265 research outputs found

    Inhibition of Gap Junction Communication at Ectopic Eph/ephrin Boundaries Underlies Craniofrontonasal Syndrome

    Get PDF
    Mutations in X-linked ephrin-B1 in humans cause craniofrontonasal syndrome (CFNS), a disease that affects female patients more severely than males. Sorting of ephrin-B1–positive and –negative cells following X-inactivation has been observed in ephrin-B1(+/−) mice; however, the mechanisms by which mosaic ephrin-B1 expression leads to cell sorting and phenotypic defects remain unknown. Here we show that ephrin-B1(+/−) mice exhibit calvarial defects, a phenotype autonomous to neural crest cells that correlates with cell sorting. We have traced the causes of calvarial defects to impaired differentiation of osteogenic precursors. We show that gap junction communication (GJC) is inhibited at ectopic ephrin boundaries and that ephrin-B1 interacts with connexin43 and regulates its distribution. Moreover, we provide genetic evidence that GJC is implicated in the calvarial defects observed in ephrin-B1(+/−) embryos. Our results uncover a novel role for Eph/ephrins in regulating GJC in vivo and suggest that the pleiotropic defects seen in CFNS patients are due to improper regulation of GJC in affected tissues

    Genotyping with a 198 Mutation Arrayed Primer Extension Array for Hereditary Hearing Loss: Assessment of Its Diagnostic Value for Medical Practice

    Get PDF
    Molecular diagnostic testing of individuals with congenital sensorineural hearing loss typically begins with DNA sequencing of the GJB2 gene. If the cause of the hearing loss is not identified in GJB2, additional testing can be ordered. However, the step-wise analysis of several genes often results in a protracted diagnostic process. The more comprehensive Hereditary Hearing Loss Arrayed Primer Extension microarray enables analysis of 198 mutations across eight genes (GJB2, GJB6, GJB3, GJA1, SLC26A4, SLC26A5, MTRNR1 and MTTS1) in a single test. To evaluate the added diagnostic value of this microarray for our ethnically diverse patient population, we tested 144 individuals with congenital sensorineural hearing loss who were negative for biallelic GJB2 or GJB6 mutations. The array successfully detected all GJB2 changes previously identified in the study group, confirming excellent assay performance. Additional mutations were identified in the SLC26A4, SLC26A5 and MTRNR1 genes of 12/144 individuals (8.3%), four of whom (2.8%) had genotypes consistent with pathogenicity. These results suggest that the current format of this microarray falls short of adding diagnostic value beyond the customary testing of GJB2, perhaps reflecting the array's limitations on the number of mutations included for each gene, but more likely resulting from unknown genetic contributors to this phenotype. We conclude that mutations in other hearing loss associated genes should be incorporated in the array as knowledge of the etiology of hearing loss evolves. Such future modification of the flexible configuration of the Hereditary Hearing Loss Arrayed Primer Extension microarray would improve its impact as a diagnostic tool

    Remodelling of gap junctions and connexin expression in diseased myocardium

    Get PDF
    Gap junctions form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the regular rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are expressed in the heart: connexin43 (Cx43), Cx40 and Cx45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiac myocyte. Mutations in genes that encode connexins have only rarely been identified as being a cause of human cardiac disease, but remodelling of connexin expression and gap junction organization are well documented in acquired adult heart disease, notably ischaemic heart disease and heart failure. Remodelling may take the form of alterations in (i) the distribution of gap junctions and (ii) the amount and type of connexins expressed. Heterogeneous reduction in Cx43 expression and disordering in gap junction distribution feature in human ventricular disease and correlate with electrophysiologically identified arrhythmic changes and contractile dysfunction in animal models. Disease-related alterations in Cx45 and Cx40 expression have also been reported, and some of the functional implications of these are beginning to emerge. Apart from ventricular disease, various features of gap junction organization and connexin expression have been implicated in the initiation and persistence of the most common form of atrial arrhythmia, atrial fibrillation, though the disparate findings in this area remain to be clarified. Other major tasks ahead focus on the Purkinje/working ventricular myocyte interface and its role in normal and abnormal impulse propagation, connexin-interacting proteins and their regulatory functions, and on defining the precise functional properties conferred by the distinctive connexin co-expression patterns of different myocyte types in health and disease

    Receptor Tyrosine Kinases Activate Canonical WNT/β-Catenin Signaling via MAP Kinase/LRP6 Pathway and Direct β-Catenin Phosphorylation

    Get PDF
    Receptor tyrosine kinase signaling cooperates with WNT/β-catenin signaling in regulating many biological processes, but the mechanisms of their interaction remain poorly defined. We describe a potent activation of WNT/β-catenin by FGFR2, FGFR3, EGFR and TRKA kinases, which is independent of the PI3K/AKT pathway. Instead, this phenotype depends on ERK MAP kinase-mediated phosphorylation of WNT co-receptor LRP6 at Ser1490 and Thr1572 during its Golgi network-based maturation process. This phosphorylation dramatically increases the cellular response to WNT. Moreover, FGFR2, FGFR3, EGFR and TRKA directly phosphorylate β-catenin at Tyr142, which is known to increase cytoplasmic β-catenin concentration via release of β-catenin from membranous cadherin complexes. We conclude that signaling via ERK/LRP6 pathway and direct β-catenin phosphorylation at Tyr142 represent two mechanisms used by various receptor tyrosine kinase systems to activate canonical WNT signaling

    The potency of the fs260 connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-linked connexin43 mutants

    Get PDF
    Although there are currently 62 mutants of Cx43 (connexin43) that can cause ODDD (oculodentodigital dysplasia), only two mutants have also been reported to cause palmar plantar hyperkeratosis. To determine how mutants of Cx43 can lead to this skin disease, REKs (rat epidermal keratinocytes) were engineered to express an ODDD-associated Cx43 mutant always linked to skin disease (fs260), an ODDD-linked Cx43 mutant which has been reported to sometimes cause skin disease (fs230), Cx43 mutants which cause ODDD only (G21R, G138R), a mouse Cx43 mutant linked to ODDD (G60S), a non-disease-linked truncated Cx43 mutant that is trapped in the endoplasmic reticulum (Δ244*) or full-length Cx43. When grown in organotypic cultures, of all the mutants investigated, only the fs260-expressing REKs consistently developed a thinner stratum corneum and expressed lower levels of Cx43, Cx26 and loricrin in comparison with REKs overexpressing wild-type Cx43. REKs expressing the fs260 mutant also developed a larger organotypic vital layer after acetone-induced injury and exhibited characteristics of parakeratosis. Collectively, our results suggest that the increased skin disease burden exhibited in ODDD patients harbouring the fs260 mutant is probably due to multiple additive effects cause by the mutant during epidermal differentiation

    Misregulation of gene expression in the redox-sensitive NF-Κb-dependent limb outgrowth pathway by thalidomide

    Full text link
    Thalidomide is known to induce oxidative stress, but mechanisms have not been described through which oxidative stress could contribute to thalidomide-induced terata. Oxidative stress modulates intracellular glutathione (GSH) and redox status and can perturb redox-sensitive processes, such as transcription factor activation and/or binding. Nuclear factor-kappa B (NF-ΚB), a redox-sensitive transcription factor involved in limb outgrowth, may be modulated by thalidomide-induced redox shifts. Thalidomide-resistant Sprague-Dawley rat embryos (gestation day [GD] 13) treated with thalidomide in utero showed no changes in GSH distribution in the limb but thalidomide-sensitive New Zealand White rabbit embryos (GD 12) showed selective GSH depletion in the limb bud progress zone (PZ). NF-ΚB and regulatory genes that initiate and maintain limb outgrowth and development, such as Twist and Fgf-10 , are selectively expressed in the PZ. Green fluorescent protein (GFP) reporter vectors containing NF-ΚB binding promoter sites were transfected into both rat and rabbit limb bud cells (LBCs). Treatment with thalidomide caused a preferential decrease in GFP expression in rabbit LBCs but not in rat LBCs. N-acetylcysteine and Α-N-t-phenylbutyl nitrone (PBN), a free radical trapping agent, rescued GFP expression in thalidomide-treated cultures compared with cultures that received thalidomide only. In situ hybridization showed a preferential decrease in Twist , Fgf-8 , and Fgf-10 expression after thalidomide treatment (400 mg/kg per day) in rabbit embryos. Expression in rat embryos was not affected. Intravenous cotreatment with PBN and thalidomide (gavage) in rabbits restored normal patterns and localization of Twist , Fgf-8 , and Fgf-10 expression. These findings show that NF-ΚB binding is diminished due to selective thalidomide-induced redox changes in the rabbit, resulting in the significant attenuation of expression of genes necessary for limb outgrowth. © 2002 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/35171/1/10150_ftp.pd

    The Epidemiology, Genetics and Future Management of Syndactyly

    Get PDF
    Syndactyly is a condition well documented in current literature due to it being the most common congenital hand defect, with a large aesthetic and functional significance

    Prognostic impact of reduced connexin43 expression and gap junction coupling of neoplastic stromal cells in giant cell tumor of bone

    Get PDF
    Missense mutations of the GJA1 gene encoding the gap junction channel protein connexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD), while GJA1 null and ODDD mutant mice develop osteopenia. In this study we investigated Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggressive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immunohistochemistry were correlated with GCTB cell types, clinico-radiological stages and progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases. Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was also investigated and compared between cultured neoplastic GCTB stromal cells and bone marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in alpha-smooth muscle actin positive than alpha-smooth muscle actin negative stromal cells and in osteoclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43 production in GCTB was significantly linked to advanced clinico-radiological stages and worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein was localized in the paranuclear-Golgi region, while it was concentrated in the cell membranes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) detected in control cells, were missing in GCTB stromal cells. Defective cell membrane localization of Cx43 channels was in line with the significantly reduced transfer of the 622 Da fluorescing calcein dye between GCTB stromal cells. Our results show that significant downregulation of Cx43 expression and gap junction coupling in neoplastic stromal cells are associated with the clinical progression and worse prognosis in GCTB

    Premature Osteoblast Clustering by Enamel Matrix Proteins Induces Osteoblast Differentiation through Up-Regulation of Connexin 43 and N-Cadherin

    Get PDF
    In recent years, enamel matrix derivative (EMD) has garnered much interest in the dental field for its apparent bioactivity that stimulates regeneration of periodontal tissues including periodontal ligament, cementum and alveolar bone. Despite its widespread use, the underlying cellular mechanisms remain unclear and an understanding of its biological interactions could identify new strategies for tissue engineering. Previous in vitro research has demonstrated that EMD promotes premature osteoblast clustering at early time points. The aim of the present study was to evaluate the influence of cell clustering on vital osteoblast cell-cell communication and adhesion molecules, connexin 43 (cx43) and N-cadherin (N-cad) as assessed by immunofluorescence imaging, real-time PCR and Western blot analysis. In addition, differentiation markers of osteoblasts were quantified using alkaline phosphatase, osteocalcin and von Kossa staining. EMD significantly increased the expression of connexin 43 and N-cadherin at early time points ranging from 2 to 5 days. Protein expression was localized to cell membranes when compared to control groups. Alkaline phosphatase activity was also significantly increased on EMD-coated samples at 3, 5 and 7 days post seeding. Interestingly, higher activity was localized to cell cluster regions. There was a 3 fold increase in osteocalcin and bone sialoprotein mRNA levels for osteoblasts cultured on EMD-coated culture dishes. Moreover, EMD significantly increased extracellular mineral deposition in cell clusters as assessed through von Kossa staining at 5, 7, 10 and 14 days post seeding. We conclude that EMD up-regulates the expression of vital osteoblast cell-cell communication and adhesion molecules, which enhances the differentiation and mineralization activity of osteoblasts. These findings provide further support for the clinical evidence that EMD increases the speed and quality of new bone formation in vivo
    corecore