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Hydrologically driven ecosystem processes
determine the distribution and persistence of
ecosystem-specialist predators under climate
change
Matthew J. Carroll1,2, Andreas Heinemeyer3, James W. Pearce-Higgins4, Peter Dennis5, Chris West3,

Joseph Holden6, Zoe E. Wallage7 & Chris D. Thomas2

Climate change has the capacity to alter physical and biological ecosystem processes,

jeopardizing the survival of associated species. This is a particular concern in cool, wet

northern peatlands that could experience warmer, drier conditions. Here we show that

climate, ecosystem processes and food chains combine to influence the population

performance of species in British blanket bogs. Our peatland process model accurately

predicts water-table depth, which predicts abundance of craneflies (keystone invertebrates),

which in turn predicts observed abundances and population persistence of three ecosystem-

specialist bird species that feed on craneflies during the breeding season. Climate change

projections suggest that falling water tables could cause 56–81% declines in cranefly

abundance and, hence, 15–51% reductions in the abundances of these birds by 2051–2080.

We conclude that physical (precipitation, temperature and topography), biophysical

(evapotranspiration and desiccation of invertebrates) and ecological (food chains) processes

combine to determine the distributions and survival of ecosystem-specialist predators.
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C
limate change is predicted to drive substantial global
biodiversity loss, with changing climatic conditions
altering physical and biological ecosystem processes, in

turn threatening species unable to adapt to the rapidly changing
conditions1–3. This is a major concern for northern peatlands,
where warmer, drier conditions under climate change could
reduce ecosystem suitability for species associated with cool, wet
conditions4,5. Latitudinal and elevational retreats of northern and
montane species have been attributed to rising temperatures6,7,
but distribution changes may also be driven by altered
moisture regimes8,9, which are influenced by temperature,
precipitation, soil properties, vegetation and the topography of
the land10. However, a lack of high-resolution, landscape-scale
moisture data can make moisture-driven changes harder to study.
Understanding potential climate change impacts on moisture-
dependent ecosystems may therefore require knowledge of the
system’s hydrological properties and the links between moisture
and ecosystem-specialist species.

Here we consider blanket bogs, important northern and
montane ecosystems defined by extensive deep peat soils over
rolling terrain, which are associated with cool, wet climates11,12.
An excess of precipitation over evapotranspiration, poor drainage
and persistent high water tables are essential for blanket bog
formation and maintenance, with water tables typically staying
within 10 cm of the surface for 480% of the year13,14. They are
important carbon repositories, storing over 2,000 TgC in the
United Kingdom alone15, which contains around 18,000 km2 of
deep peat (around 7% of the UK’s land area)11, corresponding to
7–13% of the world’s blanket bog area16. UK blanket bogs
support a rich soil fauna17 and unique breeding bird and plant
assemblages18. Craneflies (Diptera: Tipulidae) are keystone
insects in blanket bog ecosystems, dominating the soil fauna’s
abundance and biomass17. Craneflies can constitute a major
dietary component for peatland breeding birds (36 and 42% dry
weight across studies for golden plover and dunlin,
respectively)19; adults and chicks take both larval and adult
craneflies20, and higher availability of adult craneflies is associated
with higher chick growth and survival21,22. While habitat
differences can cause spatial variation in diet composition22,
craneflies remain important even after location effects have been
accounted for, making them a key prey resource for breeding
birds in British blanket bogs19,20, from the South Pennines22 to
northern Scotland23. However, cranefly eggs and larvae are
susceptible to desiccation, with high mortality under dry
conditions24. As blanket bogs could experience warmer, drier
conditions under climate change5, interactions between climate,
soil moisture, invertebrates and predators may need to be
identified for us to understand climate change impacts on blanket
bog biodiversity.

Accordingly, we model monthly peatland water-table depth
(WTD) as a function of climate and topography, and cranefly
abundance as a function of WTD, to test whether hydrological
processes and invertebrate food resources determine the abun-
dances and distributions of breeding birds in blanket bogs. We
validate performance of the hydrological model using data from
three British blanket bogs (Moor House, Oughtershaw Moss and
Lake Vyrnwy; Fig. 1), and show that both WTD fluctuations and
position are well replicated. We show that modelled mean
summer WTD is a significant predictor of observed adult cranefly
abundance the following year, and use the resulting relationship
to produce landscape-scale projections for three focal landscapes
(mid Wales, South Pennines and North York Moors; Fig. 1).
Within these landscapes, we show that climate change could drive
large declines in cranefly abundance by 2051–2080 through
changes in WTD. We then show that predicted cranefly
abundance is positively related to observed abundance and

persistence of golden plover, dunlin and red grouse in the South
Pennines. Finally, we show that declining cranefly abundance
under climate change could drive large declines in these cranefly-
reliant bird species. In conclusion, we show that climate,
hydrological processes and invertebrate food resources combine
to determine the abundances and distributions of ecosystem-
specialist predators.

Results
Modelling water-table depths. We used the MILLENNIA model
of peatland carbon and hydrological processes25 to estimate
blanket bog WTD as a function of simple climatic (temperature
and precipitation) and topographic (slope, aspect and elevation)
inputs. We updated the model to reflect monthly WTD
patterns more accurately and tested predictions against dipwell
observations from three British blanket bogs (Fig. 2;
Supplementary Methods; Supplementary Data 1). At all sites,
modelled WTD was a highly significant predictor of observed
WTD, with 47–65% variation explained (Fig. 2). At Moor House
and Oughtershaw Moss in northern England, where automatic
dipwells sampled intact peat, mean WTD position was predicted
to within 0.2 cm. At Lake Vyrnwy in mid Wales, where manual
dipwells sampled peat with blocked drains, model performance
declined somewhat, with a greater difference between observed
and predicted WTD position and lower R2 (Fig. 2). This is to be
expected, as manual monthly sampling is unlikely to accurately
reflect mean WTD across the whole month. Further, local
hydrology may not return to an entirely natural state after drain
blocking26,27, but reduced model performance for drained peat
(see also Supplementary Methods) should have little impact at
landscape scales28. Thus, the model was able to predict WTD
position and fluctuations as driven by climatic and topographic
conditions.

Mid Wales/Lake Vyrnwy

South Pennines

North York Moors

Moor House

Oughtershaw Moss

100 km

Figure 1 | Map indicating locations of blanket bogs used in the analysis.

Moor House, Oughtershaw Moss and Lake Vyrnwy indicate locations from

which WTD observations were acquired to validate the hydrological model.

Mid Wales, North York Moors and South Pennines indicate locations of

focal landscapes where adult cranefly abundances were sampled and for

which landscape-scale cranefly projections were made. Shaded area in

South Pennines indicates area for which analyses of breeding birds were

carried out.
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Modelling cranefly abundance. We hypothesized that cranefly
abundance should be linked to predicted WTD, as WTD strongly
influences soil moisture29 and cranefly eggs and larvae are
sensitive to desiccation24. We therefore ran the hydrological
model for 128 locations across three UK regions where we
collected data on emerging adult cranefly abundance4

(Supplementary Data 2). We extracted modelled WTDs for
July, August and September of the year preceding adult sampling,
as conditions during early larval stages have a dominant influence
on survival24, and hence on adult abundance5. Modelled WTD
was a highly significant predictor of observed cranefly abundance
(generalized linear model (GLM), negative binomial error
and log link, with a ‘region’ factor included to account for
unmeasured differences among sites: intercept¼ 5.203±0.745
s.e., z¼ 6.986, Po0.001; estimate¼ � 0.333±0.089, z¼ � 3.766,
Po0.001; d.f.¼ 124, 20.3% deviance explained). Further deviance
was explained by including anthropogenic drainage as an
additional factor (intercept¼ 4.885±0.681, z¼ 7.178, Po0.001;
estimate¼ � 0.310±0.081, z¼ � 3.827, Po0.001; d.f.¼ 123,
39.0% deviance explained), but as parameter estimates did not

differ significantly and drainage effects are highly localised28, we
preferred the simpler model for all subsequent analyses. The
proportion of deviance explained is constrained by fine-scale
spatial heterogeneity in cranefly abundance4, but this is not
expected to be relevant when aggregating density estimates at the
scale of bird territories (up to 106 m2)22. Hence, modelled WTD
was found to predict broad-scale patterns of cranefly abundance.

The hydrological model’s predictive capacity allowed us to
extend WTD estimates to landscape scales. The model was run
for every combination of slope, aspect and elevation in each of
our three study landscapes (using a 10� 10-m digital elevation
model (DEM), and driven by observed climate data30 for
1914–2010). Predicted WTDs were estimated for a climatic
baseline period of 1961–1990; these enabled us to estimate
landscape-scale cranefly abundances using the above GLM
linking WTD to cranefly abundance (Fig. 3; Supplementary
Data 3). Shallow WTDs and high cranefly abundances occurred
on relatively flat hilltops, and lower moisture and abundances
occurred on steeper slopes, replicating observed patterns31. There
was also an overarching longitudinal gradient, driven by
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Figure 2 | Modelled and observed monthly water-table depths for three British blanket bog sites used in MILLENNIA validation. (a) Moor House,

northern England: observed data based on averaging hourly automated dipwell readings over 12 years (n¼ 144 months); dashed black line indicates

predictions, solid grey line indicates observations. (b) Lake Vyrnwy, mid Wales: observed data based on averaging readings from 24 dipwells sampled

manually, monthly or fortnightly (n¼ 31 months); dashed black line indicates predictions, points indicate monthly mean WTD, error bars indicate±s.d. of

observed WTD; points plotted instead of line to reflect discrete nature of observations. (c) Oughtershaw Moss, northern England: observed data based on

averaging readings from nine automated dipwells sampling every 20 min (n¼ 18 months); dashed black line indicates predictions, solid grey line indicates

observations. On all panels, 0 cm indicates the peat surface (dotted line); positive WTD values indicate a water table below the surface; negative values

indicate surface ponding. Graphs all show observed and predicted mean WTD position (±s.d.) and results of regression of observed against predicted

WTD, giving estimates (±s.e.), R2 and the P value.
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geographic climate variation4: wettest in the west (Mid Wales;
1961–1990 mean annual rainfall, 2,071 mm; derived from UK
Met Office gridded data30), drier in central areas (South Pennines;
1,359 mm) and driest in the east (North York Moors; 1,016 mm).

Projecting climate change impacts. Climate change impacts
were examined by driving the model with UKCP09 climate
change projection data for an ‘intermediate’ climate change sce-
nario for 2011–2080 (ref. 32). Projections suggested that WTDs
will become deeper over time, and hence average cranefly
abundances could decline by 55.9–81.2% between the 1961–
1990 baseline and 2051–2080 (Fig. 3; Supplementary Data 3).
Regressions of decadal mean cranefly abundance against time
indicated that all projected declines were significant (in craneflies
per m2 per year: Mid Wales, estimate¼ � 0.191±0.038 s.e.,
R2¼ 0.648, F1,14¼ 25.80, Po0.001; South Pennines, estimate¼
� 0.121±0.038, R2¼ 0.421, F1,14¼ 10.17, P¼ 0.007; North York
Moors, estimate¼ � 0.120±0.028, R2¼ 0.563, F1,14¼ 18.02,
Po0.001; Supplementary Data 4). These declines could be con-
servative because the hydrological model may underestimate the
deepest WTDs (Fig. 2) and there may be a moisture threshold

below which craneflies cannot survive4. Overall, however,
substantial cranefly abundance declines were projected, driven
by falling summer water tables associated with warmer, drier
July–September conditions.

Effects of food availability on breeding bird populations. To
quantify the extent to which craneflies influence the distribution
and abundance of their predators, we examined three bird species
for which craneflies are important dietary components19. We
predicted cranefly abundance for 557 1� 1-km grid squares in
the South Pennines, where large-scale breeding bird surveys were
undertaken in 1990 (ref. 33) and 2004 (ref. 34). Modelled cranefly
abundance from the years immediately preceding the bird surveys
(that is, 1989 and 2003) was a highly significant predictor of the
abundances of all three bird species (Fig. 4; Supplementary
Table 1; Supplementary Data 5), suggesting that cranefly
availability can influence their abundances on a large scale.

Cranefly abundance also predicted bird population persistence:
we compared predicted cranefly abundance, averaged across the
two survey periods, in squares where birds were
absent both years (‘empty’); present in 1990 but absent in 2004
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Figure 3 | Landscape-scale projections of summer water-table depth and spring-emerging adult cranefly abundance for baseline (1961–1990) and

future (2051–2080) periods. Maps show a 5� 5-km square for each of the three focal landscapes, at 10� 10-m resolution. Darker blue indicates

shallower water tables (that is, wetter); darker red indicates higher cranefly abundance; black indicates areas unsuitable for projections (that is, non-

peatland land cover, elevations below 250 m above sea level). All projections show deeper water tables and lower cranefly abundances in the future

scenario. Landscapes are presented along a gradient of wettest (Mid Wales) to driest (North York Moors).
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(‘extinct’); absent in 1990 but present in 2004 (‘colonised’); or
present both years (‘occupied’). Cranefly abundance differed
significantly among categories for all species (Fig. 4; Kruskal–
Wallis tests: dunlin w2¼ 102.639, d.f.¼ 3, Po0.001; golden plover
w2¼ 247.791, d.f.¼ 3, Po0.001; red grouse w2¼ 70.834, d.f.¼ 3,
Po0.001). ‘Empty’ squares had significantly lower cranefly
abundance than other categories, and ‘occupied’ squares typically
had significantly higher abundance, while ‘colonised’ and ‘extinct’
squares were intermediate (Fig. 4; Supplementary Data 5). Hence,
the highest cranefly abundances were associated with areas where
bird populations appeared more stable (that is, birds were present
in both survey years), while locations with intermediate
abundances were seemingly less likely to sustain bird populations.

Thus, climate-driven cranefly declines would be expected to
lead to reductions in dependent bird populations, particularly in
the South Pennines, which is towards the southern range margin
for all three focal species35. Projections for the South Pennines
(using relationships in Fig. 4 and Supplementary Table 2) for
1990 and 2004 (bird observation periods) and 2051–2080 (under
an intermediate climate change scenario) suggested that dunlin
could decline by 51.1%, golden plover by 29.7% and red grouse by

14.8% (Fig. 5; Supplementary Data 6). Declining food availability
could therefore drive declines in ecosystem-specialist predators,
with novel extreme conditions increasing local extinction risk for
dunlin and golden plover in particular.

Discussion
Here we have shown how climate, ecosystem processes and
ecological links combine to influence populations of ecosystem-
specialist predators. The ability to study such processes is made
possible in part because blanket bog ecosystems are strongly
dependent upon high water tables11,13, and a single invertebrate
group plays a very important role in the soil fauna17 and the diet
of breeding birds19. Even in this relatively reductive system,
however, other processes and drivers will contribute to real
outcomes, meaning that unexplained variation remained for all
three focal bird species. The most variation was explained for
dunlin (30.5–39.4%), and the least for red grouse (8.1–8.2%).
Such a pattern may be expected because, of the three focal species,
dunlin have the greatest proportion of craneflies in their diet,
while red grouse have the smallest19. Some of the remaining
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variation is likely to be methodological: the approach to
modelling cranefly abundance may not replicate all patterns
due to averaging (both across months of WTD predictions and
across grid cells of cranefly predictions) and propagation of
uncertainty. Further unexplained variation can be attributed to
local factors that could influence bird populations, but which
have not been explicitly included, such as vegetation type, land
management, predation and pathogen risk, weather in wintering
grounds, and density dependence36–40. It should also be noted
that bird data for each grid square are based on only two survey
visits in each year41, so some unexplained variation may be
attributed to survey methods. It is notable, however, that even
with such simplifications, modelled cranefly abundance still
predicted up to 39% of variation in observed bird abundance,
thus reflecting heavy reliance on this key food resource.

Modelled cranefly abundance was shown to differ among areas
with differing bird population persistence patterns. However,
peatland breeding bird abundance can show large fluctuations,

with golden plover abundance at one South Pennines site
fluctuating between 5 and 440 pairs over a 30-year period5.
Cranefly populations also show interannual fluctuations, with
droughts driving substantial declines and wetter conditions
allowing populations to recover4,24. In a well-studied golden
plover population in the South Pennines, interannual abundance
fluctuations have been linked to temperature-driven fluctuations
in cranefly populations5. Hence, even beyond the extremes of
colonization and extinction, important aspects of breeding bird
population dynamics may be influenced by cranefly availability.
Were longer time series of bird data available, it would be
beneficial to examine the degree to which bird and cranefly
abundance track one another temporally and spatially, to further
examine how bird population dynamics are influenced by
climate-change-sensitive prey species.

On the basis of the climate change projections made here, birds
breeding in blanket bogs appear to be threatened by declining
food availability under climate change, driven by falling water
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tables. While prey switching might provide some buffering effect,
alternative prey, such as Chironomidae for dunlin and Coleoptera
for golden plover, are likely to show negative or neutral responses
to climate change19. Indeed, few relevant invertebrate taxa
currently found in the focal bird species’ diets are likely to
respond positively to increased warming or drought19. Further,
the focal populations are towards the southern range limit for the
three species35, so adaptations such as prey switching may be less
likely to occur. Heavy reliance on craneflies, combined with the
sensitivity of other potential prey to warmer, drier conditions,
suggests that availability of invertebrate prey for peatland
breeding birds is likely to decline under climate change.

Climate change impacts on peatland breeding bird populations
will not, however, be exclusively mediated through changes in
prey abundance. Golden plover might experience a mismatch
between the timing of breeding and peak cranefly availability42,
although prey abundance appears to be a stronger driver of
population trends5. Golden plover chick growth rates are
positively correlated with breeding season temperatures43, so
higher temperatures may provide some benefits. However,
breeding season weather appears to have limited population-
scale impacts40. Further, indirect effects of climate change on
vegetation structure may have a strong impact on golden plover
habitat suitability23. For red grouse, higher temperatures before
breeding are associated with earlier egg laying, larger clutch sizes
and higher chick survival, but higher temperatures during
breeding are associated with lower chick survival44. Further,
another important driver of red grouse population trends,
parasitism, could be affected by climate change, with higher
temperatures leading to increased parasite development rates,
but drier conditions potentially reducing parasite transmission45.
For dunlin, recruitment shows a quadratic relationship with
temperature, with maximum recruitment occurring at
intermediate temperatures, thus possibly reflecting a balance
between mortality and prey availability46. Climate change will
undoubtedly have complex effects on breeding bird populations,
integrating multiple interacting drivers47. However, the cranefly
abundance declines projected here are likely only to have a
negative effect on bird populations, and the relationships
observed over recent years suggest that food availability is likely
to be a dominant driver of population change5. Hydrological
management may, therefore, be required to protect these
globally important ecosystems and their associated species,
perhaps focussing conservation efforts on potential population
refugia where relatively high densities are predicted to remain
(for example, for golden plover, Fig. 5).

Our results indicate that blanket bog WTDs predict the
abundance of keystone invertebrates, and estimated invertebrate
abundance predicts the abundance and dynamics of breeding
birds. The links stem from physical inputs (precipitation,
temperature and topography) that drive soil moisture through
biophysical processes (peat development and evapotranspiration),
which in turn influence invertebrate survival. We find that
climate change could drive substantial declines in abundances of
keystone invertebrates and their predators, acting through soil
moisture. This mechanistic approach has been able to identify the
consequences of climate change for ecosystem function and
predators at a landscape scale. Such an approach may be useful in
other ecosystems, as climate change impacts on higher-level
consumers are likely to be mediated through altered species
interactions2; comparable studies are therefore needed in other
threatened ecosystems.

Methods
Modelling blanket bog water-table depths. The MILLENNIA peatland cohort
model25 predicts annual peat accumulation for blanket bogs based on established

relationships between climate, net primary productivity and plant litter
decomposition, with plant functional types influencing litter quality and hence peat
growth. Plant functional types and decomposition rates are influenced by a
dynamic WTD submodel. After a spin-up period to allow the peat column to
develop, the model estimates carbon stocks and fluxes (for example, peat growth)
and WTD. Model inputs are the topography of the point to be modelled (that is,
slope, aspect and elevation) and simple climatic inputs (mean temperature and
total precipitation). The WTD submodel considers water inputs from precipitation,
water loss through runoff and evapotranspiration, and the pore space available in
the peat. Runoff of incoming precipitation is influenced by the topographic slope
and the antecedent WTD. Water loss through evapotranspiration is influenced by
plant functional types (which are determined by long-term average WTD),
temperature (which is affected by aspect and elevation) and rooting depth. A model
comparison study48 has shown that the model is suitable for modelling blanket bog
conditions, producing predictions similar to those from a process-based model
requiring more comprehensive local parameterization.

Here, the published model25, which was originally intended to produce
estimates at an annual time scale, was updated to improve the representation of
monthly water balances (Supplementary Methods). To evaluate performance, the
updated model was driven by observed climate data, and resulting WTD
predictions were tested against observed WTDs recorded from dipwells monitoring
three UK blanket bogs (Supplementary Data 1). The primary evaluation used 12
years of WTD data from the Moor House Environmental Change Network site49 in
northern England, with the model driven by climate data from a weather station at
the same site. Moor House WTD data were taken from a single automatic dipwell,
so to correct for systematic bias were calibrated against the average WTD from
weekly readings of five nearby manual dipwells; this resulted in a � 2.8-cm
correction (that is, 2.8-cm shallower) applied to all months. Further evaluation was
carried out using 18 months of automated dipwell data from Oughtershaw Moss in
northern England and 3 years of manual dipwell data from Lake Vyrnwy in mid
Wales26, with the model driven by UK Met Office gridded climate data30.
Topographic data were derived from NEXTMap DEMs at a 10� 10-m scale
(Intermap Technologies. NEXTMap Britain: Digital terrain mapping of the UK.
NERC Earth Observation Data Centre, 2007. Available at http://badc.nerc.ac.uk);
elevation was derived directly from DEMs, while slope and aspect were calculated
using standard functions in ArcMap 9.3 (ESRI; Redlands, California, USA). Model
performance was assessed by comparing mean predicted and observed WTD over
the evaluation period, and then by regressing observed WTD against predicted
WTD (Fig. 2). Model performance was found to be highest in intact peat, with local
anthropogenic drainage appearing to reduce performance (see Supplementary
Methods). Overall, model performance was deemed adequate to predict both the
position and seasonal fluctuations of WTDs, two key elements required to
understand impacts of climate change on blanket bog hydrology.

Modelling relationships between craneflies and WTD. To examine the rela-
tionship between cranefly abundance and WTD, observed cranefly abundance was
regressed against modelled WTD. Emerging adult cranefly abundance was
observed in the field in 2009 and 2010 in three British blanket bogs, using emer-
gence traps in a large-scale replicated experimental design4. Sampling sites were
set along a climatic gradient from mid Wales in the relatively wet west, through the
South Pennines, to the North York Moors in the relatively dry east4 (Fig. 1). At
each site, traps were active across the cranefly emergence period (late April to early
July), with individual samples taken approximately every 20 days. Final abundance
estimates were produced by summing counts across the entire period. Traps were
set in quartets covering B5� 10 m, but each trap individually sampled only
around B0.11 m2. As WTD predictions were limited to the spatial resolution of the
DEMs (that is, 10� 10 m), cranefly counts from individual traps were summed to
give a single abundance value per quartet of traps, meaning that resolutions of
abundance observations and model projections were more closely matched. This
aggregation meant that counts from 128 individual sample locations were available
(Supplementary Data 2). MILLENNIA was then run for each location, with
topographic variables derived from NEXTMap DEMs and the model driven by UK
Met Office gridded climate data30, to produce monthly estimates of WTD.

In blanket bogs, cranefly adults are conspicuous during the mass emergence
period in spring, but the majority of their lifecycle is spent in the upper layers of the
peat24. Cranefly eggs and larvae experience high mortality when conditions become
too dry, with the eggs and first two larval instars being the most susceptible24,50,51.
In Tipula subnodicornis, the main large-bodied spring-emerging blanket bog
cranefly species, the period with greatest desiccation risk is therefore approximately
in July to September24. Emerging adult cranefly abundance in the spring is lower
following warmer Augusts in the previous year5, which is likely to reflect impacts of
drought on survival during this sensitive period. Therefore, WTDs were extracted
for July, August and September (hereafter, ‘summer’) of the year preceding
sampling, and the mean WTD across the 3 months was calculated (Supplementary
Data 2). Observed cranefly abundances were then modelled as a function of
predicted summer WTD and a region factor (to account for unmeasured
differences among sites, for example, peat structure and vegetation), using a GLM
with negative binomial error and log link function, and fitted using the ‘MASS’ R
package52 in R v3.01 (ref. 53); modelled summer WTD was a significant predictor
of observed adult cranefly abundance (see main text). Therefore, the resulting
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regression equation was used to convert modelled WTD to cranefly abundance.
The minimum summer WTD was also trialled as a predictor, but while a
significant relationship was still found, it described less variation in cranefly
abundance than did mean WTD (intercept¼ 2.976±0.220 s.e., z¼ 13.516,
Po0.001; estimate¼ � 0.203±0.076, z¼ � 2.671, P¼ 0.008; d.f.¼ 124, 16.0%
deviance explained), so the mean was preferred for further analyses.

Producing landscape-scale estimates. MILLENNIA produces point estimates,
but landscape-scale patterns of WTD and cranefly abundance were required for the
three focal landscapes (see above). To achieve this, the 5� 5-km grid square
covering each site was selected from the UK Met Office gridded weather dataset30,
and slope, aspect and elevation were calculated for all 10� 10 m cells using
NEXTMap DEMs. MILLENNIA was run for all combinations of slope, aspect and
elevation in each landscape, and each 10-m grid cell was assigned predicted WTD
values from the run corresponding to its topography. To reduce the number of
model runs required to describe each landscape, topographic variables were
aggregated into intervals of 50 m for elevation, 10� for aspect and 1� for slope;
interval sizes were chosen to allow the relationship between WTD and each
variable to be adequately described. As model processes are one-dimensional,
modelled grid cells do not interact with nearby cells. Two-dimensional processes
such as accumulation of water in depressions and drainage from ridges54,55

therefore cannot be represented, meaning that this simplified spatial representation
may not predict exact locations of wet or dry areas. However, this approach does
allow the dominant topography and the degree of topographic heterogeneity within
modelled blanket bogs to be taken into account, so important landscape
components such as steep, dry slopes and flat, wet hilltops should still be reflected.
When soil moisture recorded from cranefly sampling locations4 was regressed
against modelled WTDs, WTD was found to be a significant predictor of moisture
(linear regression: intercept¼ 1.013±0.044, t¼ 22.893, Po0.001;
WTD¼ � 0.031±0.006, t¼ � 5.362, Po0.001; F1,126¼ 28.75, R2¼ 18.6%;
Supplementary Data 2), showing deeper WTDs associated with drier peat and
confirming that the model was able to reproduce spatial moisture patterns.

As MILLENNIA is parameterised for blanket peats, but each 5-km grid
square contained a variety of habitat and soil types, areas for which model
projections would not apply were removed. First, Ordnance Survey MasterMap
data (Crown Copyright/database right 2012, an Ordnance Survey/EDINA supplied
Service: License 100018355) allowed us to retain only ‘rough grassland’ or ‘heath’
habitat classifications, as these were the only two habitat types likely to reflect
underlying peat. Next, as the peatlands of interest occur at high altitudes, any
remaining land below 250 m above sea level was removed. Once these landscape-
scale WTD estimates had been produced, the equation from the regression of
cranefly abundance on summer WTD was used to convert WTD to 10-m spatial
resolution estimates of cranefly abundance across the three landscapes
(Supplementary Data 3).

Producing climate change projections. To examine climate change impacts,
MILLENNIA was driven by gridded weather observations30 from 1914 to 2010,
then UKCP09 weather generator projections32 for the twenty-first century.
The weather generator produces stochastic sequences of weather data based on
30-year climatic means on a 5� 5-km scale32. For each focal landscape, the
weather generator was run for each available 30-year climate period (2010–2039,
2020–2049, 2030–2059, 2040–2069, 2050–2079, 2060–2089 and 2070–2099) under
an intermediate climate change scenario (SRES emissions scenario A1B). Daily
outputs were aggregated to total monthly precipitation and mean monthly
temperature. One hundred random realizations were produced from each run, so
data within each 30-year period were sorted in order of mean summer rainfall, and
the 50th driest run was selected to approximately represent the median. As 30-year
periods overlapped but the model required a continuous sequence of climate input
data, the middle 10 years from each were combined into one sequence of 70 years.

Modelled summer WTD for all years was converted to landscape-scale cranefly
abundance estimates, as described above. To examine change over time, cranefly
abundances were averaged across all 10 m cells (to account for local heterogeneity
in emergence densities), thus providing a landscape-wide estimate of mean
abundance for each year. As future projections were based on stochastic
realizations, estimates for specific years were not of interest, making the climatic
periods from which they were drawn the relevant periods in which to examine
changes. Annual values were therefore aggregated to decadal means
(Supplementary Data 4), and mean abundance was regressed against decade. To
examine abundance changes spatially, individual decades would provide too many
comparisons to allow meaningful interpretation, so projections were converted to
30-year means for 1961–1990 and 2051–2080, to represent a baseline and late
twenty-first century period, respectively (note that as WTDs in summer of year t
predicted abundances in year tþ 1, abundance estimates refer to 1962–1991 and
2052–2081, respectively; Supplementary Data 3).

Examining relationships with birds. To examine relationships between craneflies
and breeding birds, data on observed bird abundances were acquired from two
large-scale surveys of upland breeding birds in the South Pennines. The first survey,
from 1990, was carried out by English Nature18 (now Natural England), and the

second survey, from 2004, was conducted by Moors for the Future19. The 2004
survey was designed to repeat the 1990 survey to provide updated information on
breeding bird distributions and abundances19. Data were collected for 1� 1-km
grid squares, with survey routes designed to cover a large amount of each square19.
Two visits were made to each square during the survey period, the first between
early April and mid May, and the second between mid May and late June19. Final
counts represented the maximum number of individuals of each species observed
across the two visits. For the current analysis, grid squares were restricted to those
surveyed in both years, leaving 557 squares available for analysis (Fig. 1; Fig. 5).

Landscape-scale estimates of cranefly abundance were produced for all 557 grid
squares by following the modelling procedure as described above. The model was
again run for all combinations of slope, aspect and elevation present in the
landscape, but here topographic variables were rounded into intervals of 50 m for
elevation, 15� for aspect, 2� for slopes r20� and 5� for slopes 420�; these are
larger intervals than used for the previous climate change analyses (where three
5� 5-km grid squares were used), but as the scale of this analysis was so much
greater, finer spatial resolution was less important and reducing model run time
was relatively more important. The model was again driven by UK Met Office
gridded weather observation data30. As these data corresponded to observed
conditions in specific years, summer WTD estimates were extracted for 1988, 1989,
2002 and 2003 for each grid square (Supplementary Data 5). These years were
chosen because abundance of adult craneflies emerging in spring of year t is
influenced by summer conditions in year t� 1 (refs 5,24). However, bird
abundance in year t (which reflects breeding success in the previous year) is likely
to be influenced by cranefly abundance in year t� 1, which would therefore be
driven by summer conditions in year t� 2 (refs 5,24). Hence, summer conditions
in 1988, 1989, 2002 and 2003 would influence emerging adult cranefly abundance
in 1989, 1990, 2003 and 2004, respectively, which in turn could influence bird
populations in 1990 and 2004.

Once cranefly abundance estimates had been produced, estimates were
extracted for each 1� 1-km bird survey square (averaging all 10-m grid cells within
each 1-km survey square), and used as the predictor variable in models of breeding
bird abundance. Three montane peatland breeding bird species, dunlin (Calidris
alpina), golden plover (Pluvialis apricaria) and red grouse (Lagopus lagopus
scoticus) were selected for this analysis given the importance of craneflies to them
during the breeding season19. Abundances of all three focal species differed
significantly from a Poisson distribution, with overdispersion appearing common,
hence all species were modelled with a negative binomial error and log link
function using the ‘MASS’ R package52. Spearman correlations between the 2 years
were only moderate (golden plover, r¼ 0.579; dunlin, r¼ 0.405; red grouse,
r¼ 0.512), so it was determined to be acceptable to analyse the 2 years separately.
Relationships with modelled cranefly abundance were assessed by examining the
significance of parameter estimates and the proportion of deviance explained;
% deviance explained was calculated as (null deviance� residual deviance)/null
deviance. In all cases, cranefly abundance from year t� 1 (that is, driven by
summer WTD in year t� 2) described more deviance (Supplementary Table 1) so
these estimates were used for further analyses; this was also the most biologically
plausible model (see above).

To ensure that results were not an artefact caused by spatial autocorrelation,
models were rerun in a generalized additive model (GAM) framework, fitted using
the ‘mgcv’ R package56. GAMs included a two-dimensional tensor product smooth
term that used a thin-plate regression spline basis57, which was fitted to x and y
coordinates to account for underlying spatial structure in the data. Results were
similar to those from GLMs, with parameter estimates of a similar magnitude and
all significant relationships remaining significant (Supplementary Table 3).
Therefore, confidence was increased that results were not caused only by spatial
structure in the data; accordingly, GAM results are discussed no further.

To examine relationships between modelled cranefly abundance and bird
population persistence, 1-km survey squares were split into four categories based
on observed abundance of each bird species (Supplementary Data 5). ‘Empty’
squares had no birds in either 1990 or 2004; ‘colonised’ squares had no birds in
1990, but at least one in 2004; ‘extinct’ squares had at least one bird in 1990, but
none in 2004; and ‘occupied’ squares had birds in both years. Average cranefly
abundance was calculated across the two survey years (that is, 1989 and 2003
abundance, which influenced 1990 and 2004 bird abundance, respectively);
Kruskal–Wallis tests were then used to test differences in average cranefly
abundance among the square categories, with pairwise differences examined using
post hoc Wilcoxon rank-sum tests.

Finally, possible impacts of climate change on South Pennines bird populations
were examined. Relationships between observed bird abundance and modelled
cranefly abundance were re-fitted using data from both 1990 and 2004 in the same
model to parameterise a more general relationship (Supplementary Table 2); fitted
estimates of this model were used to give ‘baseline’ bird abundances for the survey
period. Estimates of future cranefly abundance were calculated by applying the
climate change regression equation for the South Pennines (see main text) to the
mean cranefly abundance from the two survey years; abundance estimates were
made for 70 years in the future relative to the mean survey date (that is, the mid
1990s), thus representing the mid-point of the 2051–2080 period (that is, the mid
2060s). The regression equation was derived from only one of the 5� 5-km grid
squares to prevent stochastic, spatially incoherent runs of the UKCP09 weather
generator producing artefacts at the boundaries of grid squares. Once future
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estimates of cranefly abundance had been produced, these were entered into the
fitted GLM as new predictor values to approximate possible future bird abundances
(Supplementary Data 6).

Code availability. MILLENNIA model code as used in this study are stored on a
secure server of the Stockholm Environment Institute; please contact Andreas
Heinemeyer, at andreas.heinemeyer@york.ac.uk, for access.
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