult, since they arise from responses to new economic circumstances. The effect of management change is also influenced by natural variation, such as the mosaic of plant communities, already present in the upland landscape. This paper sets out an approach that integrates theoretical models with field studies to investigate the effects of management change on birds, economics and employment in the UK uplands
Hydrologically driven ecosystem processes determine the distribution and persistence of ecosystem-specialist predators under climate change
Climate change has the capacity to alter physical and biological ecosystem processes, jeopardizing the survival of associated species. This is a particular concern in cool, wet northern peatlands that could experience warmer, drier conditions. Here we show that climate, ecosystem processes and food chains combine to influence the population performance of species in British blanket bogs. Our peatland process model accurately predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates), which in turn predicts observed abundances and population persistence of three ecosystem-specialist bird species that feed on craneflies during the breeding season. Climate change projections suggest that falling water tables could cause 56–81% declines in cranefly abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080. We conclude that physical (precipitation, temperature and topography), biophysical (evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes combine to determine the distributions and survival of ecosystem-specialist predators
Trade-offs between the natural environment and recreational infrastructure:A case study about peatlands under different management scenarios
The importance of peatlands for conservation and provision of public services has been well evidenced in the last years, especially in relation to their contribution to the net zero carbon emission agenda. However, little is known about the importance of recreation relative to conservation and their trade-offs. In this paper we address this knowledge gap by exploring the trade-offs between natural properties of peatlands and recreational infrastructures for different categories of recreationists (walkers, cyclists, anglers, and birdwatchers) of an open heather moors and peatlands landscape. We do so building on a series of management scenarios formulated through participatory methods and applying choice experiment related to an Area of Outstanding Natural Beauty and UNESCO Global Geopark in the UK. Results show a high degree of heterogeneity in landscape preferences across different user groups. Recreationists had a higher appreciation for semi-natural habitats compared to pristine or restored peatland (e.g., land rewetting). Walkers and cyclists were more sensitive to changes in the availability of recreational facilities than to environmental quality, while anglers’ and birdwatchers’ preferences were more aligned with values promoted by restoration policies. Overall, our results point to a potential value conflict between benefits generated by conservation and the benefits valued most by some groups of recreationists. To maximise success conflicts like the one revealed here need to be considered in strategies that provide a central role for peatlands in net zero climate mitigation strategies
Climate change, climatic variation and extreme biological responses
Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'
A global threats overview for Numeniini populations: synthesising expert knowledge for a group of declining migratory birds
The Numeniini is a tribe of thirteen wader species (Scolopacidae, Charadriiformes) of which seven are near-threatened or globally threatened, including two critically endangered. To help inform conservation management and policy responses, we present the results of an expert assessment of the threats that members of this taxonomic group face across migratory flyways. Most threats are increasing in intensity, particularly in non-breeding areas, where habitat loss resulting from residential and commercial development, aquaculture, mining, transport, disturbance, problematic invasive species, pollution and climate change were regarded as having the greatest detrimental impact. Fewer threats (mining, disturbance, problematic native species and climate change) were identified as widely affecting breeding areas. Numeniini populations face the greatest number of non-breeding threats in the East Asian-Australasian Flyway, especially those associated with coastal reclamation; related threats were also identified across the Central and Atlantic Americas, and East Atlantic flyways. Threats on the breeding grounds were greatest in Central and Atlantic Americas, East Atlantic and West Asian flyways. Three priority actions were associated with monitoring and research: to monitor breeding population trends (which for species breeding in remote areas may best be achieved through surveys at key non-breeding sites), to deploy tracking technologies to identify migratory connectivity, and to monitor land-cover change across breeding and non-breeding areas. Two priority actions were focused on conservation and policy responses: to identify and effectively protect key non-breeding sites across all flyways (particularly in the East Asian - Australasian Flyway), and to implement successful conservation interventions at a sufficient scale across human-dominated landscapes for species’ recovery to be achieved. If implemented urgently, these measures in combination have the potential to alter the current population declines of many Numeniini species and provide a template for the conservation of other groups of threatened species
Impacts of climate change on national biodiversity population trends
Lepidoptera are sensitive to climate change, with documented impacts on their phenology, distribution and communities. However, there remains considerable uncertainty over which species are most vulnerable, and which have been most affected so far. To address this, we analyse 35-year UK or English population trends of 55 butterfly and 265 moth species to model the impacts of variation in temperature and precipitation upon population growth rates. We identify the weather variables and periods that species are most sensitive to, the long-term impacts of climate change, and the characteristics of species which show the greatest responses. Positive impacts of summer temperature on both butterflies and moths were partly offset by negative impacts of temperature in other seasons, particularly winter. Precipitation tended to have negative impacts on population growth rates, particularly for moths. Annual population fluctuations were strongly driven by inter-annual variation in weather conditions. Over 40% of a significant decline in mean moth abundance from the 1990s to 2000s was consistent with a weather-driven decline predicted by our models, which also explained up to 19% of the decadal variation in abundance between species. Species overwintering as larvae and multivoltine species were most sensitive to the effects of weather, whilst southerly-distributed species, species associated with woodland and unimproved grassland habitats, and pest species, showed the most positive long-term responses to climate change. Combined, these results show how climate change is already having significant impacts on the abundance of particular butterfly and moth species, with likely future consequences for ecosystem function and services
- …