163 research outputs found

    Tao and the Lost Art of Leadership

    Get PDF
    I often tell people that I am literally a lifetime student of academic leadership. I grew up watching my father navigate his career in the academy as a professor of Sociology, including serving as Department Chair. Much to his pleasure I followed suit, pursuing a fun and challenging career as a professor of Communication in the same state university system. Over the course of my journey in academe, I’ve observed, and participated in, almost every level of academic leadership. From serving as chair of too many committees to remember, Department Chair, Vice-President of the Academic Senate, University Ombudsperson, and now Associate Dean, I’ve encountered both the good and bad in leadership at the university level

    Exome-wide analysis of copy number variation shows association of the human leukocyte antigen region with asthma in UK Biobank

    Get PDF
    BackgroundThe role of copy number variants (CNVs) in susceptibility to asthma is not well understood. This is, in part, due to the difficulty of accurately measuring CNVs in large enough sample sizes to detect associations. The recent availability of whole-exome sequencing (WES) in large biobank studies provides an unprecedented opportunity to study the role of CNVs in asthma.MethodsWe called common CNVs in 49,953 individuals in the first release of UK Biobank WES using ClinCNV software. CNVs were tested for association with asthma in a stage 1 analysis comprising 7098 asthma cases and 36,578 controls from the first release of sequencing data. Nominally-associated CNVs were then meta-analysed in stage 2 with an additional 17,280 asthma cases and 115,562 controls from the second release of UK Biobank exome sequencing, followed by validation and fine-mapping.ResultsFive of 189 CNVs were associated with asthma in stage 2, including a deletion overlapping the HLA-DQA1 and HLA-DQB1 genes, a duplication of CHROMR/PRKRA, deletions within MUC22 and TAP2, and a duplication in FBRSL1. The HLA-DQA1, HLA-DQB1, MUC22 and TAP2 genes all reside within the human leukocyte antigen (HLA) region on chromosome 6. In silico analyses demonstrated that the deletion overlapping HLA-DQA1 and HLA-DQB1 is likely to be an artefact arising from under-mapping of reads from non-reference HLA haplotypes, and that the CHROMR/PRKRA and FBRSL1 duplications represent presence/absence of pseudogenes within the HLA region. Bayesian fine-mapping of the HLA region suggested that there are two independent asthma association signals. The variants with the largest posterior inclusion probability in the two credible sets were an amino acid change in HLA-DQB1 (glutamine to histidine at residue 253) and a multi-allelic amino acid change in HLA-DRB1 (presence/absence of serine, glycine or leucine at residue 11).ConclusionsAt least two independent loci characterised by amino acid changes in the HLA-DQA1, HLA-DQB1 and HLA-DRB1 genes are likely to account for association of SNPs and CNVs in this region with asthma. The high divergence of haplotypes in the HLA can give rise to spurious CNVs, providing an important, cautionary tale for future large-scale analyses of sequencing data

    Genome-wide association study of chronic sputum production implicates loci involved in mucus production and infection

    Get PDF
    Background: chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment.Methods: we conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (p<5×10−8) were investigated in additional independent studies, were fine-mapped and putative causal genes identified by gene expression analysis. GWASs of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease among the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWASs).Results: from a GWAS of 9714 cases and 48 471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the human leukocyte antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2203 cases and 17 627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations including blood cell traits, liver biomarkers, infections, gastrointestinal and thyroid-associated diseases, and respiratory disease.Conclusions: novel signals at the FUT2 and mucin loci suggest that mucin fucosylation may be a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention

    Diving deep into digital literacy:emerging methods for research

    Get PDF
    Literacy studies approaches have tended to adopt a position which enables ethnographic explorations of a wide range of ‘literacies’. An important issue arising is the new challenge required for researchers to capture, manage, and analyse data that highlight the unique character of practices around texts in digital environments. Such inquiries, we argue, require multiple elements of data to be captured and analysed as part of effective literacy ethnographies. These include such things as the unfolding of digital texts, the activities around them, and features of the surrounding social and material environment. This paper addresses these methodological issues drawing from three educationally focused studies, and reporting their experiences and insights within uniquely different contexts. We deal with the issue of adopting new digital methods for literacy research through the notion of a ‘deep dive’ to explore educational tasks in classrooms. Through a discussion of how we approached the capture and analysis of our data, we present methods to better understand digital literacies in education. We then outline challenges posed by our methods, how they can be used more broadly for researching interaction in digital environments, and how they augment transdisciplinary debates and trends in research methods

    MicroRNA-mediated up-regulation of an alternatively polyadenylated variant of the mouse cytoplasmic β-actin gene

    Get PDF
    Actin is a major cytoskeletal protein in eukaryotes. Recent studies suggest more diverse functional roles for this protein. Actin mRNA is known to be localized to neuronal synapses and undergoes rapid deadenylation during early developmental stages. However, its 3′-untranslated region (UTR) is not characterized and there are no experimentally determined polyadenylation (polyA) sites in actin mRNA. We have found that the cytoplasmic β-actin (Actb) gene generates two alternative transcripts terminated at tandem polyA sites. We used 3′-RACE, EST end analysis and in situ hybridization to unambiguously establish the existence of two 3′-UTRs of varying length in Actb transcript in mouse neuronal cells. Further analyses showed that these two tandem polyA sites are used in a tissue-specific manner. Although the longer 3′-UTR was expressed at a relatively lower level, it conferred higher translational efficiency to the transcript. The longer transcript harbours a conserved mmu-miR-34a/34b-5p target site. Sequence-specific anti-miRNA molecule, mutations of the miRNA target region in the 3′-UTR resulted in reduced expression. The expression was restored by a mutant miRNA complementary to the mutated target region implying that miR-34 binding to Actb 3′-UTR up-regulates target gene expression. Heterogeneity of the Actb 3′-UTR could shed light on the mechanism of miRNA-mediated regulation of messages in neuronal cells

    Reprogrammed Transcriptome in Rhesus-Bovine Interspecies Somatic Cell Nuclear Transfer Embryos

    Get PDF
    Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive.In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos.Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation

    Genome-Wide Analysis of GLD-1–Mediated mRNA Regulation Suggests a Role in mRNA Storage

    Get PDF
    Translational repression is often accompanied by mRNA degradation. In contrast, many mRNAs in germ cells and neurons are “stored" in the cytoplasm in a repressed but stable form. Unlike repression, the stabilization of these mRNAs is surprisingly little understood. A key player in Caenorhabditis elegans germ cell development is the STAR domain protein GLD-1. By genome-wide analysis of mRNA regulation in the germ line, we observed that GLD-1 has a widespread role in repressing translation but, importantly, also in stabilizing a sub-population of its mRNA targets. Additionally, these mRNAs appear to be stabilized by the DDX6-like RNA helicase CGH-1, which is a conserved component of germ granules and processing bodies. Because many GLD-1 and CGH-1 stabilized mRNAs encode factors important for the oocyte-to-embryo transition (OET), our findings suggest that the regulation by GLD-1 and CGH-1 serves two purposes. Firstly, GLD-1–dependent repression prevents precocious translation of OET–promoting mRNAs. Secondly, GLD-1– and CGH-1–dependent stabilization ensures that these mRNAs are sufficiently abundant for robust translation when activated during OET. In the absence of this protective mechanism, the accumulation of OET–promoting mRNAs, and consequently the oocyte-to-embryo transition, might be compromised

    Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

    Get PDF
    Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion. Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations. Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF. Main results: We identified and replicated three new genome-wide significant (P<5×10−8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1 and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility. Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility

    Genome-wide association study of chronic sputum production implicates loci involved in mucus production and infection

    Get PDF
    Background Chronic sputum production impacts on quality of life and is a feature of many respiratory diseases. Identification of the genetic variants associated with chronic sputum production in a disease agnostic sample could improve understanding of its causes and identify new molecular targets for treatment.Methods We conducted a genome-wide association study (GWAS) of chronic sputum production in UK Biobank. Signals meeting genome-wide significance (P<5×10−8) were investigated in additional independent studies, were fine-mapped, and putative causal genes identified by gene expression analysis. GWAS of respiratory traits were interrogated to identify whether the signals were driven by existing respiratory disease amongst the cases and variants were further investigated for wider pleiotropic effects using phenome-wide association studies (PheWAS).Findings From a GWAS of 9,714 cases and 48,471 controls, we identified six novel genome-wide significant signals for chronic sputum production including signals in the Human Leukocyte Antigen (HLA) locus, chromosome 11 mucin locus (containing MUC2, MUC5AC and MUC5B) and the FUT2 locus. The four common variant associations were supported by independent studies with a combined sample size of up to 2,203 cases and 17,627 controls. The mucin locus signal had previously been reported for association with moderate-to-severe asthma. The HLA signal was fine-mapped to an amino-acid change of threonine to arginine (frequency 36.8%) in HLA-DRB1 (HLA-DRB1*03:147). The signal near FUT2 was associated with expression of several genes including FUT2, for which the direction of effect was tissue dependent. Our PheWAS identified a wide range of associations.Interpretation Novel signals at the FUT2 and mucin loci highlight mucin fucosylation as a driver of chronic sputum production even in the absence of diagnosed respiratory disease and provide genetic support for this pathway as a target for therapeutic intervention
    corecore