
RESEARCH ARTICLE

Prognostic Impact of Reduced Connexin43
Expression and Gap Junction Coupling of
Neoplastic Stromal Cells in Giant Cell Tumor
of Bone
Peter Balla1, Mate Elod Maros1,5, Gabor Barna1, Imre Antal2, Gergo Papp1, Zoltan Sapi1,
Nicholas Anthony Athanasou3, Maria Serena Benassi4, Pierro Picci4, Tibor Krenacs1,6*

1 1st Department of Pathology & Experimental Cancer Research, Semmelweis University Budapest,
Hungary, 2 Department of Orthopaedics, Semmelweis University, Budapest, Hungary, 3 Department of
Pathology, Nuffield Orthopaedic Centre, University of Oxford, Oxford, United Kingdom, 4 Laboratory of
Experimental Oncology, Institute of Orthopaedics Rizzoli, Bologna, Italy, 5 Department of Neuroradiology,
University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany, 6 Hunragian Academy
of Sciences-Semmelweis University (MTA-SE) Tumor Progression Research Group, Budapest, Hungary

* krenacst@gmail.com

Abstract
Missense mutations of the GJA1 gene encoding the gap junction channel protein con-

nexin43 (Cx43) cause bone malformations resulting in oculodentodigital dysplasia (ODDD),

while GJA1 null and ODDDmutant mice develop osteopenia. In this study we investigated

Cx43 expression and channel functions in giant cell tumor of bone (GCTB), a locally aggres-

sive osteolytic lesion with uncertain progression. Cx43 protein levels assessed by immuno-

histochemistry were correlated with GCTB cell types, clinico-radiological stages and

progression free survival in tissue microarrays of 89 primary and 34 recurrent GCTB cases.

Cx43 expression, phosphorylation, subcellular distribution and gap junction coupling was

also investigated and compared between cultured neoplastic GCTB stromal cells and bone

marow stromal cells or HDFa fibroblasts as a control. In GCTB tissues, most Cx43 was

produced by CD163 negative neoplastic stromal cells and less by CD163 positive reactive

monocytes/macrophages or by giant cells. Significantly less Cx43 was detected in α-

smooth muscle actin positive than α-smooth muscle actin negative stromal cells and in oste-

oclast-rich tumor nests than in the adjacent reactive stroma. Progressively reduced Cx43

production in GCTB was significantly linked to advanced clinico-radiological stages and

worse progression free survival. In neoplastic GCTB stromal cell cultures most Cx43 protein

was localized in the paranuclear-Golgi region, while it was concentrated in the cell mem-

branes both in bone marrow stromal cells and HDFa fibroblasts. In Western blots, alkaline

phosphatase sensitive bands, linked to serine residues (Ser369, Ser372 or Ser373) de-

tected in control cells, were missing in GCTB stromal cells. Defective cell membrane locali-

zation of Cx43 channels was in line with the significantly reduced transfer of the 622 Da

fluorescing calcein dye between GCTB stromal cells. Our results show that significant
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downregulation of Cx43 expression and gap junction coupling in neoplastic stromal cells

are associated with the clinical progression and worse prognosis in GCTB.

Introduction
Connexins, in particular connexin43 (Cx43) and their cell membrane channels, play crucial
roles in bone development including the regulation of osteoblast proliferation and differentia-
tion, and the coordination of osteocyte adaptation to mechanical loading and soluble growth
factors [1–3]. Missense mutations of the GJA1 gene encoding the Cx43 protein cause skeletal
malformations called as oculodentodigital dysplasia (ODDD) [4]. In mice, induced ablation of
the GJA1 gene or ODDD-like mutations in chondro-osteogenic linage cells result in hypomi-
neralization and severe delay in skeletal ossification due to osteoblast dysfunction, reduced
osteoprotegerin production and elevated osteoclastogenesis [1]. In giant cell tumor of bone
(GCTB), which is a benign but locally aggressive osteolytic lesion with unpredictable progres-
sion, neoplastic stromal cells of osteoblast origin promote pathological osteolysis [5–7]. In this
study, Cx43 expression was tested in primary and recurrent GCTB cases and in isolated neo-
plastic stromal cells and correlated with the clinico-radiological tumor stages and progression
free patient survival.

GCTB constitutes 5–20% of bone tumors in the Western and South-Asian population, re-
spectively [5,8]. It arises mainly in the epi-metaphyseal region of long bones of young adults
(20–45 years of age) and is associated with progressive bone destruction [9,10]. Despite recent
improvements in surgical interventions combining curettage with phenol and methyl-metacry-
late resin or cryosurgery with methacrylate resin adjuvant treatments, the recurrence rate of
GCTB is still high, ranging between 8–27% [11]. In 10% of cases GCTB can show malignant
transformation, and in 1–4% it can form benign lung implants, which are also called metastases
[12–14].

In GCTB, osteoclast-like giant cells are admixed with mononuclear cells composed mainly
of monocytic precursors of osteoclasts and osteoblast-like stromal cells [6]. Only these stromal
cells are thought to be neoplastic in nature in GCTB based on their chromosomal instability,
clonal telomeric associations and frequent H3F3A driver mutations [15–18]. Neoplastic stro-
mal cells drive pathological osteolysis, largely through the canonical nuclear factor-kappa B
(NF-κB) ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) (RANKL/
M-CSF) interaction [7,19]. Their production of osteoprotegerin, which controls osteoclast ac-
tivity is impaired [20]. Besides the osteoblastic markers such as type I collagen, osteocalcin,
osteopontin and alkaline phosphatase, a fraction of GCTB stromal cells also express the mesen-
chymal stem cell (MSC) markers CD73, CD105 and CD166 [21]. Despite some correlation
with pathological grade, clinical stage and tumor size, as well as expression of molecular mark-
ers including vascular endothelial growth factor (VEGF) [22,23], matrix metalloproteinase
type-9 (MMP-9) [24], p63 [25,26], epidermal growth factor receptor (EGFR) [27], human telo-
merase reverse transcriptase (hTERT) [28], runt-related transcription factor 2 (RUNX2) [29]
and increased proliferation [30], recurrence of GCTB is difficult to predict.

Bone marrow stromal cells, osteogenic osteoblasts at the hemopoetic endosteal margin and
bone embedded osteocytes are all derived from mesenchymal stem cells and form networks
through their processes coupled mainly by Cx43 gap junctions [31,32]. Human connexins (Cx)
constitute a family of 21 isoproteins froming transmembrane channels [33]. Hemichannels
(connexons), formed by six connexin molecules of adjacent cells can align for gap junctions
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[34], which permit the transport of ions and regulatory molecules of<1.8 kDa including mor-
phogens, metabolites and secondary messengers (e.g. Ca2+; cAMP and IP3) [35]. Intercellular
communication mediated by connexin channels plays a critical role in the co-ordination of em-
bryonic development and tissue homeostasis through the control of proliferation and differen-
tiation. Connexins can also mediate signals to the extracellular microenvironment as
hemichannels and interact with cytoskeletal and intracellular signaling proteins [36,37].

In this study of 89 primary and 34 recurrent GCTB cases we show that significant downregu-
lation of Cx43 protein correlates with reduced progression free survival (PFS) and advanced
clinico-radiological stages in GCTB. Furthermore, in cultured primary GCTB stromal cells miss-
ing Cx43 phosphorylation and reduced cell membrane localization are linked with significantly
decreased gap junction cell coupling compared to bone marrow stromal cells or HDFa fibro-
blasts as a control. Our results suggest that reduced Cx43 expression and cell coupling in neo-
plastic stromal cells can contribute to pathological phenotype and clinical progression of GCTB.

Materials and Methods

GCTB samples and tissue microarray construction
Surgically removed 131 GCTB samples of 123 patients diagnosed between 1994 and 2005 at the
Laboratory of Experimental Oncology, Institute of Orthopaedics Rizzoli, Bologna, Italy, either
as primary (89 patients; 72.4%), or recurrent (34 patients; 27.6%) tumors, were tested. Tissue
samples were fixed in 10% formalin and embedded routinely into paraffin wax. The mean age of
70 female (56.9%) and 53 male (43.1%), patients was 32.46 years (median: 30.00 years; min-
max: 5–76, interquartile range: 22–38 years). According to the radiological grading by Campa-
nacci et al. (1987)[38], which correlated well with the clinical staging of Enneking (1986)[39], 39
cases were grade-1/latent (31.7%), 33 cases were grade-2/active (26.8%), and 51 cases were
grade-3/aggressive (41.5%) GCTB. Of the 123 non-matched cases 93 were continuously disease
free, 19 recurred, 5 were alive with mestastatic disease and 6 died related to GCTB—for details
see Table 1. The mean PFS was 67.35 months (median: 72 months, min.-max:0–157). This
study was approved by the Institutional Ethical Review Boards of the Rizzoli Institute (13351/5-
28-2008) and the Semmelweis University (#87/2007). Written informed consent, included in
the clinical chart, was obtained from all adult patients or from parents/guardians for minors,
which procedure was also approved by both Institutes’ Ethics Committees.

Duplicate tissue cores of 2 mm in diameter were collected from the paraffin blocks into tis-
sue microarrays (TMA) from the osteoclast rich regions of GCTB cases selected based on the
relevant haematoxylin and eosin (HE) stained slides using the TMAMaster instrument
(3DHISTECH, Budapest, Hungary).

Isolation and growing of primary GCTB stromal cells in culture
Fresh GCTB tissues and bone marrow were obtained from the Department of Orthopaedics,
Semmelweis University, Budapest. Primary stromal cells could be isolated and cultured from 4
(2 females and 2 males) out of 7 primary GCTB cases and bone marrow stromal cells from 3
healthy control patients. All reagents where not indicated otherwise were from Sigma-Aldrich
(St. Louis, MO). Tissue samples were macerated using sterile scalpel blades in alpha minimum
essential medium (α-MEM; Lonza, Wokingham, UK) supplemented with 10 mM L-glutamine
(Gibco, Life Technologies, Carlsbad, CA), 100 U/ml penicillin, and 10 μg/ml streptomycin. Tis-
sue fragments of ~2 mm were digested at 37°C in 5% atmospheric CO2 for 30–60 min under
gentle shaking in α-MEM containing 0,7 mg/ml collagenase I, 0,5 mg/ml deoxyribonuclease,
and 0,04 mg/ml hyaluronidase, previously filtered through a sterile 0,33 μmmesh Durapure
PVDF (Millipore, Billerica, MA).Tissue suspensions were filtered in a cell strainer of 100 μm
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pore size (BD Biosciences, Franklin Lakes, NJ), centrifuged at 1000 rpm for 15 min at 4°C and
resuspended in supplemented α-MEM (see above) containing 10% fetal calf serum (FCS),
transferred to 25 cm2 vented cell culture flasks (Corning Inc., Corning, NY) and maintained at
37°C in 5% atmospheric CO2 for 30–60 min. After 24 h incubation, the cell culture medium
was replaced with fresh supplemented α-MEM, which was renewed every 2–3 days, until cell
confluency. Brief digestion in 0,01% trypsin and 0,05% EDTA (both from Gibco) released
mononuclear cells, which were resuspended and grown in FCS containing supplemented α-
MEM. Following several passages, both the multinucleated giant cells (remained in the flasks)
and monocytes (died by apoptosis) were eliminated from the GCTB stromal cell culture, which
was then used for in situ and in vitro protein and mRNA assays. Human dermal fibroblast
(HDFa) were obtained from the European Collection of Cell Cultures (Salisbury, Wiltshire,
UK) and grown in Dulbecco’s Modified Eagle’s Medium of high glucose content.

Multiple fluorescent in situ hybridization (FISH)
For verifying isolated GCTB stromal cells, numerical chromosomal and telomeric alterations
were detected using a set of centromeric alpha satellite probes labeled with “Spectrum dyes” for
chromosomes X (light blue), 3 (red), 4 (green), and 6 (red+green = yellow) in the same FISH
reaction, and 11p subtelomeric (green) and chromosome 11 centromeric (red) probes in a sep-
arate test using Vysis probes (Abott, Des Plaines, IL) and cell nuclei were stained using DAPI,
as described before [17]. Coveslip mounted samples were digitalized using 5 Z-layers of 0.6
mm difference in each of the 4 color channels using Pannoramic Scan (3DHISTECH).

Table 1. Clinical course of GCTB cases studied.

Type of progression Clinical disease course Number (%) of patients/
subcategory

Localization

-Alive with metastatic disease -Bone metastasis 1 (0.8)

-Lung metastasis 3 (2.4)

-Continuously disease free -Primary tumor 69 (56.1)

-Relapsed tumor with disease free
clinical course

-Relapsed tumor continuously disease free 24 (19.5)

-Dead related to GCTB -1st recurrence with complicationon the day of surgery 1 (0.8) sacrum

-Primary tumor with consecutive 2nd malignant sarcoma then 3rd-
4th-5th lung metastases

1 (0.8) proximal humerus
(right)

-1st recurrence with consecutive 2nd local recurrence 3rd local
malignant transformation and 4th local relapse

1 (0.8) sacrum

-Primary tumor with 2nd relapse, 3rd malignant sarcoma and 4th-
5th recurrences

1 (0.8) sacrum

-Primary tumor with consecutive malignant transformation & lung
metastasis

1 (0.8) humerus (left)

-1st recurrence with consecutive 2nd and 3rd local recurrences, 4th

malignant transformation and 5th local recurrence
1 (0.8) femur (right)

-Dead by other cause -Primary tumor with a consecutive 2nd local recurrence, then ictus
by stroke

1 (0.8)

-Local recurrence or metastasis in
the course of disease

-Consecutive 1x relapse/ local recurrence until follow up 12 (9.8)

-2x relapses/local recurrences until follow up (4 primary tumors;
one 1st-recurrence and 3rd—recurrence)

6 (4.9)

-Primary tumor with 1st lung metastasis, 2nd local recurrence until
follow up

1 (0.8)

-Total 123

doi:10.1371/journal.pone.0125316.t001
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Immunohistochemistry and -cytochemistry
For immunostaining 4 μm thick TMA sections were cut and mounted onto charged adhesive
slides (SuperFrost Ultra Plus, Thermo-Erie Sci., Budapest, Hungary). Antigen retrieval was
done by boiling dewaxed slides in a microwave oven (Whirlpool, TJ366, Benton Harbor, MI) at
800W in 800 ml buffer containing 0,1 M Trisbase and 0,01 M ethylenediamine-tetraacetic acid
(Tris-EDTA), pH 9.0, for 40 min. For antigen detection the NovoLink (Leica-NovoCastra,
Newcastle Upon Tyne, UK) kit was used. Briefly, the sections were treated in a humidity cham-
ber using rabbit anti-Cx43 (1:100, code: #3512, Cell Signaling, Danvers, MA) or monoclonal
mouse anti-CD163 (1:200, clone:10D6, Thermo-LabVision, Fremont, CA) antibodies over-
night; then with the post-primary reagent for 20 min and finally with the horseradish peroxi-
dase-coupled NovoLink polymer for 40 min. The #3512 antibody recognizes regions Ser369,
Ser372 and Ser373 on Cx43 protein based on PhosphocytePlus database (www.phosphosite.
org). Cell cultures were also immunostained for Cx43 after fixation for 10 min in 4% formalde-
hyde and permeabilization in 0.1 M Tris-buffered saline pH 7.4 (TBS) containing 0,05% Tween
20 (TBST). Peroxidase activity was revealed using diaminobenzidin (DAB)-hydrogen peroxide
under microscopic control. For double immunoflourescence, TMA sections pretreated as
above were simultaneusly incubated with rabbit anti-Cx43 antibody (1:100, see above) com-
bined either with monoclonal mouse anti-CD163 (1:200, see above), or anti-α-smooth muscle
actin (α-SMA; 1:2, ready-to-use, clone:1A4; Dako, Glostrup, Denmark) overnight followed by
Alexa Fluor 564 goat anti-rabbit IgG (1:200, red; code: A11035) and Alexa Fluor 488 goat anti-
mouse IgG (1:200, green;code: A11001), for 60 min. Cultured HDFa fibroblasts, bone marrow
stromal cells and primary GCTB stromal cells were also simultaneosly immunostained using
rabbit anti-Cx43 (1:100, see above) and monoclonal mouse anti-vimentin (1:2, ready-to-use;
clone:V9, Dako) detected with the same fluorochome combination as above. Cell nuclei
were stained using Hoescht (blue). All fluorescence reagents were from Invitrogen/-Life
Technologies (Eugene, OR). Both brightfield and fluorescence immunoreactions were digita-
lized with Pannoramic Scan using 3-5-layers for revealing the frequently<1μm diameter
connexin plaques.

Scoring of immunoreactions
Osteoclast rich areas were analyzed in digital slides using software tools from 3DHISTECH.
Cx43 and CD163 immunoperoxidase reactions were evaluated by two experts on a 9-tier scale
using the TMAmodule software by considering the frequency of positive mononuclear cells.
Score 0:< 2%; +1: 3–5%; +2: 6–10%; +3: 11–20%; +4: 21–30%; +5: 31–40%; +6: 41–50%; +7:
51–60% and +8:>60 positive cells. Immunofluorescence signals were semiquantitatively mea-
sured with the HistoQuant software. Percent of colocalization of Cx43 with CD163 monocytes/
macrophages or with SMA positive stromal cells was determined by image segmentation of the
red signal (Cx43) and the green signal (CD163 or SMA) in separate layers, then testing the
amount of red signals under the green area in a third layer. When comparing Cx43 expression
in GCTB nests and adjacent reactive stroma, both the Cx43 positive region and the number of
Cx43 plaques were determined. Each type of immunofluorescence measurement was done in 8
primary GCTB cases with obvious CD163 positive cell fraction, SMA positive cells, or tumor
nests, respectively by testing at least 3 areas in each sample. Intracellular distribution of Cx43
in primary GCTB stromal cells, bone marrow stromal cells and HDFa fibroblasts was com-
pared by testing 10 high power (x40) images of immunofluorescence labelled cell cultures from
3 parallel samples using the Image J 1.48v software (NIH, Bethesda, MD). Cx43 positive pla-
ques along cell membrane areas were selected, measured and their proportions calculated to
the whole Cx43 positive area within annotations.
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Protein extraction, dephosphorylation and western immunoblot
For protein extraction cells were washed in PBS and collected using cell scraper after adding
250 μl extraction buffer containing 20 mM Tris, 2 mM EDTA, 150 mMNaCl, 1% Triton-X
supplemented with 10 μl/ml phosphatase inhibitor and 5 μl/ml proteinase inhibitors. The pellet
was lysed for 30 min on ice in 1.5 ml Eppendorf tubes, then cleared by centrifugation at 4°C
and 12 000 rpm for 15 min. The extracts were mixed with 5x Laemmli sample buffer contain-
ing 5% 2-mercaptoethanol (BioRad, Philadelphia, PA) and heated to 95°C for 5 min. Protein
concentration was determined using the Bradford assay (BioRad). For phosphatase treatment
an extraction buffer containing 20 mM Tris, 150 mM NaCl and 1% Triton-X was used. Protein
extracts were treated with 20 μg of 5 units bovine intestinal alkaline phosphatase (Sigma, code:
P0114) suspended in 25 μl of pH 7,9 buffer containing 100 mMNaCl, 50 mM Tris, 10 mM
Mg2Cl and 1 mM DTT (Dithiotreitol) at 30°C for 30 min.

All reagent for Western blots were from BioRad, if not specified otherwise. Equal amounts
of 20 μg proteins were loaded and run in 10% sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) at 180V for 1h. Proteins were then transferred into Immobilion-P ni-
trocellulose membrane (Millipore) at 75 mA and 4°C overnight. Membranes were incubated
overnight at 4°C using the same rabbit anti-Cx43 antibody as above, diluted in 1:500 in TBST
containing 3% non-fat milk, washed again, and finally treated for 60 min, at room temperature
with horseradish peroxidase conjugated goat anti-rabbit immunolobulins (1:1000; code:7074,
Cell Signaling). For loading control, rabbit anti-human β-actin (1:2000; code:4970, Cell Signal-
ing) antibody was used for 60 minutes. Final detection was done using Super Signal West Pico
ECL reagent (code:34080; Pierce, Rockford, IL) for 10 min. The molecular mass of specific
bands was determined by comparing to the Precision Plus Protein Standard run on the same
gels. Densitometric analysis of the immunoblots was done using the Molecular Imaging Soft-
ware 4.1 of Kodak Image Station 4000 MM (Kodak, Rochester, NY) and Image J 1.48v.

Total RNA isolation, cDNA synthesis and quantitative RT-PCR
Total RNA was isolated from cultured cells using an RNA isolation kit (Qiagen, West Sussex,
U.K.) as recommended by the manufacturer. The isolated samples were treated with RNase-
free DNase (Qiagen) to remove genomic DNA. Total RNA concentration and purity were mea-
sured at OD260 and OD260/280 ratio determined with NanoDrop ND-1000 spectrophotome-
ter (NanoDrop Tech., Rockland, Del). One μg RNA was reverse-transcribed into double-
stranded cDNA using High Capacity cDNA Reverse Transcription Kit (Thermo-Fisher/
Applied Biosystems, Foster City, CA). TaqMan real-time PCR assay (Applied Biosystem) was
performed in triplicates. Each reaction mixture contained 2μl cDNA mixed with 7 μl PCR
grade water, 10 μl 2x TaqMan Universal PCR Master Mix, 1μl 20x PrimeTime qPCR assay kit
(IDT, Coralville, IA) including forward and reverse primers and ZEN Double-Quenched FAM
probes (Table 2). Parallel assays were done by detecting β-actin for normalization. PCR

Table 2. Primer and probe sequences used for real-time PCR.

Gene Primer/Probe Sequence (5’-3’)

GJA1 Forward GTACTGACAGCCACACCTTC

Reverse ACTTGGCGTGACTTCACTAC

Probe /56-FAM/AGGCAACAT/ZEN/GGGTGACTGGAGC/3lABkFQ/

β-actin Forward CCTTGCACATGCCGGAG

Reverse ACAGAGCCTCGCCTTTG

Probe /56-FAM/TCATCCATG/ZEN/GTGAGCTGGCGG/3lABkFQ/

doi:10.1371/journal.pone.0125316.t002
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reactions were performed using StepOne Plus PCR instrument (Applied Biosystem) under the
following parameters: 50°C for 2 min, 95°C for 5 min and 40 cycles at 95°C for 15 sec and 60°C
for 1 min. After amplification, data of independent runs were analysed with the StepOne Plus
Software v2.0.

Testing of cell coupling using dye transfer and flow cytometry
In dye transfer assay donor cells were simultaneously loaded with 9 μMDiI (1,1’-dioctadecyl-
3,3,3’-tetra-methylin-dodicarbocyanine) and 0,5 μMCalcein AM (Calceinacetoxymethyl ester)
diluted in PBS and incubated for 30 minutes at 37°C in 5% atmospheric CO2 [40]. Double-
labelled cells were centrifuged at 1000 rpm for 10 min and washed 3x3 in PBS, and then
co-cultured with unlabeled recipient cells of the same type at a ratio of 1:10 in FCS supple-
mented with α-MEM (see above) and incubated at 37°C in 5% atmospheric CO2 for 5 h. Then
cells were released using 0,01% trypsin and 0,05% EDTA, centrifuged at 1000 rpm for 10 min
and diluted in PBS. The proportions of single Calcein labelled recipient cells indicating the
range of direct cell-cell communication were measured in three independent experiments each
case using dual channel flow cytometry (Gallios, Beckman Coulter, Carlsbad, CA).

Statistical analysis
The SPSS 15.0 software was used (SPSS Inc., Chicago, IL) for all statistical tests. Correlations
between the scores of the two assessors (TK and PB) were compared both with the Spear-
man’s-rank test and the inter-rater Cohen’s kappa (κ) test. In case of duplicates the higher
scores were taken. The relationship between Cx43 expression and clinicoradiological stage
(latent<active<aggressive) were analysed using the non-parametric Johnkeer-Terpstra test for
ranked variables followed by pairewise Mann-Whitney U test using a Bonferroni or Holm-
Hochberg correction for multiple testing. The potential link between Cx43 scores in primary
vs. recurrent GCTB were also analyzed with the Mann-Whitney U test.

Univariate Cox proportional hazard regression analysis and log-rank-test were used to as-
sess the relationship between Cx43 levels with GCTB prognosis/clinical course. Survival curves
were shown in Kaplan-Meier plots. For PFS, the time elapsed between tumor excision and the
first consecutive event (see Table 1) was considered in 123 surgical cases after neglecting
matched recurrences (8 cases). Univariate Cox regression analysis was used for testing correla-
tions between Cx43 expression and PFS. For multivariate Cox regression, the analysis was ad-
justed for gender, age at diagnosis, grade, localization (upper limb, lower limb, central) and
first treatment at IOR categorized as curettage, resection/amputation, or radiotherapy.

For testing correlations between the Cx43 positive cell fractions in tissue sections, the com-
partmental distribution of Cx43 in cell cultures and when comparing Cx43 mRNA and protein
levels in in vitro techniques the independent samples t-test was used. If not otherwise noted, di-
agrams show statistical significance at p<0.05 and standard deviation (SD).

Results

Clinicopathological correlation of Cx43 expression in GCTB
Image analysis of double immunofluorescence labeling revealed that significantly more Cx43
reaction belonged to the CD163 negative neoplastic stromal cells (81,7%, SD:±12.56%) than to
CD163 positive monocyte/marcophages (p<0.001) (Fig 1A–1C). α-SMA positive stromal
cells were linked to significantly less Cx43 (32,6%; SD:±13.4%) than α-SMA negative cells
(p = 0.017) (Fig 1D). Cx43 plaques were rarely seen in osteoclasts, but were detected in mono-
nuclear cells, some of which were partly engulfed by giant cells (Fig 1E). The distribution of
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Cx43 immunoreaction within mononuclear cell populations in GCTB is summarized in Fig 1F
and 1G.

Immunoperoxidase reactions in osteoclast rich areas of GCTB TMA sections were used to
score the percentage of Cx43 positive mononuclear cells, which were round or spindle-shaped
(Fig 2A and 2B). Scoring results between assessors showed high correlation either using the
Spearman’s rank test (rho = 0.805, p<0.001) without, or the interrater Cohen’s kappa test, with
thresholding, i.e. comparing groups scoring 0–3 (negative) to those scoring 4–8 (positive, see
later) (κ = 0.735, 95% CI 0.612–0.858, p<0.001). Pre-existing osteoblast cell layers surrounding

Fig 1. Immunofluorescence detection of Cx43 (red; a-e) along with CD163 (green; a-c) or α-smoothmuscle actin (α-SMA, green; d) for defining
Cx43 positive cell fractions (f and g) in giant cell tumor of bone.Cx43 positive mononuclear cells rarely co-localize with the monocyte/marcophage
marker CD163 (a). Automated image segmentation (HistoQuant) highlights Cx43 in orange and CD163 in greeen in separate layers (b) and a 3rd layer is
used to count red Cx43 signals in green cells (arrowheads) (c). Cx43 signals (see double and single labeled insets) are more frequent in α-SMA deficient
(upper panel), than in strongly α-SMA positive cells (d; lower panel, non-specific signals in red blood cells are encircled). Cx43 plaques are linked to
mononuclear cells-some are partly engulfed by an osteoclasts (arrow)- and not directly to giant cells (e). Diagrams showing significant differences in Cx43
positive mononuclear cell fractions counted using HistoQuant image analysis (f and g). Cell nuclei are stained blue using Hoescht. Scale bar on a represents
30 μm on a, b and d; and 15 μm on c and e.

doi:10.1371/journal.pone.0125316.g001
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bone spicules and osteocytes inside bone were also strongly Cx43 positive (Fig 2C). Semiquan-
titative image analysis showed that Cx43 protein levels were significantly reduced in osteoclast-
rich tumor nests compared to the adjacent reactive stroma (Fig 2D–2F). This related both to
the percentage of Cx43 positive area (p<0.001) (Fig 2G) and the number of Cx43 plaques (Fig
2H) in 1 mm2 of 4 μm thick tumor sections (p = 0.0016).

Apart from a negative trend (UMW = 1277, Z = -1.363, p = 0.173) there was no significant
link between Cx43 levels and the frequency of GCTB recurrences. However, Cx43 expression
showed an inverse link with the clinico-radiological tumor stage. The correlation was signifi-
cant between latent and aggressive tumors (p = 0.002) after Bonferroni correction (p<0.0167),

Fig 2. Immunoperoxidase (a-c) and immunofluorescence (d-e) detection in osteoclast rich areas and surrounding stroma (f and g), and
clinicopathological correlations of Cx43 protein levels (h and i) in giant cell tumor of bone. Examples of tumors with moderate (a; score 3) and high (b;
score 8) Cx43 levels in mononuclear cells. Strong Cx43 reaction in the preexisting osteoblast layer around bone spicules and in osteocytes (arrowhead) (c).
A tumor nest and adjacent ring of reactive stroma are annotated separately for counting Cx43 (Alexa564, red) plaques (d; OC-osteoclasts). Higher power of
(d) with osteoclasts encircled (e). Digital image segmentation highlights Cx43 plaques in orange for automated counting (f). Both the Cx43 positive area
fraction (g) and the number of Cx43 positive plaques (h) are significantly reduced within tumor nests (p<0.01). Cx43 levels are also significantly reduced in
aggressive vs active and in aggressive vs latent clinicoradiological tumor stages (i). Scale bar on (a) represents 30 μm on a, b and c; 80 μm on d, 30 μm on e
and 15 μm on f.

doi:10.1371/journal.pone.0125316.g002
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and both in this relation and between active and aggressive tumors (p = 0.018) after the less
strict (p<0.025) Holm-Hochberg correction (Fig 2I).

Univariate Cox proportional hazard regression analysis showed a relevant increase in the
hazard of progression between scores 3 and 4 (score 1 vs Score 3: HR = 0.505, 95% CI 0.064–
3.967; �p = 0.516; score 2 vs score 4: HR = 0.226, 95% CI 0.025–2.030; �p = 0.184). This separat-
ed patient number around the median, i.e. Nscore1-3 = 60 (48.8%), Nscore4-8 = 63 (51.2%) and
thus was choosen as a threshold between negative (scores 1–3) and positive (scores 4–8) cases
in all statistics (Fig 3A). Based on this threshold Cx43 expression showed a significant positive
correlation with progression free survival (HR = 0.430, 95% CI 0.201–0.918; p = 0.029). This
was confirmed with the log-rank test (χ2 = 5.073, df = 1, log-rank p = 0.024) shown in a
Kaplan-Meier plot (Fig 3B). Adjusting for age at diagnosis, gender, grade, localization and sur-
gical treatment in the multivariate Cox regression analysis, higher Cx43 expression was signifi-
cantly associated with a further reduced hazard of clinical progression (HR = 0.411, 95% CI
0.187–0.903; p = 0.027). There was an invesre but non-significant trend between CD163 posi-
tive mononuclear cell fractions and PFS of GCTB cases (log-rank p = 0.167).

Connexin43 in primary GCTB stromal cell cultures
Neoplastic nature of primary GCTB stromal cells was confirmed by their diverse polysomy and
individual cell aneusomy tested with multiple FISH (Fig 4). They were herterogeneous in size
and shape (Fig 5A), and showed paranuclear concentration of Cx43 signals highlighting the en-
doplasmic reticulum-Golgi region (Fig 5A–5C). Immunofluorescence and image analysis re-
vealed significantly more membrane bound Cx43 in cultured HDFa fibroblasts (p<0,01) and
bone marrow stromal cells (p<0,05) than in primary GCTB stromal cells (Fig 5D–5H).

Quantitative RT-PCR showed significantly reduced Cx43 expression in primary GCTB stro-
mal cells compared to either of the control cells (p<0.01) (Fig 5I). This was also confirmed at
the protein level in Western blots (Fig 5J and 5K). Cx43 reaction demonstrated two alkaline

Fig 3. Kaplan-Meier plots of univariate Cox regression analysis of Cx43 immunoscores in giant cell tumor of bone. An increased hazard of
progression (reduced PFS) is linked to scores 1–3 vs 4–8 (arrow) separating patient number around the median, Nscore1-3 = 60 (48.8%), Nscore4-8 = 63
(51.2%) (a). Log-rank test proves significantly reduced progression free survival (PFS) in tumors presenting low (scores 1–3) vs high (scores 4–8) Cx43
protein levels (b).

doi:10.1371/journal.pone.0125316.g003
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phosphatase sensitive extra bands in HDFa fibroblasts and bone marrow stromal cell isolates
which were missing from GCTB stromal cells.

Dye coupling for testing direct cell-cell communication through gap
junctions
A dye coupling assay mixing Dil (red) and calcein (green) double labelled donor cells with
unlabelled recipient cells was used to assess cell-cell communication through gap junction
channels with flow cytometry (Fig 6A and 6B). The transfer of calcein dye into recipient cells
(green fluorescing cells) indicating cell coupling through gap junctions, was found significantly
reduced (~7-fold; p<0.001) in isolated primary GCTB stromal cell cultures compared to con-
trol cell cultures (Fig 6C–6E).

Discussion
In this study we reveal that decreased Cx43 expression is significantly associated with reduced
PFS and advanced clinico-radiological tumor stages in a large cohort of primary and recurrent
GCTB cases. In primary cultures of neoplastic GCTB stromal cells, significantly reduced Cx43
expression, missing phosphorylation and reduced cell membrane localization was associated
with decreased cell coupling through gap junctions compared to bone marrow stromal cells
and HDFa fibroblasts as a control. Our results suggest that compromised direct cell-cell com-
munication in neoplastic stromal cells can contribute to aggressive disease phenotype and
worse patient outcome in GCTB.

Cx43 gap junctions play a fundamental role in bone development and remodelling by meta-
bolically coupling bone forming cells and promoting cell survival-related (anabolic) gene ex-
pression [32,41]. They are involved in the regulation of osteoblast proliferation, differentiation
and in propagating signals either induced by soluble factors or mechanotransduction and

Fig 4. Examples of numerical chromosomal and telomeric alterations in GCTB stromal cells of male patients. Centromeric 3 (red), 4 (green), 6
(yellow) and X (light blue) signals show different levels of polysomy. Chromosome 4 trisomy in a cell disomic for the rest (3,6 and X) of the tested
centrosomes (b) and chromosome 11 subtelomeric loss and tetrasomy in a cell of another case (c). Scale bar on a represents 5 μm; and 2.5 μm on b and c.

doi:10.1371/journal.pone.0125316.g004
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nutrients between osteoblasts and osteocytes [42]. In addition, Cx43 channels in bone marrow
stromal cells contribute to the maintenance of quiescence and survival of hematopoetic
stem cells and they also support the trans-stromal migration and homing of stem cells after

Fig 5. Detection of Cx43 levels and the subcellular distribution of Cx43 protein in primary GCTB stromal cell, bonemarrow stromal (BM) cell and
HDFa fibroblast cultures. Immunoperoxidase reaction reveals paranuclear clumps of Cx43 protein in the frequently binucleated neoplastic GCTB stromal
cells (arrows) (a). Significantly less Cx43 is linked to cell membranes in GCTB stromal cells than in the control cells as tested using immunofluorescence (b-g;
red) and digital image analysis (b). Arrowheads highlight characteristic localization of Cx43 in the endoplasmic reticulum-Golgi region in GCTB stromal cells
(b and c, identical areas) and in cell membranes in HDFa fibroblasts (d and e, identical areas). Cx43 is dispersed throughout bone marrow stromal cells
including cell membranes (f and g, identical areas). Vimentin reaction in b, d and f (green) highlights cell shape, while black and white images of identical
areas (c, e and g) better reveal subcellular localization of Cx43. Cx43 transcript and protein levels detected using RT-PCR (i) and western blots (j),
respectively. In western blots, control cells but not GCTB stromal cells show alkaline phosphatase sensitive bands (P1 and P2). Results in graphs show the
mean ± standard deviation of three independent experiments. For blue nuclear staining hematoxylin (a) and Hoescht (b and d and f) were used. Scale bar on
a represents 20 μm; and 10 μm on b, c, d, e, and 15 μm on f and g.

doi:10.1371/journal.pone.0125316.g005
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cytoablation [31,43,44]. Thus, within bone and marrow, Cx43 channels permit the coordina-
tion of functions in syncytia formed by osteogenic cells and hematopoetic stroma.

Alterations of Cx43 expression and functions modulate osteoblast gene expression [45]. In
mice, induced GJA1 gene ablation or ODDD-like point mutations result in an osteopenic phe-
notype due to osteoblast dysfunction and elevated osteoclastogenesis via reduced osteoprote-
gerin production [1]. This suggests that single amino acid substitution can turn a fraction of
Cx43 membrane channels dysfunctional. Reduced number of Cx43 cell membrane channels,
we detected in GCTB stromal cells, may result in a similar situation by possibly affecting both
gap junction and connexin hemichannel functions that are fundamental to bone homeostasis.
Bisphosphonates, antiosteolytic drugs which inhibit osteoclast activity, can reduce osteoblast
and osteocyte apoptosis too by acting through Cx43 hemichannels [9,46]. Therefore,
promoters of Cx43 expression and cell membrane trafficking could likely to support the anti-
osteoclastogenic effect of bisphosphonates in GCTB therapy.

The cortical expansion of GCTB, which defines staging, can be linked to the magnitude of
osteolysis [5]. In mouse models, insufficient Cx43 membrane channel functions can contribute
to elevated osteolysis and impaired bone remodeling through deficient osteoblast maturation,
transcellular signaling and osteoprotegerin production [1]. Therefore, the significant correlations

Fig 6. Dye coupling test for measuring potential communication through gap junctions with flow cytometry. Scheme on the principle of the technique
(a). Unlabelled cell are mixed with double dye labelled cells (orange) of the same kind at a ratio of 10:1 (a-b). Calcein (Mw:622 Da, green), after esterase
cleavage becomes hydrophylic and can pass into adjacent cells through gap junctions, while the larger lypophylic DiI (red) is trapped within donor cell
membranes (b). The proportion of single calcein labelled cells measured with flow cytometry (B+-, lower right box) indicating dye coupling, is significantly
higher (p<0.001) in the control cell cultures (c) than in GCTB stromal cell cultures (d). Diagram showing the mean ± standard deviation of dye transfer in 3
independent experiments using stromal cells isolated from 3 patients (e). Scale bar on b represents 20 μm.

doi:10.1371/journal.pone.0125316.g006
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between declining Cx43 levels and aggressive phenotype and worse PFS may be associated with
a progressively reduced control on osteoclastogenesis by osteoblast-like stromal cells. However,
in GCTB stromal cells, this needs further studies e.g. by testing the expression of pro- and osteo-
clastogenic cytokines after conditional modulation of Cx43 expression and/or cell membrane
trafficking.

In culture, we first verified the neoplastic nature of the isolated GCTB stromal cells by their
wide range of polysomy and individual cell aneusomy using multiple FISH [17]. The difficulties
in finding the “normal” counterpart for GCTB stromal cells led us to use both bone marrow
stromal cells and HDFa fibroblasts for controls. Cultured GCTB stromal cells showed accumu-
lation of Cx43 protein in the endoplasmic reticulum-Gogi-region rather than in the cell mem-
brane and lack of Cx43 phosphorylation compared to either control cell type. Phophorylation
of Cx43 plays essential roles in the postranslational regulation of Cx43 channel assembly,
trafficking, degradation and channel permeability [47,48]. In the control cells, alkaline phos-
phatase sensitive extra bands (P1 and P2) in Western blots provided evidence for Cx43 phos-
phorylation at two of the serine residues (Ser369, Ser372 or Ser373) detectable by our antibody.
Phophorylation of Ser369 and Ser373 by Akt is known to promote the interaction between
Cx43 and 14-3-3 and the forward trafficking and stabilization of Cx43 gap junctions [49,50]; or
by PKA supports gap junction assembly and communication [51,52]. Therefore, the missing
phophorylation of Cx43 protein may be linked to its impaired cell membrane trafficking and
reduced gap junction coupling in neoplastic GCTB stromal cells. Since GJA1 mutations are ab-
sent even in malignant tumors, posttranslational effects, which require clarification, can be rea-
soned behind this defective phosphorylation.

Cx43 is thought to be ubiquitously expressed and involved in the function of all bone cells
including osteoblasts, osteocytes and osteoclasts [1]. CD163 is an anti-inflammatory hemoglo-
bin scavenger receptor on monocytes/macrophages not expressed in giant cells [53]. We de-
tected significantly more Cx43 in CD163 negative stromal cells than in CD163 positive
monocytic cells. In agreement with this, Cx43 is known to co-ordinate multicellular functions
in mesenchymal stem cells and their progeny including osteoblasts, bone marrow stromal cells
and stromal fibroblasts [31,32,54]. Primary monocytes and macrophages and their cell lines
utilize Cx43 channels less, except during inflammation and tissue repair [55]. Since CD163
positive mononuclear cell fractions did not correlate significantly with PFS, Cx43 levels within
CD163 negative stromal cell fractions may determine GCTB prognosis. The high Cx43 levels
in the pre-existing osteoblast layer around bone spicules and in osteocytes, we detected in
GCTB tissues, support the potential co-operation of these cell types [32]. This finding also
served as a positive reaction control in this study. Cx43 protein in association with osteoclasts
was observed only where adjacent mononuclear cells were present. Thus, the Cx43 plaques in
mononuclear cells partly engulfed by osteoclasts, were most likely monocytes fusing with oste-
oclasts. This is in line with reduced multinuclearity of giant cells in response to inhibiting Cx43
coupling, suggesting that direct cell-cell communication is also concerned with monocyte fu-
sion to osteoclasts [56].

Alpha-SMA positivity can be frequently seen in primary bone tumors including GCTB [57].
It is most probably related to the myofibroblastic differentiation and migratory phenotype of
stromal cells. Here we show reduced Cx43 levels in α-SMA positive compared to the α-SMA
negative GCTB stromal cells, which is in line with published data on decreasing Cx43 expres-
sion during myofibroblast differentiation [58–60]. Initially, Cx43 gap junctions are essential
for this transition since fibroblasts with ODDD-like Cx43 mutations are inefficient to express
α-SMA [61]. Also, Cx43 channels mediate TGF-β signaling, which can drive fibroblast to myo-
fibroblast differentiation [62]. Thus, reduced cell membrane Cx43 channels in GCTB stromal
cells seem to be enough to contribute to the initiation of this process.
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In conclusion, induced GJA1 mutations and compromised Cx43 channel functions are
known to result in impaired bone development. In GCTB, we found significantly reduced
Cx43 expression in association with more aggressive tumor phenotype and worse disease prog-
nosis. In culture, neoplastic stromal cells isolated from GCTB showed lack of phosphorylation
and reduced cell membrane localization of Cx43 protein and gap junction coupling compared
to either primary bone marrow stromal cells or HDFa fibroblasts. Our data suggest that dysre-
gulated Cx43 channels can contribute to the clinical progression of GCTB. Therefore, promot-
ers of Cx43 expression and cell membrane trafficking would likely to moderate GCTB outcome
and promote the antiosteolytic effect of bisphosphonates in GCTB therapy.
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