

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Genome-Wide Association Study of Susceptibility to Idiopathic **Pulmonary Fibrosis**

Citation for published version:

Citation for published version: Allen, RJ, Guillen-Guio, B, Oldham, JM, Ma, S-F, Dressen, A, Paynton, ML, Kraven, LM, Obeidat, M, Li, X, Ng, M, Braybrooke, R, Molina-Molina, M, Hobbs, BD, Putman, RK, Sakornsakolpat, P, Booth, HL, Fahy, WA, Hart, SP, Hill, MR, Hirani, N, Hubbard, RB, McAnulty, RJ, Millar, AB, Navaratnam, V, Oballa, E, Parfrey, H, Saini, G, Whyte, MKB, Zhang, Y, Kaminski, N, Adegunsoye, A, Strek, ME, Neighbors, M, Sheng, XR, Gudmundsson, G, Gudnason, V, Hatabu, H, Lederer, DJ, Manichaikul, A, Newell, JD, O'Connor, GT, Ortega, VE, Xu, H, Fingerlin, TE, Bossé, Y, Hao, K, Joubert, P, Nickle, DC, Sin, DD, Timens, W, Furniss, D, Morris, AP, Zondervan, K, Hall, IP, Sayers, I, Tobin, MD, Maher, TM, Cho, MH, Hunninghake, GM, Schwartz, DA, Yaspan, BL, Molyneaux, PL, Flores, C, Noth, I, Jenkins, RG & Wain, LV 2019, 'Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis', *American Journal of Respiratory and Critical Care Medicine*. https://doi.org/10.1164/rccm.201905-1017OC

Digital Object Identifier (DOI):

10.1164/rccm.201905-1017OC

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: American Journal of Respiratory and Critical Care Medicine

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Genome-Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis

Richard J Allen¹, Beatriz Guillen-Guio², Justin M Oldham³, Shwu-Fan Ma⁴, Amy Dressen⁵, Megan L Paynton¹, Luke M Kraven¹, Ma'en Obeidat⁶, Xuan Li⁶, Michael Ng⁷, Rebecca Braybrooke^{8,9}, Maria Molina-Molina^{10,11,12}, Brian D Hobbs^{13,14}, Rachel K Putman¹⁴, Phuwanat Sakornsakolpat^{13,15}, Helen L Booth¹⁶, William A Fahy¹⁷, Simon P Hart¹⁸, Mike R Hill¹⁹, Nik Hirani²⁰, Richard B Hubbard^{8,9}, Robin J McAnulty²¹, Ann B Millar²², Vidyia Navaratnam^{8,9}, Eunice Oballa¹⁷, Helen Parfrey²³, Gauri Saini²⁴, Moira K B Whyte²⁰, Yingze Zhang^{25,26}, Naftali Kaminski²⁷, Ayodeji Adegunsoye²⁸, Mary E Strek²⁸, Margaret Neighbors⁵, Xuting R Sheng⁵, Gunnar Gudmundsson^{29,30}, Vilmundur Gudnason^{31,32}, Hiroto Hatabu^{33,34}, David J Lederer^{35,36}, Ani Manichaikul^{37,38}, John D Newell, Jr^{39,40}, George T O'Connor^{41,42}, Victor E Ortega⁴³, Hanfei Xu⁴⁴, Tasha E Fingerlin^{45,46}, Yohan Bossé⁴⁷, Ke Hao^{48,49}, Philippe Joubert⁴⁷, David C Nickle⁵⁰, Don D Sin^{6,51}, Wim Timens^{52,53}, Dominic Furniss⁷, Andrew P Morris^{54,55,56}, Krina Zondervan⁵⁴, Ian P Hall^{9,57}, Ian Sayers^{9,57}, Martin D Tobin^{1,58}, Toby M Maher^{59,60}, Michael H Cho^{13,14}, Gary M Hunninghake^{14,34}, David A Schwartz^{45,61,62}, Brian L Yaspan⁵, Philip L Molyneaux^{59,60}, Carlos Flores^{2,12,63,64}, Imre Noth⁴, R Gisli Jenkins^{9,57*}, Louise V Wain^{1,58*}

¹Department of Health Sciences, University of Leicester, Leicester, UK, ²Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain,

³Department of Internal Medicine, University of California Davis, Davis, USA, ⁴Division of Pulmonary & Critical Care Medicine, University of Virginia, Charlottesville, USA, ⁵Genentech, South San Francisco, USA,

⁶The University of British Columbia Centre for Heart Lung Innovation, St Paul's Hospital,

Vancouver, Canada,

⁷Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences,

University of Oxford, Oxford, UK,

⁸Division of Epidemiology and Public Health, University of Nottingham, Nottingham, UK,

⁹National Institute for Health Research, Nottingham Biomedical Research Centre,

Nottingham University Hospitals, Nottingham, UK,

¹⁰Servei de Pneumologia, Laboratori de Pneumologia Experimental, IDIBELL, Spain

¹¹Campus de Bellvitge, Universitat de Barcelona, Barcelona, Spain,

¹²CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Spain,

¹³Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, USA,

¹⁴Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston,

USA,

¹⁵Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University,

Bangkok, Thailand,

¹⁶Department of Thoracic Medicine, University College London Hospitals, London, UK,

¹⁷Discovery Medicine, GlaxoSmithKline, Stevenage, UK,

¹⁸Respiratory Research Group, Hull York Medical School, Castle Hill Hospital, Cottingham, UK,

¹⁹Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford, UK,

²⁰MRC Centre for Inflammation Research at the University of Edinburgh, Edinburgh, UK, ²¹UCL Respiratory Centre for Inflammation and Tissue Repair, University College London,

London, UK,

²²Academic Respiratory Unit, School of Clinical Sciences, University of Bristol, Bristol, UK,

²³Cambridge ILD Service, Royal Papworth Hospital, Cambridge, UK,

²⁴Respiratory Medicine, Nottingham University Hospitals Trust, UK,

²⁵Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,

Pittsburgh, USA,

²⁶Simmons Center for Interstitial Lung Diseases, University of Pittsburgh, Pittsburgh, USA,

²⁷Section of Pulmonary , Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, USA,

²⁸Section of Pulmonary & Critical Care, Department of Medicine; The University of Chicago, Chicago, USA,

²⁹Dept of Respiratory Medicine, Landspital University Hospital, Reykjavik, Iceland,

³⁰Faculty of Medicine, University of Iceland, Reykjavik, Iceland,

³¹University of Iceland, Reykjavik, Iceland,

³²Icelandic Heart Association, Kopavogur, Iceland,

³³Department of Radiology, Brigham and Women's Hospital, Boston, USA,

³⁴Center for Pulmonary Functional Imaging, Brigham and Women's Hospital, Boston, USA,

³⁵Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, USA,

³⁶Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, USA,

³⁷Center for Public Health Genomics, University of Virginia, Charlottesville, USA,

³⁸Department of Public Health Sciences, University of Virginia, Charlottesville, USA,

³⁹Division of Cardiovascular and Pulmonary Imaging, Department of Radiology, University of

Iowa Carver College of Medicine, Iowa City, USA,

⁴⁰Department of Radiology, University of Washington, Seattle, USA,
 ⁴¹Pulmonary Center, Department of Medicine, Boston University, Boston, USA,
 ⁴²National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, USA,
 ⁴³Center for Genomics and Personalized Medicine, Wake Forest School of Medicine,
 Winston-Salem, USA,

⁴⁴Department of Biostatistics, Boston University School of Public Health, Boston, USA,

⁴⁵Center for Genes, Environment and Health, National Jewish Health, Denver, USA,

⁴⁶Department of Biostatistics and Informatics, University of Colorado, Denver, USA,

⁴⁷⁴³Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval,

Quebec City, Canada,

⁴⁸Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA,

⁴⁹Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA,

⁵⁰Merck Research Laboratories, Genetics and Pharmacogenomics, Boston, USA,

⁵¹Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, Canada,

⁵²University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, The Netherlands,

⁵³University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands,

⁵⁴Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK,

⁵⁵Department of Biostatistics, University of Liverpool, Liverpool, UK,

⁵⁶Division of Musculoskeletal and Dermatological Sciences, University of Manchester, Manchester, UK
⁵⁷Division of Respiratory Medicine, University of Nottingham, Nottingham, UK,
⁵⁸National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, UK,
⁵⁹NIHR Respiratory Clinical Research Facility, Royal Brompton Hospital, London, UK,
⁶⁰National Heart and Lung Institute, Imperial College, London, UK,
⁶¹Department of Medicine, University of Colorado Denver, Denver, USA,
⁶²Department of Immunology, University of Colorado Denver, Denver, USA,
⁶³Instituto Tecnológico y de Energías Renovables (ITER, S.A.), Santa Cruz de Tenerife, Spain,
⁶⁴Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, Santa Cruz de
Tenerife, Spain,
* Contributed equally

Author contributions

LVW, RGJ, IN, CF, RJA and JMO designed the study. RJA, BGG, AD, BLY, S-FM, MiN, MLP, LMK, MO, XL, BDH, RKP and PS analysed the data. RGJ, LVW, IN, DAS, TEF, CF, JMO, SFM, RB, MMM, HLB, WAF, SPH, MRH, NH, RBH, RJM, ABM, VN, EO, HP, GS, MKBW, YZ, NK, AA, MES, MaN, XS, IPH, IS, MDT, TMM, BLY, PLM MDH, RKP, PS, GG, VG, HH, DLJ, AM, JDN, GTO'C, VEO, HX, MHC, GMH, MO, YB, KH, PJ, DCN, DDS and WT were responsible for recruitment, screening and genotyping of cases and controls for IPF, ILA and gene expression analyses. LVW, RGJ, IN, CF, JMO and DAS supervised and coordinated the study. RJA, RGJ and LVW led the writing of the manuscript. All authors contributed to drafting and providing critical feedback on the manuscript.

Funding

R. Allen is an Action for Pulmonary Fibrosis Research Fellow. L. Wain holds a GSK/British Lung Foundation Chair in Respiratory Research. RG. Jenkins is supported by an NIHR Research Professorship (NIHR reference RP-2017-08-ST2-014). I. Noth: National Heart Lung and Blood Institute (R01HL130796). B. Guillen is funded by Agencia Canaria de Investigación, Innovación y Sociedad de la Información (TESIS2015010057) co-funded by European Social Fund. J. Oldham: National Heart Lung and Blood Institute (K23HL138190). C. Flores: Spanish Ministry of Science, Innovation and Universities (grant RTC-2017-6471-1;

MINECO/AEI/FEDER, UE) co-financed by the European Regional Development Funds (ERDF) 'A way of making Europe' from the European Union, and by the agreement OA17/008 with Instituto Tecnológico y de Energías Renovables (ITER) to strengthen scientific and technological education, training, research, development and innovation in Genomics, Personalized Medicine and Biotechnology. The Spain Biobank array genotyping service was carried out at CEGEN-PRB3-ISCIII; which is supported by PT17/0019, of the PE I+D+i 2013-2016, funded by Instituto de Salud Carlos III, and co-financed by ERDF. P. Molyneaux is an Action for Pulmonary Fibrosis Research Fellow. M. Obeidat is a fellow of the Parker B Francis Foundation and a Scholar of the Michael Smith Foundation for Health Research (MSFHR). B. Hobbs: NIH K08 HL136928, Parker B. Francis Research Opportunity Award. M. Cho and G Hunninghake: This work was supported by NHLBI grants R01HL113264 (M.H.C), R01HL137927 (M.H.C.), R01HL135142 (M.H.C. and G.M.H) and R01111024 (G.M.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The funding body has no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript. T. Maher is supported by an NIHR Clinician Scientist Fellowship (NIHR Ref: CS-2013-13-017) and a British Lung Foundation Chair in Respiratory Research (C17-3). M. Tobin is supported by a Wellcome Trust Investigator Award (WT202849/Z/16/Z). The research was partially supported by the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health. I. Hall was partially supported by the NIHR Nottingham Biomedical Research Centre; the views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. I. Sayers: MRC (G1000861) and Asthma UK (AUK-PG-2013-188). D. Furniss was supported by an Intermediate Fellowship from the Wellcome Trust (097152/Z/11/Z). This work was partially supported by the National Institute for Health Research (NIHR) Oxford Biomedical Research Centre. V. Navaratnam is funded by an NIHR Clinical Lectureship. G. Gudmundsson is supported by project grant 141513-051 from the Icelandic Research Fund and Landspitali Scientific Fund A-2016-023, A-2017-029 and A-2018-025. A. Manichaikul and D. Lederer: MESA and the MESA SHARe project are conducted and supported by the National Heart, Lung, and Blood Institute (NHLBI) in collaboration with MESA investigators. Support for MESA is provided by contracts HHSN268201500003I, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169, UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, UL1-TR-001881, and DK063491. Funding for SHARe genotyping was provided by NHLBI Contract N02-HL-64278. Genotyping was performed at Affymetrix (Santa Clara, California, USA) and the Broad Institute of Harvard

and MIT (Boston, Massachusetts, USA) using the Affymetrix Genome-Wide Human SNP Array 6.0. This work was supported by NIH grants R01 HL131565 (A.M.), R01 HL103676 (D.J.L.) and R01 HL137234 (D.J.L.).

Shortened title: Genome-wide study of idiopathic pulmonary fibrosis

Subject category: 9.23 Interstitial Lung Disease

Word count: 3,670

Some of the results of these studies have been previously reported in the form of a preprint (bioRxiv, 14 May 2019 https://www.biorxiv.org/content/10.1101/636761v1).

This article has an online data supplement, which is accessible from this issue's table of content online at www.atsjournals.org.

<u>Abstract</u>

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterised by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defence, telomere maintenance, signalling and cell-cell adhesion.

Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.

Methods and measurements: We conducted genome-wide analyses across three independent studies and meta-analysed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.

Main results: We identified and replicated three new genome-wide significant (*P*<5×10⁻⁸) signals of association with IPF susceptibility (associated with altered gene expression of *KIF15, MAD1L1* and *DEPTOR*) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as-yet unreported IPF susceptibility variants contribute to IPF susceptibility.

Conclusions: The observation that decreased *DEPTOR* expression associates with increased susceptibility to IPF, supports recent studies demonstrating the importance of mTOR signalling in lung fibrosis. New signals of association implicating *KIF15* and *MAD1L1* suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.

Abstract word count: 257

Key words: Genetics, Epidemiology, KIF15, MAD1L1, DEPTOR

Introduction

Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease characterised by the buildup of scar tissue. It is believed that damage to the alveolar epithelium is followed by an aberrant wound healing response leading to the deposition of dense fibrotic tissue, reducing the lungs' flexibility and inhibiting gas transfer¹. Treatment options are limited and half of individuals diagnosed with IPF die within 3-5 years^{1,2}. Two drugs (pirfenidone and nintedanib) have been approved for the treatment of IPF, but neither offer a cure and only slow disease progression.

IPF is associated with a number of environmental and genetic factors. Identifying regions of the genome contributing to disease risk improves our understanding of the biological processes underlying IPF and helps in the development of new treatments³. To date, genome-wide association studies⁴⁻⁸ (GWAS) have reported 17 common variant (minor allele frequency [MAF]>5%) signals associated with IPF; stressing the importance of host defence, telomere maintenance, cell-cell adhesion and signalling with respect to disease susceptibility. The sentinel (most strongly associated) variant, rs35705950, in one of these signals that maps to the promoter region of the *MUC5B* gene, has a much larger effect on disease susceptibility than other reported risk variants with each copy of the risk allele associated with a five-fold increase in odds of disease⁹. Despite this, the variant rs35705950 has a risk allele frequency of only 35% in cases (compared with 11% in the general population) and so does not explain all IPF risk. Rare variants (MAF<1%) in telomere-related and surfactant genes have also been implicated in familial pulmonary fibrosis and sporadic IPF^{10,11}.

Page 12 of 127

In this study, we aimed to identify previously unreported genetic associations with IPF to improve our understanding of disease susceptibility and generate new hypotheses about disease pathogenesis. We conducted a large GWAS of IPF susceptibility by utilising all European cases and controls recruited to any previously reported IPF GWAS⁵⁻⁸ and metaanalysing the results. This was followed by replication in individuals not previously included in IPF GWAS and bioinformatic analysis of gene expression data to identify the genes underlying the identified association signals. As specific IPF associated variants have also been shown to overlap with other related respiratory traits including lung function in the general population, chronic obstructive pulmonary disease (COPD, with genetic effects in opposite directions between COPD and IPF)¹²⁻¹⁴ and interstitial lung abnormalities (ILAs, which might be a precursor lesion for IPF)¹⁵, we tested for association of the IPF susceptibility variants with these respiratory phenotypes in independent datasets. Finally, using polygenic risk scores, we tested whether there was a still substantial contribution to IPF risk from genetic variants with as-yet unconfirmed associations with IPF susceptibility. Some of the results of these studies have been previously reported in the form of an abstract and preprint¹⁶⁻¹⁸.

Methods

Study cohorts

We analysed genome-wide data from three previously described independent IPF casecontrol collections (named here as the Chicago⁵, Colorado⁶ and UK⁸ studies, please refer to **Appendix** for summaries of these collections). Two more independent case-control collections (named here as the UUS and Genentech studies) were included as replication datasets. The new UUS study recruited cases from the USA, UK and Spain and selected controls from UK Biobank¹⁹ (full details on the recruitment, genotyping and quality control of UUS cases and controls can be found in the **Appendix**). The previously described²⁰ Genentech study consisted of cases from three IPF clinical trials and controls from four non-IPF clinical trials (**Appendix**). All studies were restricted to unrelated individuals of European ancestry and we applied stringent quality control measures (full details of the quality control measures of each study can be found in the **Appendix** and **Figure E1**). All studies diagnosed cases using American Thoracic Society and European Respiratory Society guidelines²¹⁻²³ and had appropriate institutional review board or ethics approval.

Genotype data for the Colorado, Chicago, UK and UUS studies were imputed separately using the Haplotype Reference Consortium (HRC) r1.1 panel²⁴ (**Appendix**). For individuals in the Genentech study, genotypes were derived from whole-genome sequencing data. Duplicated individuals between studies were removed (**Appendix**).

Identification of IPF susceptibility signals

In each of the Chicago, Colorado and UK studies separately, a genome-wide analysis of IPF susceptibility, using SNPTEST²⁵ v2.5.2, was conducted adjusting for the first 10 principal components to account for fine-scale population structure. Only bi-allelic autosomal variants that had a minor allele count \geq 10, were in Hardy-Weinberg Equilibrium (*P*>1×10⁻⁶), and were well imputed (imputation quality R²>0.5) in at least two studies were included. A genome-wide meta-analysis of the association summary statistics was performed across the Chicago, Colorado and UK studies using R v3.5.1 (discovery stage). Conditional analyses were performed to identify independent association signals in each locus (**Appendix**). Sentinel variants (defined as the variant in an association signal where no other variants within 1 Mb showed a stronger association) of the novel signals reaching genome-wide

significance in the meta-analysis ($P < 5 \times 10^{-8}$), and nominally significant (P < 0.05) with consistent direction of effect in each study, were further tested in the replication samples. We considered novel signals to be associated with IPF susceptibility if they reached a Bonferroni-corrected threshold (P < 0.05 / number of signals followed-up) in a meta-analysis of the UUS and Genentech studies (replication stage, **Appendix**). Previously reported signals with $P < 5 \times 10^{-8}$ in the discovery meta-analysis were deemed as a confirmed association.

Characterisation of signals and functional effects

To further refine our association signals to include only variants with the highest probabilities of being causal, Bayesian fine-mapping was undertaken. This approach takes all variants within the associated locus and, using the GWAS association results, calculates the probability of each variant being the true causal variant (under the assumptions that there is one causal variant and that the causal variant has been measured). The probabilities are then combined across variants to define the smallest set of variants that is 95% likely to contain the causal variant (i.e. the 95% credible set) for each IPF susceptibility signal (**Appendix**).

To identify which genes might be implicated by the IPF susceptibility signals, we identified whether any variants in the credible sets were genic coding variants and defined as deleterious (using VEP²⁶). In addition, we tested to see if any of the credible set variants were associated with gene expression using three eQTL resources (the Lung eQTL study [n=1,111]²⁷⁻²⁹, the NESDA-NTR blood eQTL database [n=4,896]³⁰ and 48 tissues in GTEx³¹ [n between 80 and 491], **Appendix**). Where IPF susceptibility variants were found to be associated with expression levels of a gene, we tested whether the same variant was likely to be causal both for differences in gene expression and IPF susceptibility. We only report

associations with gene expression where the probability of the same variant driving both the IPF susceptibility signal and gene expression signal exceeded 80% (**Appendix**).

To investigate whether the IPF susceptibility variants that were in non-coding regions of the genome might be in regions with regulatory functions (for example, in regions of open chromatin), we investigated the likely functional impact of those variants using DeepSEA³². Taking all of the IPF susceptibility variants together, we tested for overall enrichment in regulatory regions specific to particular cell and tissue types using FORGE³³ and GARFIELD³⁴. Finally, we investigated whether the genes that were near to the IPF susceptibility variants were more likely to be differentially expressed between IPF cases and controls in four lung epithelial cell types, using SNPsea³⁵. More details are provided in the **Appendix**.

Shared genetic susceptibility with other respiratory traits

As previous studies have reported shared genetic susceptibility for IPF and other lung traits^{12,13,15}, we investigated whether the new and previously reported IPF susceptibility signals were associated with quantitative lung function measures in a GWAS of 400,102 individuals³⁶ or with ILA in a GWAS comparing 1,699 individuals with an ILA and 10,247 controls³⁷. Lung function measures investigated were, FEV₁ (volume of air an individual can forcibly exhale in the first second), FVC (total volume of air that can be forcibly exhaled), the ratio FEV₁/FVC (used in the diagnosis of COPD) and PEF (the peak expiratory flow). We applied a Bonferroni corrected *P* value threshold to define variants also associated with ILA or lung function.

Polygenic risk scores

The contribution of as-yet unreported variants to IPF susceptibility was assessed using polygenic risk scores. For each individual in the UUS study, the weighted score was calculated as the number of risk alleles, multiplied by the effect size of the variant (as a weighting), summed across all variants included in the score. Effect sizes were taken from the discovery GWAS and independent variants selected using an LD $r^2 \le 0.1$. As we wanted to explore the contribution from as-yet unreported variants, we excluded variants within 1Mb of each IPF susceptibility locus from the risk score calculation (**Appendix**).

The score was tested to identify whether it was associated with IPF susceptibility, adjusting for 10 principal components to account for fine-scale population structure, using PRSice v1.25³⁸. We altered the number of variants included in the risk score calculation using a sliding *P*-threshold (P_T) such that the variant had to have a *P* value< P_T in the genome-wide meta-analysis to be included in the score. This allows us to explore whether variants that do not reach statistical significance in GWAS of current size contribute to disease susceptibility. We used the recommended significance threshold of *P*<0.001 for determining significantly associated risk scores³⁸.

Data availability statement

Full summary statistics for the genome-wide meta-analysis can be accessed from https://github.com/genomicsITER/PFgenetics.

<u>Results</u>

Following quality control, 541 cases and 542 controls from the Chicago study, 1,515 cases and 4,683 controls from the Colorado study and 612 cases and 3,366 controls from the UK study were available (**Table 1, Figure E1**) to contribute to the discovery stage of the genome-wide susceptibility analysis (**Figure 1**). For the replication stage of the GWAS, after quality control, there were 792 cases and 10,000 controls available in the UUS study and 664 cases and 1,874 controls available in the Genentech study (**Appendix**).

To identify new signals of association, we meta-analysed the genome-wide association results for IPF susceptibility for the Chicago, Colorado and UK discovery studies. This gave a maximum sample size of up to 2,668 cases and 8,591 controls for 10,790,934 well imputed (R^2 >0.5) variants with minor allele count ≥10 in each study and which were available in two or more of the studies (**Figure E2**).

Three novel signals (in 3p21.31 [near *KIF15*, **Figure 2i**], 7p22.3 [near *MAD1L1*, **Figure 2i**] and 8q24.12 [near *DEPTOR*, **Figure 2iii**]) showed a genome-wide significant ($P<5x10^{-8}$) association with IPF susceptibility in the discovery meta-analysis and were also significant after adjusting for multiple testing (P<0.01) in the replication stage comprising 1,467 IPF cases and 11,874 controls (**Tables 2 and E1**). Two additional loci were genome-wide significant in the genome-wide discovery analysis but did not reach significance in the replication studies. The sentinel variants of these two signals were a low frequency intronic variant in *RTEL1* (MAF=2.1%, replication P=0.012) and a rare intronic variant in *HECTD2* (MAF=0.3%, replication P=0.155). Conditional analyses did not identify any additional independent association signals at the new or previously reported IPF susceptibility loci (**Figure E5**).

To identify the likely causal genes for each new signal, we investigated whether any of the variants were also associated with changes in gene expression. The sentinel variant (rs78238620) of the novel signal on chromosome 3 was a low frequency variant (MAF=5%)

Page 18 of 127

in an intron of *KIF15* with the minor allele being associated with increased susceptibility to IPF and decreased expression of *KIF15* in brain tissue and the nearby gene *TMEM42* in thyroid³¹ (**Figure E7, Tables E2 and E3i**). The IPF risk allele for the novel chromosome 7 signal (rs12699415, MAF=42%) was associated with decreased expression of *MAD1L1* in heart tissue³¹ (**Figure E8, Tables E2 and E3ii**). For the signal on chromosome 8, the sentinel variant (rs28513081) was located in an intron of *DEPTOR* and the IPF risk allele was associated with decreased expression of *DEPTOR* (in colon, lung and skin^{27-29,31}) and RP11-760H22.2 (in colon and lung³¹). The risk allele was also associated with *increased* expression of *DEPTOR* (in whole blood³⁰), *TAF2* (in colon³¹), RP11-760H22.2 (in adipose³¹) and KB-1471A8.1 (in adipose and skin³¹, **Figure E9, Tables E2 and E3ii**). There were no variants predicted to be highly deleterious within the fine-mapped signals for any of the loci.

We confirmed genome-wide significant associations with IPF susceptibility for 11 of the 17 previously reported signals (in or near *TERC, TERT, DSP,* 7q22.1, *MUC5B, ATP11A, IVD, AKAP13, KANSL1, FAM13A* and *DPP9*; **Table E1, Figure E4**). The signal at *FAM13A,* whilst genome-wide significant in the discovery meta-analysis, was not significant in the Chicago study. This was the only signal reaching genome-wide significance in the discovery genome-wide meta-analysis that did not reach at least nominal significance in each study in the discovery analysis. Three further previously reported signals at 11p15.5 (near *MUC5B*) were no longer genome-wide significant after conditioning on the *MUC5B* promoter variant (**Table E1**), consistent with previous reports^{6,39}.

Of the 14 IPF susceptibility signals (i.e. the 11 previously reported signals we confirmed and three novel signals), the only variant predicted to have a potential functional effect on gene regulation through disruption of chromatin structure or transcription factor binding motifs

(using DeepSEA) was rs2013701 (in an intron of *FAM13A*), which was associated with a change in DNase I hypersensitivity in 18 cell types and FOXA1 in the T-47D cell line (a breast cancer cell line derived from a pleural effusion, **Table E4**). The 14 IPF susceptibility signals were found to be enriched in DNase I hypersensitivity site regions in multiple tissues including foetal lung tissue (**Figure E10 and E11**). No enrichment in differential expression in airway epithelial cells between IPF cases and healthy controls was observed for the 14 IPF susceptibility signals when using SNPsea (**Table E5**).

Previous studies have reported an overlap of genetic association loci between lung function and IPF⁴⁰. We undertook a look-up of the 14 IPF susceptibility loci in the largest GWAS of lung function in the general population published to date³⁶. The sentinel variants of 12 of the 14 IPF susceptibility loci were at least nominally associated (P<0.05) with one or more lung function trait in general population studies (Table E6). After adjustments for multiple testing ($P < 5.2 \times 10^{-4}$), the previously reported variants at FAM13A, DSP and IVD were associated with decreased FVC and variants at FAM13A, DSP, 7q22.1 (ZKSCAN1) and ATP11A were associated with increased FEV₁/FVC. Similarly, for the three novel susceptibility variants, all showed at least a nominal association with decreased FVC and increased FEV₁/FVC. We observed a nominally significant association of the *MUC5B* IPF risk allele with decreased FVC and increased FEV₁/FVC. The IPF risk alleles at MAPT were significantly associated with both increased FEV₁ and FVC. To determine how the variants identified for IPF susceptibility are related to differences in lung function between cases and controls, we investigated whether variants known to be associated with lung function show an association in our IPF GWAS. Of the 279 variants reported³⁶ as associated with lung function (Table E7), eight showed an association with lung function after corrections for multiple

testing (located in or near MCL1, DSP, ZKSCAN1, OBFC1, IVD, MAPT and two signals in FAM13A).

As interstitial lung abnormalities may be a precursor to IPF in a subset of patients, and there have been previous reports of shared genetic aetiology between IPF and ILA^{37,41,42}, we investigated whether our three new signals, and the 11 previously reported signals, were associated with ILA in the largest ILA GWAS reported to date³⁷. Eight of the IPF susceptibility loci were at least nominally significantly associated with either ILA or subpleural ILA with consistent direction of effects (i.e. the allele associated with increased IPF risk was also associated with increased ILA risk). The new *KIF15, MAD1L1* and *DEPTOR* signals were not associated with ILA (although the rare risk allele at *HECTD2* that did not replicate in our study showed some association with an increased risk of subpleural ILA [*P*=0.003] with a large effect size similar to that observed in the IPF discovery meta-analysis).

To quantify the impact of as-yet unreported variants on IPF susceptibility, polygenic risk scores were calculated excluding the 14 IPF susceptibility variants (as well as all variants within 1Mb). The polygenic risk score was significantly associated with increased IPF susceptibility despite exclusion of the known genetic association signals (including *MUC5B*). As the *P*-threshold (P_T) for inclusion of variants in the score was increased, the risk score became more significant reaching a plateau at around P_T =0.2 with risk score *P*<3.08×10⁻²³ and explaining around 2% of the phenotypic variation (**Figure E12**), suggesting that there is a modest but statistically significant contribution of additional as-yet undetected variants to IPF susceptibility. Further increasing P_T beyond 0.2 did not improve the predictive accuracy of the risk score.

Discussion

We undertook the largest GWAS of IPF susceptibility to date and identified three novel signals of association that implicated genes not previously known to be important in IPF.

The strongest evidence for the new signal on chromosome 8 implicates *DEPTOR*, which encodes the DEP Domain containing MTOR interacting protein. *DEPTOR* inhibits mTOR kinase activity as part of both the mTORC1 and mTORC2 protein complexes. The IPF risk allele at this locus was associated with decreased gene expression of *DEPTOR* in lung tissue (**Table E2**). TGFβ-induced DEPTOR suppression can stimulate collagen synthesis⁴³ and the importance of mTORC1 signalling via 4E-BP1 for TGFβ induced collagen synthesis has recently been demonstrated in fibrogenesis⁴⁴. *MAD1L1*, implicated by a new signal on chromosome 7 and eQTL analyses of non-lung tissue, is a mitotic checkpoint gene, mutations in which have been associated with multiple cancers including lung cancer^{45,46}. Studies have shown that *MAD1*, a homolog of *MAD1L1*, can inhibit *TERT* activity (or possibly enforce expression of *TERT* when the promoter E-box is mutated)^{46,47}. This could suggest that *MAD1L1* may increase IPF susceptibility through reduced telomerase activity. Another spindle-assembly related gene⁴⁸, *KIF15*, was implicated by the new signal on chromosome 3 (along with *TMEM42*).

The genome-wide study also identified two signals that were not replicated after multiple testing adjustments. *RTEL1*, a gene involved in telomere elongation regulation has not previously been identified in an IPF GWAS, however the collective effect of rare variants in *RTEL1* have been reported as associated with IPF susceptibility⁵²⁻⁵⁵. The ubiquitin E3 ligase encoded by *HECTD2* has been shown to have a pro-inflammatory role in the lung and other *HECTD2* variants may be protective against acute respiratory distress syndrome⁵⁶. However,

Page 22 of 127

the lack of replication for these signals in our data suggests that further exploration of their relationship to interstitial lung diseases is warranted.

By combining the largest available GWAS datasets for IPF, we were able to confirm 11 of 17 previously reported signals. Conditional analysis at the 11p15.5 region indicated that previously reported signals at *MUC2* and *TOLLIP* were not independent of the association with the *MUC5B* promoter variant. Previously reported signals at *EHMT2*, *OBFC1* and *MDGA2* were only found to be associated in one of the discovery studies, and showed no evidence of an association with IPF susceptibility in the other two discovery studies. Only the 11 signals that we confirmed in our data were included in subsequent analyses.

The IPF susceptibility signals at *DSP, FAM13A*, 7q22.1 (*ZKSCAN1*) and 17q21.31 (*MAPT*) have also been reported as associated with COPD, although with opposite effects (i.e. the allele associated with increased risk of IPF being associated with decreased risk of COPD). Spirometric diagnosis of COPD was based on a reduced FEV₁/FVC ratio. In an independent dataset of 400,102 individuals, eight of the IPF signals were associated with decreased FVC and with a comparatively weaker effect on FEV₁. This is consistent with the lung function abnormalities associated with IPF, as well as the decreased risk of COPD. Of note, only around 3% of previously reported lung function signals³⁶ also showed association with IPF susceptibility in our study. This suggests that whilst some IPF susceptibility variants might represent genes and pathways that are important in general lung health, others are likely to represent more disease-specific processes.

Using polygenic risk scores, we demonstrated that, despite the relatively large proportion of disease susceptibility explained by the known genetic signals of association reported here,

IPF is highly polygenic with potentially hundreds (or thousands) of as-yet unidentified variants associated with disease susceptibility.

A strength of our study was the large sample size compared with previous GWAS and the availability of an independent replication data set. A limitation of our study was that the controls used were generally younger in all studies included and there were differences in sex and smoking distributions in some of the studies. As age, sex and smoking status were not available for all individuals in four of our datasets, we were unable to adjust for these variables without substantially reducing our sample size. However, cases and controls in the UUS and UK datasets were matched for age, sex and smoking. The three novel signals replicated in all of the discovery and replication datasets providing reassurance that the signals we report are robust despite differences between the data sets. As we had limited information beyond IPF diagnosis status for a large proportion of the individuals included in the studies, we cannot rule out some association with other age-related conditions that are comorbid with IPF. However, other age-related conditions were not excluded from either the cases or controls. For the signals near KIF15 and MAD1L1, there was substantial evidence for an association with gene expression in non-lung tissues but not in either of the two (non-fibrotic) lung tissue eQTL datasets. This could reflect cell type-specific effects that are missed when studying whole tissue or effects that are disease dependent. Finally, our study was not designed to identify rare functional variant associations. As both common and rare variants are known to be important in IPF susceptibility³⁹, this is a limitation of our study.

In summary, we report new biological insights into IPF susceptibility and demonstrate that further studies to identify the genetic determinants of IPF susceptibility are needed. Our new signals of association with IPF susceptibility provide increased support for the importance of mTOR signalling in pulmonary fibrosis as well as the possible implication of mitotic spindle-assembly genes.

Acknowledgements

This research has been conducted using the UK Biobank Resource under application 8389. This research used the ALICE and SPECTRE High Performance Computing Facilities at the University of Leicester. Genome-wide summary statistics are available on request via the corresponding author.

References

1. Lederer DJ, Martinez FJ. Idiopathic pulmonary fibrosis. N Engl J Med. 2018;378(19):1811-1823.

2. Ley B, Collard HR, King Jr TE. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. *American journal of respiratory and critical care medicine*. 2011;183(4):431-440.

3. Nelson MR, Tipney H, Painter JL, et al. The support of human genetic evidence for approved drug indications. *Nat Genet*. 2015;47(8):856-860.

4. Mushiroda T, Wattanapokayakit S, Takahashi A, et al. A genome-wide association study identifies an association of a common variant in TERT with susceptibility to idiopathic pulmonary fibrosis. *J Med Genet*. 2008;45(10):654-656.

5. Noth I, Zhang Y, Ma S, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: A genome-wide association study. *The Lancet Respiratory Medicine*. 2013;1(4):309-317.

6. Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. *Nat Genet*. 2013;45(6):613-620.

7. Fingerlin TE, Zhang W, Yang IV, et al. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. *BMC genetics*. 2016;17(1):1.

8. Allen RJ, Porte J, Braybrooke R, et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of european ancestry: A genome-wide association study. *The Lancet Respiratory Medicine*. 2017.

9. Zhu QQ, Zhang XL, Zhang SM, et al. Association between the MUC5B promoter polymorphism rs35705950 and idiopathic pulmonary fibrosis: A meta-analysis and trial sequential analysis in caucasian and asian populations. *Medicine (Baltimore)*. 2015;94(43):e1901.

10. Coghlan MA, Shifren A, Huang HJ, et al. Sequencing of idiopathic pulmonary fibrosis-related genes reveals independent single gene associations. *BMJ open respiratory research*. 2014;1(1):e000057.

11. Petrovski S, Todd JL, Durheim MT, et al. An exome sequencing study to assess the role of rare genetic variation in pulmonary fibrosis. *American journal of respiratory and critical care medicine*. 2017;196(1):82-93.

12. Hobbs BD, De Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. *Nat Genet*. 2017;49(3):426.

 Sakornsakolpat P, Prokopenko D, Lamontagne M, et al. Genetic landscape of chronic obstructive pulmonary disease identifies heterogeneous cell-type and phenotype associations. *Nat Genet*.
 2019;51:494-505.

14. Chilosi M, Poletti V, Rossi A. The pathogenesis of COPD and IPF: Distinct horns of the same devil. *Respir Res.* 2012;13(3).

15. Putman RK, Gudmundsson G, Araki T, et al. The MUC5B promoter polymorphism is associated with specific interstitial lung abnormality subtypes. *Eur Respir J*.

2017;50(3):10.1183/13993003.00537-2017. Print 2017 Sep.

16. Allen RJ, Oldham JM, Fingerlin TE, et al. Polygenicity of idiopathic pulmonary fibrosis [abstract]. *Genetic Epidemiology*. 2018;42:684. 17. Allen RJ, Guillen-Guio B, Oldham JM, et al. Genome-wide meta-analysis of susceptibility to idiopathic pulmonary fibrosis [abstract]. *American Society of Human Genetics*. 2018.

18. Allen RJ, Guillen-Guio B, Oldham JM, et al. Genome-wide association study of susceptibility to idiopathic pulmonary fibrosis. *bioRxiv*. 2019:636761.

19. Sudlow C, Gallacher J, Allen N, et al. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. *PLoS Med.* 2015;12(3):e1001779.

20. Dressen A, Abbas AR, Cabanski C, et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: A candidate gene sequencing study. *The Lancet Respiratory Medicine*. 2018.

21. Travis WD, King TE, Bateman ED, et al. American thoracic society/european respiratory society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. *American journal of respiratory and critical care medicine*. 2002;165(2):277-304.

22. Raghu G, Collard HR, Egan JJ, et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. *American Journal of Respiratory and Critical Care Medicine*. 2011;183(6):788-824.

23. Raghu G, Remy-Jardin M, Myers JL, et al. Diagnosis of idiopathic pulmonary fibrosis. an official ATS/ERS/JRS/ALAT clinical practice guideline. *American journal of respiratory and critical care medicine*. 2018;198(5):e44-e68.

24. McCarthy S, Das S, Kretzschmar W, Durbin R, Abecasis G, Marchini J. A reference panel of 64,976 haplotypes for genotype imputation. *bioRxiv*. 2016:035170.

25. Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. *Nat Genet*. 2007;39(7):906-913.

26. McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. *Genome Biol*.2016;17(1):122.

27. Hao K, Bossé Y, Nickle DC, et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. *PLoS Genet*. 2012;8(11):e1003029.

28. Lamontagne M, Couture C, Postma DS, et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls. *PLoS One*. 2013;8(7):e70220.

29. Obeidat M, Miller S, Probert K, et al. GSTCD and INTS12 regulation and expression in the human lung. *PLoS One*. 2013;8(9):e74630.

30. Jansen R, Hottenga J, Nivard MG, et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. *Hum Mol Genet*. 2017;26(8):1444-1451.

31. GTEx Consortium. Genetic effects on gene expression across human tissues. *Nature*.2017;550(7675):204.

32. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning–based sequence model. *Nature methods*. 2015;12(10):931.

33. Dunham I, Kulesha E, lotchkova V, Morganella S, Birney E. FORGE: A tool to discover cell specific enrichments of GWAS associated SNPs in regulatory regions. *F1000Research*. 2015;4.

34. lotchkova V, Ritchie GR, Geihs M, et al. GARFIELD-GWAS analysis of regulatory or functional information enrichment with LD correction. *bioRxiv*. 2016:085738.

35. Slowikowski K, Hu X, Raychaudhuri S. SNPsea: An algorithm to identify cell types, tissues and pathways affected by risk loci. *Bioinformatics*. 2014;30(17):2496-2497.

36. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. *Nat Genet*. 2019:1.

37. Hobbs BD, Putman RK, Araki T, et al. Overlap of genetic risk between interstitial lung abnormalities and idiopathic pulmonary fibrosis. *American journal of respiratory and critical care medicine*. 2019((in press)).

Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic risk score software. *Bioinformatics*.
 2015;31(9):1466-1468.

39. Moore C, Blumhagen R, Yang I, et al. Resequencing study confirms host defence and cell senescence gene variants contribute to the risk of idiopathic pulmonary fibrosis. *American journal of respiratory and critical care medicine*. 2019.

40. Hobbs BD, De Jong K, Lamontagne M, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. *Nat Genet*. 2017;49(3):426.

41. Hunninghake GM, Hatabu H, Okajima Y, et al. MUC5B promoter polymorphism and interstitial lung abnormalities. *N Engl J Med*. 2013;368(23):2192-2200.

42. Putman RK, Hunninghake GM, Dieffenbach PB, et al. Interstitial lung abnormalities are associated with acute respiratory distress syndrome. *American journal of respiratory and critical care medicine*. 2017;195(1):138-141.

43. Das F, Bera A, Ghosh-Choudhury N, Abboud HE, Kasinath BS, Choudhury GG. TGF β -induced deptor suppression recruits mTORC1 and not mTORC2 to enhance collagen I (α 2) gene expression. *PloS one*. 2014;9(10):e109608.

44. Woodcock HV, Eley JD, Guillotin D, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. *Nature communications*. 2019;10(1):6.

45. Thompson MJ, Rubbi L, Dawson DW, Donahue TR, Pellegrini M. Pancreatic cancer patient survival correlates with DNA methylation of pancreas development genes. *PLoS One*. 2015;10(6):e0128814.

46. Coe BP, Lee EH, Chi B, et al. Gain of a region on 7p22. 3, containing MAD1L1, is the most frequent event in small-cell lung cancer cell lines. *Genes, Chromosomes and Cancer*. 2006;45(1):11-19.

47. Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Gain at chromosomal region 5p15. 33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. *Cancer Genet Cytogenet*. 2008;182(1):1-11.

48. Tanenbaum ME, Macůrek L, Janssen A, Geers EF, Alvarez-Fernández M, Medema RH. Kif15 cooperates with eg5 to promote bipolar spindle assembly. *Current biology*. 2009;19(20):1703-1711.

49. Alder JK, Chen JJ, Lancaster L, et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. *Proc Natl Acad Sci U S A*. 2008;105(35):13051-13056.

50. Stuart BD, Lee JS, Kozlitina J, et al. Effect of telomere length on survival in patients with idiopathic pulmonary fibrosis: An observational cohort study with independent validation. *The lancet Respiratory medicine*. 2014;2(7):557-565.

51. McDonough JE, Martens DS, Tanabe N, et al. A role for telomere length and chromosomal damage in idiopathic pulmonary fibrosis. *Respiratory research*. 2018;19(1):132.

52. Stuart BD, Choi J, Zaidi S, et al. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening. *Nat Genet*. 2015;47(5):512-517.

53. Kropski JA, Loyd JE. Telomeres revisited: RTEL1 variants in pulmonary fibrosis. *Eur Respir J*.2015;46(2):312-314.

54. Kannengiesser C, Borie R, Menard C, et al. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis. *Eur Respir J*. 2015;46(2):474-485.

55. Deng Y, Li Z, Liu J, et al. Targeted resequencing reveals genetic risks in patients with sporadic idiopathic pulmonary fibrosis. *Hum Mutat*. 2018;39(9):1238-1245.

56. Coon TA, McKelvey AC, Lear T, et al. The proinflammatory role of HECTD2 in innate immunity and experimental lung injury. *Science translational medicine*. 2015;7(295):295ra109-295ra109.

57. Dudbridge F. Power and predictive accuracy of polygenic risk scores. *PLoS genetics*.2013;9(3):e1003348.

58. Calafato MS, Thygesen JH, Ranlund S, et al. Use of schizophrenia and bipolar disorder polygenic risk scores to identify psychotic disorders. *The British Journal of Psychiatry*. 2018;213(3):535-541.

59. Mullins N, Power R, Fisher H, et al. Polygenic interactions with environmental adversity in the aetiology of major depressive disorder. *Psychol Med*. 2016;46(4):759-770.

60. Wain LV, Shrine N, Miller S, et al. Novel insights into the genetics of smoking behaviour, lung function, and chronic obstructive pulmonary disease (UK BiLEVE): A genetic association study in UK biobank. *The Lancet Respiratory Medicine*. 2015;3(10):769-781.

Table 1: Demographics of study cohorts

	Chicago		Colorado		UK		UUS		Genentech	
	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls	Cases	Controls
n	541	542	1,515	4,683	612	3,366	792	10,000	664	1,874
Genotyping array /sequencing	Affymetrix 6	5.0 SNP array	Illumina Human 660W Quad BeadChip		Affymetrix UK BiLEVE array	Affymetrix UK BiLEVE and UK Biobank arrays	Affymetrix UK Biobank and Spain Biobank arrays	Affymetrix UK BiLEVE and UK Biobank arrays	HiSeq X Ten pla	atform (Illumina)
Imputation panel	HRC		HRC		HRC		HRC			-
Age (mean)	68	63 ^a	66	-	70 ^b	65	69	58	68	-
Sex (% males)	71% ^c	47% ^d	68%	49%	70.8%	70.0%	75.2%	72.1%	73.5%	27.1%
% ever smokers	72%	42%	-	-	72.9% ^e	70.0%	68.7% ^f	68.0%	67.3%	18.1% ^g

^a Age only available for 103 Chicago controls

^b Age available for 602 UK cases

^c Sex only available for 500 Chicago cases

^d Sex only available for 510 Chicago controls

^e Smoking status only recorded for 236 UK cases

^f Smoking status only recorded for 753 IPF cases in UUS

^g Smoking status only recorded for 481 of the Genentech controls

Table 2 - Discovery and replication association analysis results for the five signals reaching significance in the discovery GWAS that have not previously reported as associated with IPF

The minor allele is the effect allele and the minor allele frequency (MAF) is taken from across the studies used in the discovery meta-analysis.

Chr	Pos	rsid	Locus	Major allele	Minor allele	MAF	Discovery meta-analysis		Replication meta-analysis		Meta-analysis of discovery and replication	
							OR [95% CI]	Р	OR [95% CI]	Р	OR [95% CI]	Р
3	44902386	rs78238620	KIF15	Т	А	5.3%	1.58 [1.37, 1.83]	5.12×10 ⁻¹⁰	1.48 [1.24, 1.77]	1.43×10 ⁻⁵	1.54 [1.38, 1.73]	4.05×10 ⁻¹⁴
7	1909479	rs12699415	MAD1L1	G	А	42.0%	1.28 [1.19, 1.37]	7.15×10 ⁻¹³	1.29 [1.18, 1.41]	2.27×10 ⁻⁸	1.28 [1.21, 1.35]	9.38×10 ⁻²⁰
8	120934126	rs28513081	DEPTOR	А	G	42.8%	0.82 [0.76, 0.87]	1.20×10 ⁻⁹	0.87 [0.80, 0.95]	0.002	0.83 [0.79, 0.88]	1.93×10 ⁻¹¹
10	93271016	rs537322302	HECTD2	С	G	0.3%	7.82 [3.77, 16.2]	3.43×10 ⁻⁸	1.75 [0.81, 3.78]	0.155	3.85 [2.27, 6.54]	6.25×10 ⁻⁷
20	62324391	rs41308092	RTEL1	G	А	2.1%	2.12 [1.67, 2.69]	7.65×10 ⁻¹⁰	1.45 [1.08, 1.94]	0.012	1.82 [1.51, 2.19]	2.24×10 ⁻¹⁰

Table 3 – Gene expression and spirometric results for the three novel IPF susceptibility loci

Annotation of the variant was taken from VEP. A list of all variants included in the credible sets with their annotations and eQTL results can be found in **Table E3**. For colocalisation, only genes where there was a greater than 80% probability of colocalisation between the IPF risk signal and gene expression of that gene are reported in this table. In the colocalisation column, \uparrow denotes that the allele that increases IPF risk was associated with increased expression of the gene, \downarrow denotes that the IPF risk allele was associated with decreased expression of the gene and \updownarrow denotes that the IPF risk allele was associated with decreased expression of the gene and \updownarrow denotes that the IPF risk allele was associated with increased expression in others. Full results from the eQTL and colocalisation analyses can be found in **Table E2**. The spirometric results for the three novel IPF risk loci are taken from Shrine et al using the allele associated with increased IPF risk as the effect allele with β being the change in Z-score units. Results for all IPF risk variants can be found in **Table E6**.

Chr	rcid of		eQTL		FEV ₁		FVC		FEV ₁ /FVC	
	sentinel variant	Annotation	Lung tissue	Non-lung tissue	β [95% Cl]	Р	β [95% CI]	Р	β [95% Cl]	Р
3	rs78238620	Intron (<i>KIF15</i>)	-	<i>↓ KIF15</i> <i>↓ TMEM42</i>	-0.011 [-0.022, 0.000]	0.069	-0.022 [-0.033, 0.011]	2.92×10 ⁻⁴	0.017 [0.006, 0.028]	0.005
7	rs12699415	Intron (MAD1L1)	-	\downarrow MAD1L1	-0.007 [-0.012, -0.002]	0.011	-0.011 [-0.016, -0.007]	1.41×10 ⁻⁵	0.008 [0.003, 0.012]	0.005
8	rs28513081	Intron (DEPTOR)	<i>↓ DEPTOR</i> ↓ RP11-760H22.2	<pre>\$ DEPTOR \$ RP11-760H22.2 ↑ KB-1471A8.1 ↑ TAF2</pre>	0.001 [-0.004, 0.006]	0.822	-0.005 [-0.010, -0.001]	0.045	0.011 [0.006, 0.016]	4.22×10 ⁻⁵

Figure 1 - Manhattan plot of discovery analysis results

X axis shows chromosomal position and the y axis shows the $-\log(P \text{ value})$ for each variant in the discovery genome-wide analysis. The red line shows genome-wide significance ($P < 5 \times 10^{-8}$) and variants in green met the criteria for further study in the replication analysis (i.e. reached genome-wide significance in the discovery meta-analysis and had P < 0.05 and consistent direction of effects in each study). Genes labelled in grey are previously reported signals that reach significance in the discovery genome-wide meta-analysis. Genes labelled in black are the novel signals identified in the discovery analysis that reach genome-wide significance when meta-analysing discovery and replication samples. The signals which did not replicate are shown by red labels. For ease of visualisation the y axis has been truncated at 25.

Figure 2 - Region plots of three novel IPF susceptibility loci from discovery genome-wide metaanalysis

Each point represents a variant with chromosomal position on the x axis and the $-\log(P \text{ value})$ on the y axis. Variants are coloured in by LD with the sentinel variant. Blue lines show the recombination rate and gene locations are shown at the bottom of the plot. Region plots are shown for the three replicated novel IPF susceptibility loci, i.e. i) the susceptibility signal on chromosome 3 near *KIF15*, ii) the susceptibility signal on chromosome 7 near *MAD1L1* and iii) the susceptibility signal on chromosome 8 near *DEPTOR*.

Appendix Online Data Supplement

Supplementary Methods4
Overview of study4
Summary of previously reported studies4
Recruitment and genotyping of cases for UUS (USA, UK and Spain) study
Quality control for UUS study5
Quality control for individuals genotyped on UK Biobank array
Quality control of individuals genotyped on Spain Biobank array for UUS study6
Selection and quality control of controls for UUS study7
Imputation of all studies7
Duplicated individuals between studies7
Association analysis8
Bayesian fine-mapping8
Identification of genes implicated by the association signals9
VEP9
Association of IPF susceptibility variants with gene expression
Identification of shared causal variants for IPF susceptibility and gene expression changes
(colocalisation)9
In silico analyses of functional effects10
DeepSEA10
FORGE10
GARFIELD10
SNPsea10
Shared genetic susceptibility of IPF, lung function and interstitial lung abnormalities (ILA)10
Polygenic risk scores11
Supplementary Tables12
Table E1 - Study level results from discovery genome-wide analysis for novel genome-wide significant and previously reported IPF susceptibility variants
Table E2 - Summary of eQTL analysis for novel IPF susceptibility signals
Table E3 - Annotation and eQTL results for variants in 95% credible sets of novel IPF susceptibility signals 16
i) Chromosome 316
ii) Chromosome 718
iii) Chromosome 822

iv) Chromosome 10	28
v) Chromosome 20	29
Table E4 - DeepSEA results for predicted chromatic effects of rs2013701	
Table E5 - SNPsea results for enrichment of IPF susceptibility signals in IPF specific expressed genes across four lung epithelial cell types	differentially 31
Table E6 - Results for IPF risk variants in interstitial lung abnormalities and lung fur	nction GWAS32
Table E7 - Results from IPF discovery meta-genome-wide analysis for the 279 varia reported as associated with lung function	ants previously 34
Supplementary Figures	44
Figure E1 - Study level QC	44
Figure E2 – Number of overlapping variants between studies included in the discoving wide meta-analysis	very genome- 45
Figure E3 - QQ plot for discovery genome-wide meta-analysis	46
Figure E4 - Region plots for all 17 previously reported association signals	47
i) <i>TERC</i>	47
ii) <i>FAM13A</i>	47
iii) TERT	48
iv) <i>DSP</i>	48
v) EHMT2	49
vi) 7q22.1	49
vii) OBFC1	50
viii) <i>MUC5B</i>	50
ix) <i>ATP11A</i>	51
x) MDGA2	51
xi) <i>IVD</i>	52
xii) <i>AKAP13</i>	52
xiii) MAPT	53
xiv) DPP9	53
Figure E5 - Region plots and conditional analyses for the five novel IPF association discovery genome-wide analysis	signals in the 54
i) Chromosome 3	54
ii) Chromosome 7	55
iii) Chromosome 8	56
iv) Chromosome 10	57
v) Chromosome 20	58
Figure E6 - Forest plot of discovery and replication study level results for the five n reported variants signals reaching genome-wide significance in the discovery meta	ot previously a-analysis59
i) Forest plot for rs78238620	59
ii) Forest plot for rs12699415	59

iii) Forest plot for rs2851308160
iv) Forest plot for rs53732230260
v) Forest plot for rs4130809261
Figure E7 - GWAS vs eQTL results for novel IPF susceptibility signal on chromosome 362
i) <i>KIF15</i> - Brain (Putamen) - Colocalisation probability = 95.6%62
ii) TMEM42 - Thyroid - Colocalisation probability = 93.1%63
Figure E8 - GWAS vs eQTL for novel IPF susceptibility signal on chromosome 764
i) <i>MAD1L1</i> - Heart (Atrial Appendage) - Colocalisation probability = 95.3%64
Figure E9 - GWAS vs eQTL for novel IPF susceptibility signal on chromosome 865
i) <i>DEPTOR</i> - Colon (Sigmoid) - Colocalisation probability = 89.6%65
ii) <i>DEPTOR</i> - Lung - Colocalisation probability = 89.2%66
iii) <i>DEPTOR</i> - Lung - Colocalisation probability = 89.5%67
iv) <i>DEPTOR</i> - Lung - Colocalisation probability = 89.9%68
v) <i>DEPTOR</i> - Skin (Not sun exposed) - Colocalisation probability = 90.0%69
vi) DEPTOR - Skin (Sun exposed) - Colocalisation probability = 86.5%70
vii) <i>DEPTOR</i> - Whole blood - Colocalisation probability = 93.7%
viii) TAF2 - Colon (Transverse) - Colocalisation probability = 87.5%
ix) RP11-760H22.2 - Adipose (Subcutaneous) - Colocalisation probability = 84.9%73
x) RP11-760H22.2 - Colon (Sigmoid) - Colocalisation probability = 88.6%74
xi) RP11-760H22.2 - Lung - Colocalisation probability = 90.0%
xii) KB-1471A8.1 - Adipose (Subcutaneous) - Colocalisation probability = 85.6%
xiii) KB-1471A8.1 - Adipose (Visceral) - Colocalisation probability = 90.9%
xiv) KB-1471A8.1 - Skin (Sun exposed) - Colocalisation probability = 88.7%
Figure E10 - FORGE analysis for enrichment of IPF susceptibility signals in regulatory regions79
Figure E11 - GARFIELD analysis for enrichment of IPF susceptibility signals in DNase I hypersensitivity sites by tissue
Figure E12 - Strength of association and model fit of the polygenic risk score in target dataset (UUS) by <i>P</i> threshold used
Supplementary References

Supplementary Methods

Overview of study

In this study we analysed data from five different idiopathic pulmonary fibrosis (IPF) studies, which in this manuscript we refer to as the Chicago, Colorado, UK, UUS and Genentech studies. Three of these studies (Chicago, Colorado and UK) have been used for previous genome-wide association studies (GWAS)¹⁻⁴. The Genentech study consisted of IPF cases and controls from clinical trials and have been previously described⁵. The UUS study consisted of newly genotyped cases and is described more fully in this supplement.

We reimputed the cases and controls in the Chicago, Colorado and UK studies and reran genomewide analyses in each of these three studies separately and meta-analysed the results to perform the largest most powerful IPF GWAS to date. Novel associations identified in this meta-analysis were then tested for an association in the Genentech and UUS studies. Functional follow-up analyses were used to determine putatively causal genes.

Summary of previously reported studies

The Chicago study¹ consisted of 541 IPF cases and 542 controls. Cases were selected from the University of Chicago, University of Pittsburgh and COMET study and the controls were selected from the database of genotypes and phenotypes (dbGaP) and healthy individuals recruited from the University of Pittsburgh. All individuals were unrelated, of European-American ancestry and had a genotyping call rate > 97%. Subjects with sex mismatches were removed and controls were selected so they were genetically matched to a case based on the first 4 principal components. All individuals were genotyped using the Genome-Wide Human SNP Array 6.0 (Affymetrix).

The Colorado Study^{2,3} consisted of 1,616 fibrotic IIP (idiopathic interstitial pneumonia) cases (from the National Jewish Health IIP population, InterMune IPF trials, UCSF, Vanderbilt University IIP

population and the National Heart, Lung and Blood Institute Lung Tissue Research Consortium) and 4,683 controls (generated at Centre d'Etude du Polymorphisme Humain and approved for use as controls in other studies). Controls were selected such that they were genetically similar to the cases based on IBS (identical by state) estimates. Of the cases, 101 were removed from this study as they had also been included in the Chicago study (see **Duplicated individuals between studies** section). All individuals were self-reported as non-Hispanic white and were removed if they had a genotyping call rate < 98%, were sex mismatches, had genome-wide heterozygosity more than four standard deviations away from the mean or were genetic outliers based on IBS estimates. All individuals were genotyped using the Human 660W Quad BeadChip array (Illumina Inc.).

The UK study⁴ consisted of 612 IPF cases and 3,366 controls selected from UK Biobank such that they had no history of any interstitial lung disease (defined by hospital episode statistics and cause of death) and followed a similar age, sex and smoking distribution to the cases. Individuals were removed if they had high missingness (call rate < 95%), were heterozygote outliers, were ancestry outliers based on principal components or were sex mismatches. All individuals were of European ancestry and were unrelated. Genotyping of cases was performed using the UK BiLEVE array (Affymetrix). For the controls, 1,231 were genotyped using the UK BiLEVE array and the remaining 2,135 were genotyped using the similar UK Biobank array (Affymetrix).

The Genentech study⁵ consisted of 664 unrelated European IPF cases taken from the ASCEND, CAPACITY and RIFF clinical trials and 1,874 unrelated European non-IPF controls taken from the EXCELS, SUMMACTA, LITHE and OPTION clinical trials. The original Genentech cohort also included IPF cases from the Vanderbilt, UCSF and INSPIRE cohorts, however as these had been included in other studies included in the discovery analysis, these individuals were excluded. Individuals were sequenced using the HiSeq X Ten platform (Illumina Inc.) to an average read depth of 30X. Individuals were excluded from analyses if they had a call rate < 10%, had excess heterozygosity, were ancestry outliers or were aged less than 40 years old.

Recruitment and genotyping of cases for UUS (USA, UK and Spain) study

A total of 1,288 individuals were recruited across the USA, UK and Spain and sent for genotyping from 7 study cohorts, namely; ACE (Anticoagulant Effectiveness in IPF, n = 98), PANTHER (Prednisone, Azathioprine, and N-Acetylcysteine: A Study That Evaluates Response in Idiopathic Pulmonary Fibrosis, n = 166), UCD (University of California Davis, n = 54), Chicago (n = 314), UCSF (University of California San Francisco, n = 53), PROFILE (n = 554) and Spain (n = 50). These collections were primarily intended to capture sporadic cases though family history was not recorded for all study cohorts.

Cases in the replication study were genotyped by Affymetrix on the Axiom UK Biobank array, apart from the 50 Spanish IPF cases who were genotyped on the Axiom Spain Biobank array (Affymetrix). The UK Biobank array was designed to optimise imputation quality of common (MAF [minor allele frequency] > 5%) and low-frequency (MAF 1% to 5%) variants in a European population, measure rare functional variation and to include custom content of known genetic associations with a variety of traits (including *MUC5B* promoter and *TERT* variants with known associations with IPF).

Quality control was performed on the individuals on the two arrays separately before being merged for the selection of controls and for imputation.

Quality control for UUS study

Quality control for individuals genotyped on UK Biobank array

For the individuals genotyped on the UK Biobank array, the following quality control measures were applied.

 Affymetrix quality control: Individuals were removed if they had scanning issues, failed dish QC and or had a sample call rate < 97% in step 1 genotype calling. The genotype calling and quality control was originally performed by Affymetrix and was repeated using Axiom Analysis Suite and APT (Analysis Power Tools). All three calling methods gave the same results.

- 2. Individual call rate: Individuals were excluded for having a final individual call rate < 95%.
- 3. Sex mismatches: Genetic sex was inferred using PLINK v1.9. Individuals who had a recorded sex different to that inferred from their genetic sample and were not included in further analyses.
- 4. High heterozygosity: Individuals were excluded if they had a high heterozygosity rate (defined as more than 5 standard deviations above the mean after adjusting for ancestry). Heterozygosity rates were calculated using autosomal variants in Hardy-Weinberg equilibrium with MAF > 1% and variant call rate > 95%.
- 5. Non-IPF cases: Individuals found to not be IPF cases were removed.
- 6. **Duplicates:** Duplicates were identified using KING on all samples, including those individuals already excluded for failing other quality control measures. The duplicate analysis was performed on autosomal variants in Hardy-Weinberg equilibrium ($P > 10^{-6}$), had call rate > 95%, MAF > 1% and not found in regions of high linkage disequilibrium (LD, namely positions 44Mb to 51.5Mb on chromosome 5, 25Mb to 33.5Mb on chromosome 6 [HLA region], 8Mb to 12Mb on chromosome 8 and 45Mb to 57Mb on chromosome 11). If the phenotype data suggested the same person had been recruited twice then the sample with the highest call rate was kept. In instances where the phenotype data suggested there had been a potential genetic sample mix-up, both pairs were removed. Duplicates were also identified between studies. More details on this analysis can be found in the "Duplicated individuals between studies" section in the supplementary methods.
- 7. Ancestry: Ancestry was inferred from the genetic data using principal components analysis. Principal components were calculated using PLINK v1.9 on autosomal variants with MAF > 1%, in Hardy-Weinberg equilibrium, were variants included in HapMap, had genotyping call rate > 95% and were not in regions of high LD. Variants were pruned using an

r² threshold of 0.1. Principal components were calculated for the individuals who passed Affymetrix QC, had call rate > 95%, were not sex mismatches and were not duplicates and for all unrelated samples from the HapMap project (a collection of genotyped individuals from multiple populations). K-means clustering on the first two principal components was used to define ancestry groups. The number of clusters was increased until a cluster was formed which contained all European HapMap samples and no HapMap samples of other ancestries. Using seven clusters was found to form a cluster of European samples. Individuals in the other ancestry clusters were not included in further analyses.

- 8. Relatedness: Relatedness between individuals passing quality control measures was calculated using KING. First-degree relatives were defined as those with kingship coefficient between 0.177 and 0.354 and second-degree relatives as a kingship coefficient between 0.0884 and 0.177. When first and second-degree relatives were identified, the individual with the lower genotyping call rate was removed from further analyses.
- Relatedness with the discovery: Individuals who were first or second-degree relatives with an individual in the discovery analysis were also excluded. Relatedness was estimated using KING.

Of the 1,238 individuals genotyped on the UK Biobank array, 753 unrelated European IPF cases passed quality control.

Quality control of individuals genotyped on Spain Biobank array for UUS study

For the individuals genotyped on the Spanish custom array, the following quality control measures were applied.

 Affymetrix QC: Individuals were removed if they had scanning issues, failed dish QC and or had a sample call rate < 97% in step 1 genotype calling. The genotype calling and quality control was performed using Axiom Analysis Suite.

- 2. Individual call rate: Individuals were excluded for having a final individual call rate < 95%.
- 3. Sex mismatches: Sex was inferred from the genetic data using PLINK v1.9. Individuals were excluded from future analyses if their genetically inferred sex was different to their recorded sex.
- 4. **High heterozygosity:** Heterozygosity rates were estimated using PLINK v1.9 on autosomal variants with call rate > 95%, in Hardy-Weinberg equilibrium ($P > 10^{-6}$) and MAF > 1%. Heterozygosity rates were adjusted for ancestry and individuals found to have a high genome-wide ancestry-adjusted heterozygosity rate (more than 5 standard deviations above mean) were removed.
- 5. **Duplicates and relatedness:** Duplicates and relatedness between individuals was calculated using PLINK v1.9 on autosomal variants with call rate > 95%, in Hardy-Weinberg equilibrium $(P > 10^{-6})$, MAF > 1% and not in a region of high LD. Variants were pruned using an r² threshold of 0.13. In instances of duplicates, first or second-degree relatives the sample with the lowest genotyping call rate was removed (apart from instances where it appeared genetic sample mix-up had occurred in which case both individuals were removed).
- 6. Ancestry: Ancestry outliers for the IPF cases passing previous quality control measures were inferred from the genetic data through principal components analysis. Principal components were calculated using PLINK v1.9 on autosomal variants with MAF > 1%, in Hardy-Weinberg equilibrium, were variants included in HapMap, had genotyping call rate > 95% and were not in regions of high LD. Variants were pruned using an r² threshold of 0.22 (the lowest r² value that left more than 100,000 variants). Principal components were calculated alongside HapMap samples. Individuals who had either the first or second principal component greater than two standard deviations away from the mean were deemed to be ancestry outliers and removed from further analyses.

7. **Relatedness with the discovery:** Individuals who were first or second-degree relatives with an individual in the discovery analysis were also excluded. Relatedness was estimated using KING.

Of the 50 individuals genotyped on the Spanish custom array, 39 unrelated European IPF cases passed quality control.

Selection and quality control of controls for UUS study

Controls were selected from UK Biobank such that they were European (defined by k-means clustering of first two principal components), not a possible ILD case, were related to another UK Biobank individual, or were a control in the UK study.

ILD cases in UK Biobank were identified using the self-reported questionnaire (field 20002 - Noncancer illness code, self-reported) and from HES data (i.e. any hospital episode recorded with ICD10 codes J84, J841, J848, J849 or ICD9 codes 516, 5160, 5161, 5162, 5163, 51630, 51631, 51632, 51633, 51634, 51635, 51636, 51637, 5164, 5165, 5166, 51661, 51662, 51663, 51664, 51669, 5168, 5169).

Of the 300,909 individuals passing the above selection criteria, 10,000 were selected as controls such that they followed a similar sex and smoking distribution to that seen in the IPF cases.

Imputation of all studies

Each study was imputed separately to the Haplotype Reference Consortium reference panel using the Michigan Imputation Server. Only variants in Hardy-Weinberg equilibrium ($P > 10^{-6}$), had call rate > 95% and had MAF > 1% were considered.

When more than one genotyping array was used in a study (i.e. the UK study and replication study) only variants that appeared on all arrays used in that study were included in the imputation. For the replication study, the concordance between the imputed genotypes and the directly measured

genotypes not included in the imputation (i.e. due to not being on all the arrays used) was found to be high (concordance = 99.6%).

Duplicated individuals between studies

It is possible for individuals to be recruited to multiple studies. To ensure the studies included in this analysis were completely independent, individuals who had been recruited to multiple studies were identified from the genetic data and removed. This was conducted using PLINK v1.9 and verified using KING.

Variants were included in the PLINK IBD (identical by descent) analysis if they were on an autosome, had call rate > 95%, MAF > 1%, in Hardy-Weinberg equilibrium ($P > 10^{-6}$) and not in a region of high LD. Variants were pruned using an r² threshold of 0.3 leaving 120,864 variants to be included in the IBD analysis (as a sensitivity analysis an r² threshold of 0.1 was used and the same results were observed). Pairs of genetic samples with PI_HAT > 0.8 were considered as duplicates.

The duplicate analysis was repeated using KING on autosomal variants with call rate > 95%, MAF > 1%, in Hardy-Weinberg equilibrium ($P > 10^{-6}$) and not in an area of high linkage disequilibrium. Duplicates were identified as those with kingship > 0.354. The KING analysis gave the same results as seen in the analysis performed using PLINK.

Association analysis

Discovery genome-wide meta-analysis

A GWAS of IPF susceptibility was run in each of the Chicago, Colorado and UK studies separately. Analyses were performed using a logistic regression model, assuming an additive genetic effect and adjusting for the first 10 principal components. Results were corrected for inflation due to residual fine-scale population structure using genomic control at both the study and meta-analysis level. Genomic control was applied for each study in the discovery meta-analysis ($\lambda = 1.027$ in UK, $\lambda = 1.065$ in Colorado and $\lambda = 1.030$ in Chicago).

These results were combined using a fixed-effect, inverse-variance weighted meta-analysis. Genomic control was also applied to the meta-analysis of all three studies ($\lambda = 1.016$).

Conditional analyses

To identify additional independent signals within each locus in the discovery meta-analysis, conditional analyses were performed by repeating the association analyses for all variants within 1Mb of the sentinel variant, adjusting for the sentinel variant in each study separately and then meta-analysing the results. Variants reaching genome-wide significance after conditioning on the top variant were deemed as independent signals and analyses were repeated until no more independent signals in the region were identified.

Replication analysis

Novel association signals were further tested in the UUS and Genentech studies using a logistic regression model, assuming an additive genetic effect and adjusting for the first 10 principal components. The results were meta-analysed across the UUS and Genentech studies using a fixed-effect, inverse-variance weighted meta-analysis.

Bayesian fine-mapping

Credible sets were calculated for each novel signal to produce a set of variants likely to contain the causal variant at 95% confidence (under the assumption there is a single causal variant and that variant had been measured). Posterior probabilities of the variant being causal were calculated for all variants within 1Mb of the sentinel variant and in at least weak LD with the sentinel variant

 $(r^2 > 0.1)$ in the discovery meta-analysis. Posterior probabilities were calculated from approximate Bayes factors (ABFs) using the formula proposed by Wakefield⁶:

$$ABF = \frac{1}{\sqrt{1 - \frac{W}{V + W}}} exp\left(-\frac{Z^2 \ W}{2 \ V + W}\right)$$

where W is the Wakefield prior (which we set to 0.4 which is equivalent to a 95% belief that departure from the null model for the relative risk is less than 1.5), Z is the Z statistic for the variant and V is the variance of the effect size.

The approximate posterior probability was set to equal the ABF for that variant divided by the sum of ABFs for all variants in the signal. Variants were added to the credible set until the sum of the posterior probabilities was greater than or equal to 0.95.

Identification of genes implicated by the association signals

VEP

All variants in each credible set were annotated using VEP¹³. Variants were defined as deleterious if they were recorded as either "deleterious" in SIFT, "probably damaging" in PolyPhen, "likely deleterious" from the CADD score, "likely disease causing" in REVEL, "damaging" in MetaLR or "high" in MutationAssessor.

Association of IPF susceptibility variants with gene expression

Linked genotype and gene expression data resources were interrogated to identify the genes implicated by the novel association signals. Variants in the 95% credible sets were investigated in three eQTL databases; a lung eQTL database consisting of individuals from three cohorts (Universities of British Columbia, Laval and Groningen, n=1,111)⁷⁻⁹, the NESDA-NTR (Netherlands Study of Depression and Anxiety and the Netherlands Twin Register) blood eQTL database (n=4,896)¹⁰ and 48 tissue types in GTEx (Genotype-Tissue Expression project, n between 80 and 491)¹¹. An FDR threshold of 10% was used for the lung eQTL database and NESDA-NTR, and an FDR threshold of 5% was used for the smaller GTEx resource.

Identification of shared causal variants for IPF susceptibility and gene expression changes (colocalisation)

Where IPF susceptibility variants were found to be associated with expression levels of a gene, we tested whether the same variant was likely to be causal both for differences in gene expression and IPF susceptibility. Analyses were performed using the coloc¹² package in R v3.5.1 on all variants in the region with P < 0.01 in either the IPF GWAS analysis or eQTL analysis.

The coloc package implements the colocalisation approach described by Giambartolomei et al¹². In summary, it uses approximate Bayes factors to estimate the probability of each of the following models:

- H_o : There is no association in the region with either IPF risk or the eQTL result
- H₁: There is an association in the region with IPF but not with the expression of the gene
- H₂: There is an association in the region with the expression of the gene but not with IPF
- H₃: There is an association in the region with both IPF and the expression of the gene but these are driven by two different variants
- H₄: There is an association in the region with both IPF and the expression of the gene which is driven by the same variant.

We took colocalisation to be when the probability of H_4 (i.e. the same variant drives IPF risk and the expression of the gene) was greater than 80%.

In silico analyses of functional effects

DeepSEA

DeepSEA¹⁵ (deep learning-based sequence analyzer) is a deep learning method to predict the functional chromatin effects of individual variants. The variant with the highest posterior probability in each of the credible sets for the 14 IPF risk signals identified by the discovery meta-analysis was included in the DeepSEA analysis.

We reported functional effects for any chromatin feature and lung-related cell line that had an Evalue < 0.05 (i.e. the expected proportion of SNPs with larger predicted effect for this chromatin feature based on empirical distributions of predicted effects for 1000 Genomes SNPs) and an absolute difference in probability of > 0.1 (threshold for "high confidence") between the reference and alternative allele.

FORGE

FORGE¹⁶ (Functional element overlap analysis of the results of GWAS experiments) is a tool for identifying whether signals in a GWAS are enriched in DNase I hypersensitivity sites in specific tissues. The variant with the highest posterior probability in each of the credible sets for the 14 IPF risk signals identified by the discovery meta-analysis was included in the FORGE analysis. Enrichment was tested in 299 cell lines across 24 tissues including lung and foetal lung.

GARFIELD

GARFIELD¹⁷ (GWAS analysis of regulatory and functional information enrichment with LD correction) is an analysis tool to test if GWAS signals are enriched in functional features. Variants meeting a *P* threshold in the IPF discovery genome-wide analysis were tested for enrichment (*P* thresholds of 5×10^{-8} and 5×10^{-5} were used). Enrichment was tested in DNase I hypersensitivity sites in 424 tissues.

SNPsea

SNPsea¹⁸ is a method to identify if gene expression is altered by a set of variants in different cell types or pathways. For this analysis, the variants with the highest posterior probability in each of the credible sets for the 14 IPF risk loci were entered. Genes are implicated using an LD matrix and the expression of these genes are investigated. A score based on the expression of these genes is calculated and compared to a score generated when selecting a random set of variants as the input.

The IPF risk loci were tested for enrichment in genes that showed differential expression between IPF cases and controls in lung epithelium. Expression of genes in four epithelial cell types (normal AT2 cells, indeterminate cells, basal and club/goblet cells) was calculated from lung tissue from six IPF cases and three healthy controls using single cell RNA sequencing data from Xu et al¹⁹. Gene expression was deemed to be enriched in tissues or pathways if they met a Bonferroni corrected *P* threshold.

Shared genetic susceptibility of IPF, lung function and interstitial lung abnormalities (ILA)

The variant with the highest posterior probability of causality in the credible set for each IPF risk signal were tested for their association with interstitial lung abnormalities (ILA) and lung function.

A genome-wide association analysis of ILAs was conducted by meta-analysis of results from the AGES, COPDGene NHW, ECLIPSE, Framingham, MESA white and SPIROMICS studies. Two analyses were performed; firstly defining cases as any individual with any ILA (n = 1,699) and controls as any individual without an ILA (n = 10,247), and secondly defining cases as those with a subpleural subtype of ILA (n = 1,287) and controls as individuals without any ILA (n = 10,247).

Association with lung function was assessed using data from a genome-wide association study metaanalysis of lung function for 400,102 individuals of European ancestry in UK Biobank and the SpiroMeta consortium²⁰. The measures of lung function analysed were FEV₁ (a measure of how much air an individual can forcibly exhale in the first second), FVC (forced vital capacity, i.e. the total volume of air forcibly exhaled), the ratio of FEV₁/FVC (a measure used in the diagnosis of chronic obstructive pulmonary disease) and PEF (peak expiratory flow, i.e. the highest airflow), which were all measured through spirometry.

Variants were reported as associated with lung function or ILA if they met a Bonferroni corrected *P* value threshold for the number of variants and traits investigated.

Polygenic risk scores

Polygenic risk scores were utilised to assess the contribution of as-yet unreported variants to IPF risk. Polygenic risk scores allow for the cumulative effect of many genetic variants to be studied. The polygenic risk score was equal to the number of risk alleles carried multiplied by the effect size of the variant, summed across all variants included in the score, i.e.:

Polygenic Risk Score_j =
$$\sum_{i=1}^{n} \beta_i X_{ij}$$

where β_i is the log(OR) of variant *i* from the genome-wide meta-analysis of the UK, Chicago and Colorado studies, X_{ij} is the genotype of variant *i* for person *j* and *n* is the number of variants.

Scores were generated for individuals in the independent UUS study using independent variants selected after LD-clumping ($r^2 \le 0.1$). This score was tested to identify whether it was associated with IPF susceptibility, adjusting for 10 principal components to account for fine-scale population structure, using PRSice v1.25²¹. As we wanted to explore the contribution to IPF risk from variants not yet reported, we excluded variants within 1Mb of each IPF risk locus identified in this IPF susceptibility GWAS. We altered the number of variants included in the risk score calculation by setting a *P*-threshold (P_T) criteria such that the variant had to have a *P* value< P_T in the genome-wide

meta-analysis to be included in the score. Given multiple testing, we used the recommended

significance threshold of P<0.001 for determining significantly associated risk scores²¹.

Supplementary Tables

Table E1 - Study level results from discovery genome-wide analysis for novel genome-wide significant and previously reported IPF susceptibility variants

Odds ratios are presented treating the minor allele as the effect allele. Minor allele frequency (MAF) was the allele frequency across the three studies and info is the imputation quality in that study. Results for the sentinel (i.e. most strongly associated) variant from the discovery GWAS in this study are presented except for iii) and iv) where results for the previously reported sentinel variant are shown as there was no association signal observed in the discovery GWAS.

			r ² with					Chicago				Colorado			UK		Discovery meta-analysis	
Chr	Pos	Sentinel rsid	previous reported sentinel	Locus	Major allele	Minor allele	MAF	Info	OR [95% CI]	Р	Info	OR [95% CI]	Р	Info	OR [95% CI]	Р	OR [95% CI]	Р
i) Nov	el signals me	eting significa	nce criteri	а														
3	44902386	rs78238620	-	KIF15	Т	A	5.3%	0.97	1.74 [1.16, 2.60]	0.007	0.98	1.47 [1.23, 1.78]	4.01×10 ⁻⁵	0.99	1.77 [1.35, 2.33]	4.54×10⁻⁵	1.58 [1.37, 1.83]	5.12×10 ⁻¹⁰
7	1909479	rs12699415	-	MAD1L1	G	А	42.0%	0.97	1.43 [1.20, 1.69]	5.31×10 ⁻⁵	0.98	1.23 [1.12, 1.33]	3.67×10 ⁻⁶	0.99	1.30 [1.15, 1.47]	3.51×10 ⁻⁵	1.28 [1.19, 1.37]	7.15×10 ⁻¹³
8	120934126	rs28513081	-	DEPTOR	А	G	42.8%	0.99	0.78 [0.66, 0.93]	0.005	0.99	0.84 [0.77, 0.91]	4.69×10 ⁻⁵	0.99	0.79 [0.70, 0.89]	1.94×10 ⁻⁴	0.82 [0.76, 0.87]	1.20×10 ⁻⁹
10	93271016	rs537322302	-	HECTD2	С	G	0.3%	-	-	-	0.55	7.52 [2.46, 23.0]	3.98×10 ⁻⁴	0.90	8.04 [3.10, 20.8]	1.79×10 ⁻⁵	7.82 [3.77, 16.2]	3.43×10 ⁻⁸
20	62324391	rs41308092	-	RTEL1	G	A	2.1%	0.57	2.06 [1.03, 4.12]	0.040	0.79	2.10 [1.54, 2.86]	2.61×10 ⁻⁶	0.94	2.18 [1.41, 3.37]	4.86×10 ⁻⁴	2.12 [1.67, 2.69]	7.65×10 ⁻¹⁰
ii) Pre discov	viously repo very analysis	rted signals th	at reached	l genome-v	wide sig	nificanc	e in											
3	169481271	rs12696304	0.97	LRRC34 /TERC	С	G	27.9%	0.99	1.38 [1.15, 1.66]	5.57×10 ⁻⁴	0.98	1.33 [1.21, 1.46]	5.52×10 ⁻⁹	1.00	1.22 [1.06, 1.41]	0.005	1.31 [1.21, 1.40]	7.09×10 ⁻¹³
4	89885086	rs2013701	0.28	FAM13A	G	Т	48.7%	1.00	0.94 [0.79, 1.12]	0.496	1.00	0.78 [0.72, 0.85]	9.16×10 ⁻⁹	1.00	0.72 [0.63, 0.81]	2.27×10 ⁻⁷	0.78 [0.74, 0.84]	3.30×10 ⁻¹³
5	1282414	rs7725218 ª	0.55	TERT	G	А	32.5%	0.52	0.83 [0.69, 1.00]	0.051	0.90	0.68 [0.62, 0.74]	4.88×10 ⁻¹⁷	1.00	0.76 [0.66, 0.86]	2.68×10 ⁻⁵	0.72 [0.67, 0.77]	1.54×10 ⁻²⁰
6	7563232	rs2076295	Same	DSP	т	G	46.9%	0.98	1.19 [1.00, 1.42]	0.044	1.00	1.45 [1.33, 1.58]	9.56×10 ⁻¹⁸	0.99	1.66 [1.47, 1.87]	8.81×10 ⁻¹⁶	1.46 [1.37, 1.56]	2.79×10 ⁻³⁰

7	99630342	rs2897075	0.72	7q22.1	С	т	39.1%	0.98	1.30 [1.09, 1.54]	0.003	0.99	1.34 [1.23, 1.46]	2.14×10 ⁻¹¹	1.00	1.19 [1.05, 1.36]	0.008	1.30 [1.21, 1.38]	3.10×10 ⁻¹⁴
11	1241221	rs35705950	Same	MUC5B	G	Т	14.9%	-	-	-	0.77	4.51 [3.99, 5.09]	1.14×10 ⁻¹²⁸	0.92	5.64 [4.72, 6.73]	3.99×10 ⁻⁸¹	4.84 [4.37, 5.36]	1.18×10 ⁻²⁰³
13	113534984	rs9577395	0.86	ATP11A	С	G	20.7%	0.77	0.75 [0.61, 0.93]	0.008	0.99	0.75 [0.68, 0.84]	9.27×10 ⁻⁸	1.00	0.81 [0.69, 0.95]	0.008	0.77 [0.71, 0.83]	1.34×10 ⁻¹⁰
15	40720542	rs59424629	0.97	IVD	Т	G	46.1%	0.98	0.64 [0.54, 0.76]	5.39×10 ⁻⁷	0.99	0.78 [0.71, 0.85]	3.19×10 ⁻⁹	1.00	0.81 [0.71, 0.92]	9.85×10 ⁻⁴	0.77 [0.71, 0.82]	7.30×10 ⁻¹⁶
15	86097216	rs62023891	0.54	AKAP13	G	А	30.0%	0.97	1.27 [1.06, 1.53]	0.011	0.99	1.25 [1.14, 1.37]	2.98×10 ⁻⁵	0.99	1.30 [1.13, 1.49]	1.86×10 ⁻⁴	1.27 [1.18, 1.36]	1.27×10 ⁻¹⁰
17	44214888	rs2077551	0.90	MAPT	Т	С	18.6%	0.85	0.63 [0.51, 0.79]	4.50×10 ⁻⁵	0.86	0.71 [0.64, 0.79]	3.78×10 ⁻¹⁰	0.96	0.75 [0.65, 0.87]	2.01×10 ⁻⁴	0.71 [0.65, 0.77]	2.83×10 ⁻¹⁶
19	4717672	rs12610495	Same	DPP9	А	G	30.5%	-	-	-	1.00	1.29 [1.17, 1.41]	7.84×10 ⁻⁸	0.97	1.37 [1.20, 1.57]	3.91×10 ⁻⁶	1.31 [1.22, 1.42]	2.92×10 ⁻¹²
iii) Pr in the	eviously repo discovery m	orted signals th ieta-analysis	at do not	reach geno	ome-wie	de signif	ficance											
6	31864547	rs7887	-	EHMT2	G	т	33.9%	0.96	0.92 [0.77, 1.11]	0.388	0.99	0.84 [0.77, 0.92]	1.10×10 ⁻⁴	1.00	1.03 [0.91, 1.18]	0.625	0.90 [0.84, 0.96]	0.002
10	105672842	rs11191865	-	OBFC1	G	A	49.1%	1.00	0.98 [0.82, 1.16]	0.809	1.00	1.27 [1.16, 1.38]	5.08×10 ⁻⁸	0.99	1.05 [0.93, 1.19]	0.455	1.16 [1.09, 1.24]	8.91×10 ⁻⁶
14	48040375	rs7144383	-	MDGA2	А	G	11.2%	0.98	1.81 [1.37, 2.38]	2.94×10 ⁻⁵	0.88	1.03 [0.90, 1.18]	0.671	0.98	0.95 [0.78, 1.15]	0.568	1.09 [0.98, 1.21]	0.119
iv) Pro rs357	eviously repo 05950 ^b	orted signals in	the 11p1	5.5 region a	after co	nditioni	ing on											
11	1093945	rs7934606	-	MUC2	С	Т	44.9%	-	-	-	1.00	0.93 [0.85, 1.02]	0.109	0.94	1.00 [0.87, 1.16]	0.956	0.95 [0.88, 1.03]	0.189
11	1312706	rs111521887	-	TOLLIP	С	G	19.8%	-	-	-	0.99	1.00 [0.89, 1.12]	0.972	0.99	1.00 [0.85, 1.19]	0.965	1.00 [0.91, 1.10]	0.996
11	1325829	rs5743890	-	TOLLIP	Т	с	13.8%	-	-	-	0.93	0.84 [0.74, 0.95]	0.006	0.95	0.88 [0.72, 1.07]	0.193	0.85 [0.76, 0.95]	0.002

^a This variant was the most significant variant for this signal in the discovery meta-analysis. Although this variant did not quite reach nominal significance (p<0.05) in the Chicago study other variants in the signal did reach nominal in each study, had consistent direction of effects in each study and were genome-wide significant in the discovery meta-analysis ^b The *MUC5B* promoter polymorphism rs35705950 was not imputed in the Chicago study so it was not possible to perform the conditional analysis

Table E2 - Summary of eQTL analysis for novel IPF susceptibility signals

The table below contains all of the genes for which at least one of the variants in the credible set was recorded as an eQTL variant and the tissue this was recorded in. This table also includes the colocalisation probability and IPF risk signals that colocalise with the expression of a gene (taken to be probability > 80%) are shown in green.

Chromosome	GWAS sentinel (risk allele)	eQTL gene	Source	eQTL Tissue (and probe if multiple probes used)	Risk allele effect on gene expression	eQTL sentinel	Colocalisation probability	
		KIF15	GTEx	Brain - Putamen	Decrease	rs149000267	95.6%	
2	70220620	TMEM42	GTEx	Thyroid	Decrease	rs80059929	93.1%	
3	rs78238620_A	KIAA1143	GTEx	Adipose - Subcutaneous	Decrease	rs6792299	0.0%	
				Whole blood (11724206_a_at)	Increase	rs35578480	0.1%	
			NESDA-NTR ^a	Whole blood (11724207_x_at)	Increase	Increase rs35578480		
		MAD1L1		Whole blood (11737802_a_at)	Increase	ase rs35578480 ease rs57193072 S ase rs7803147 3 ease rs34418140		
			GTEx	Heart - Atrial Appendage	Decrease	rs57193072	95.3%	
				Nerve - Tibial	Increase	rs7803147	36.3%	
				Adipose - Visceral	Decrease	rs34418140	0.0%	
7	rs12699415_A			Artery - Aorta	Decrease	rs73673559	0.1%	
		ETS 12		Artery - Tibial	Decrease	rs57431109	0.0%	
			CTEV	Brain - Cerebellum	Decrease	rs34418140	0.0%	
		FTSJ2	GTEX	Esophagus - Muscularis	sophagus - Decrease rs7810970 Auscularis		0.0%	
				Muscle - Skeletal	Decrease	rs4719462	0.0%	
				Testis	Decrease	rs7810970	0.0%	
				Brain - Frontal Cortex	Increase	rs6952808	64.8%	
		AC110781.3	GTEx	Brain - Nucleus accumbens	Increase	rs4236272	51.9%	
				Testis	Increase	rs10237989	60.5%	
			NESDA-NTR ^a	Whole Blood (11751331_a_at)	Increase	rs55892034	93.7%	
				Lung (100154484_TGI_at)	Decrease	rs1519812	89.5%	
				Lung (100312124_TGI_at)	Decrease	rs1519812	89.9%	
				Brain - Spinal Cord	Decrease	rs72673678	55.2%	
				Colon - Sigmoid	Decrease	rs10217077	89.6%	
8	rs28513081_A	DEPTOR		Colon - Transverse	Decrease	rs7005380	58.1%	
				Esophagus -				
				Gastroesophageal	Decrease	rs56177421	0.9%	
			GTEx	Junction				
				Esophagus - Mucosa	Decrease	rs56177421	41.6%	
					Esophagus - Muscularis	Decrease	rs56177421	0.9%
				Lung	Decrease	rs10217077	89.2%	
				Muscle - Skeletal	Decrease	rs7818296	8.7%	

			Skin - Not Sun Exposed	Decrease	rs7814520	90.0%
			Skin - Sun Exposed	Decrease	rs1467044	86.5%
			Lung (100129753_TGI_at)	Increase	rs7815122	0.0%
		Lung eQTL	Lung (100132546_TGI_at)	Increase	rs7815122	0.0%
	DSCC1		Lung (100301732_TGI_at)	Increase	rs55741337	0.0%
			Artery - Tibial	Increase	rs113408398	0.0%
		GTEx	Muscle - Skeletal	Increase	rs77647593	0.0%
			Skin - Sun Exposed	Increase	rs28700049	0.0%
			Adipose - Subcutaneous	Increase	rs10217077	84.9%
			Brain - Spinal cord	Decrease	rs7825920	46.8%
			Colon - Sigmoid	Decrease	rs6469868	88.6%
	RP11-760H22.2	GTEx	Esophagus - Gastroesophageal Junction	Decrease	rs56177421	1.0%
			Esophagus - Muscularis	Decrease	rs12541326	0.9%
			Lung	Decrease	rs796666096	90.0%
			Adipose - Subcutaneous	Increase	rs1467044	85.6%
			Adipose - Visceral	Increase	rs7818471	90.9%
	KB-1471A8.1	GTEx	Muscle - Skeletal	Increase	rs7840728	0.1%
			Nerve - Tibial	Increase	rs4870988	3.2%
			Skin - Sun Exposed	Increase	rs13263296	88.7%
			Thyroid	Increase	rs73703111	0.1%
	TAF2	GTEx	Colon - Transverse	Increase	rs112349158	87.5%
rs41308092_A	LIME1	GTEx	Muscle - Skeletal	Increase	rs4809330	20.5%
	rs41308092_A	Image: marked base of the second se	Image: space	KB-1471A8.1GTExSkin - Not Sun ExposedKB-1471A8.1GTExSkin - Sun Exposed Lung (100129753_TG]_at)KB-1471A8.1GTExSkin - Sun Exposed Lung (100132546_TG]_at)KB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExAdipose - SubcutaneousKB-1471A8.1GTExMuscle - Skeletal Nerve - TibialKB-1471A8.1GTExMuscle - Skeletal Nerve - TibialKB-1471A8.1GTExMuscle - Skeletal Nerve - TibialKB-1471A8.1GTExMuscle - Skeletal Nerve - TibialKB-1471A8.1GTExKuscle - SkeletalKB-1471A8.1KB-1471A8.1Kalpose - SubcutaneousKB-1471A8.1GTExKuscle - Skeletal	Skin - Not Sun ExposedDecreaseSkin - Sun ExposedDecreaseSkin - Sun ExposedDecreaseLung (100129753_TGL_at)IncreaseDSCC1Lung eQTLLung (100132246_TGL_at)DSCC1Lung eQTLLung (100132246_TGL_at)DSCC1EncreaseIncreaseGTEXArtery - TibialIncreaseMuscle - SkeletalIncreaseIncreaseSkin - Sun ExposedIncreaseSkin - Sun ExposedDecreaseColon - SigmoidDecreaseDecreaseSubcutaneousDecreaseJunctionEsophagus - MuscularisDecreaseLungDecreaseLungDecreaseSubcutaneousIncreaseKB-1471A8.1GTExMuscle - SkeletalIncreaseNerve - TibialIncreaseSkin - Sun ExposedIncreaseSkin - Sun ExposedIncreaseNerve - TibialIncreaseTAF2GTExColon - TransverseTAF2GTExColon - TransverseTateoIncreaseTateoGTExMuscle - SkeletalIncreaseIncreaseSkin - Sun ExposedIncreaseSkin - Sun ExposedIncrease	km km<

^a Only results for significantly associated variants in the NESDA-NTR dataset were available, therefore the colocalisation analysis was run only including variants significantly associated with gene expression in blood rather than all variants in the region.

^b The lung eQTL dataset showed two independent signals of association for *DEPTOR* expression. The eQTL results here are those obtained after conditioning on the top eQTL for *DEPTOR* to condition out the strongest signal which was driven by different variants to those driving the IPF risk association.

Table E3 - Annotation and eQTL results for variants in 95% credible sets of novel IPF susceptibility signals

i) Chromosome 3

rcid	chr	Position	GWASD	Posterior	Annotation	R ² with		eQTL		
TSIG		POSICION	GWAJ P	Probability	Annotation	sentinel	Lung eQTL	GTEx (lung)	GTEx (non-lung tissue)	NESDA-NTR
rs78238620	3	44902386	5.12×10 ⁻¹⁰	14.71%	intron (<i>KIF15</i>)	Sentinel	-	-	KIF15, TMEM42, KIAA1143	-
rs2292180	3	44903349	5.42×10 ⁻¹⁰	14.01%	intron (<i>KIF15</i>)	1.00	-	-	KIF15, TMEM42, KIAA1143	-
rs2292181	3	44903434	5.42×10 ⁻¹⁰	14.01%	synonymous (TMEM42), intron (KIF15), non- coding exon (MIR564)	1.00	-	-	KIF15, TMEM42, KIAA1143	-
rs74341405	3	44845649	7.74×10 ⁻¹⁰	8.90%	intron (<i>KIF15</i>)	0.89	-	-	KIF15, TMEM42	-
rs80059929	3	44846722	7.74×10 ⁻¹⁰	8.90%	intron (<i>KIF15</i>)	0.89	-	-	KIF15, TMEM42	-
rs76304484	3	44877209	2.20×10 ⁻⁹	4.24%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs6792918	3	44857004	2.83×10 ⁻⁹	3.43%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs77568017	3	44877853	3.57×10 ⁻⁹	2.79%	intron (<i>KIF15</i>)	0.99		-	KIF15, TMEM42, KIAA1143	-
rs76526953	3	44881909	3.57×10 ⁻⁹	2.79%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs141979279	3	44858131	4.01×10 ⁻⁹	2.52%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs55661644	3	44869509	4.01×10 ⁻⁹	2.52%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs7340559	3	44871986	4.01×10 ⁻⁹	2.52%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs77136835	3	44874693	4.01×10 ⁻⁹	2.52%	intron (<i>KIF15</i>)	0.99	-	-	KIF15, TMEM42, KIAA1143	-
rs112645395	3	44794881	3.97×10 ^{−9}	1.92%	missense (KIAA1143) [SIFT: Deleterious PolyPhen: Possibly damaging CADD: Likely benign REVEL: Likely benign MetaLR: Tolerated MutationAssessor: Medium]	0.79	-	-	TMEM42	-
rs149000267	3	44836326	3.09×10 ⁻⁹	1.56%	intron (<i>KIF15</i>)	0.64	-	-	KIF15, TMEM42	-
rs77938604	3	44836543	7.81×10 ⁻⁹	1.28%	intron (<i>KIF15</i>)	0.90	-	-	KIF15, KIAA1143	-
rs4682996	3	44819436	1.05×10 ⁻⁸	0.99%	intron (<i>KIF15</i>)	0.89	-	-	KIAA1143, TMEM42	-
rs4682992	3	44786946	1.22×10 ⁻⁸	0.88%	intron (KIAA1143)	0.89	-	-	KIAA1143, TMEM42	-
rs112842175	3	44788306	1.22×10 ⁻⁸	0.88%	intron (<i>KIAA1143</i>)	0.89	-	-	KIAA1143, TMEM42	-

rs4682993	3	44795238	1.22×10 ⁻⁸	0.88%	intron (<i>KIAA1143</i>)	0.89	-	-	KIAA1143, TMEM42	-
rs77805183	3	44797277	1.22×10 ⁻⁸	0.88%	intron (<i>KIAA1143</i>)	0.89	-	-	KIAA1143, TMEM42	-
rs111788055	3	44833973	1.36×10 ⁻⁸	0.81%	intron (<i>KIF15</i>)	0.90	-	-	KIF15, KIAA1143	-
rs79850585	3	44756245	1.38×10 ⁻⁸	0.80%	intron (<i>ZNF502</i>)	0.88	-	-	KIAA1143, TMEM42	-
rs4682994	3	44803130	1.58×10 ⁻⁸	0.71%	intron (<i>KIF15</i>)	0.89	-	-	KIF15, TMEM42, KIAA1143	-

ii) Chromosome 7

rcid	Chr	Docition	GWAS D	Posterior	Annotation	R ² with		eQTL		
1310		FUSICION	GWASF	Probability	Amotation	Sentinel	Lung eQTL	GTEx (lung)	GTEx (non-lung tissue)	NESDA-NTR
rs12699415	7	1909479	7.15×10 ⁻¹³	35.67%	intron (<i>MAD1L1</i>)	Sentinel	-	-	MAD1L1	-
rs7795126	7	2076626	8.47×10 ⁻¹²	3.38%	intron (MAD1L1)	0.71	-	-	MAD1L1	-
rs10950503	7	2039594	1.10×10 ⁻¹¹	2.64%	intron (<i>MAD1L1</i>)	0.80	-	-	MAD1L1	-
rs4455739	7	1864356	1.12×10 ⁻¹¹	2.61%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs34373690	7	1869473	1.27×10 ⁻¹¹	2.31%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs34074471	7	1865249	1.27×10 ⁻¹¹	2.30%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs35091011	7	1865174	1.33×10 ⁻¹¹	2.21%	intron (<i>MAD1L1</i>)	0.68		-	AC110781.3	-
rs35406566	7	1865527	1.33×10 ⁻¹¹	2.21%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs6974455	7	1865921	1.35×10 ⁻¹¹	2.17%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs61164094	7	1874264	1.37×10 ⁻¹¹	2.14%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs4255035	7	1864444	1.41×10 ⁻¹¹	2.09%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs4379359	7	1864415	1.52×10 ⁻¹¹	1.94%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs7806394	7	1864129	1.53×10 ⁻¹¹	1.93%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs4631355	7	1864245	1.53×10 ⁻¹¹	1.93%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs3857706	7	2034193	1.53×10 ⁻¹¹	1.93%	intron (MAD1L1)	0.81	-	-	MAD1L1	-
rs13225346	7	1866916	1.59×10 ⁻¹¹	1.86%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs57193069	7	1862417	1.74×10 ⁻¹¹	1.71%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs872464	7	2034562	1.93×10 ⁻¹¹	1.54%	intron (MAD1L1)	0.81	-	-	MAD1L1	-
rs6955652	7	1865583	1.98×10 ⁻¹¹	1.51%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs7799807	7	1868092	2.01×10 ⁻¹¹	1.48%	intron (MAD1L1)	0.37	-	-	AC110781.3, FTSJ2	-
rs35641411	7	1870242	2.03×10 ⁻¹¹	1.48%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs1403174	7	2032865	2.03×10 ⁻¹¹	1.47%	intron (MAD1L1)	0.82	-	-	MAD1L1	-
rs28661143	7	1866395	2.24×10 ⁻¹¹	1.34%	intron (MAD1L1)	0.68	-	-	AC110781.3	-
rs12537430	7	1868761	3.25×10 ⁻¹¹	0.93%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-
rs12537479	7	1868995	3.48×10 ⁻¹¹	0.88%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-
rs35935754	7	1869242	3.60×10 ⁻¹¹	0.85%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-

rs7799782	7	1868039	4.05×10 ⁻¹¹	0.76%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-
rs6959688	7	1966831	4.33×10 ⁻¹¹	0.72%	intron (MAD1L1)	0.86	-	-	MAD1L1	-
rs56053419	7	1863463	5.32×10 ⁻¹¹	0.59%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-
rs55948146	7	1866953	8.08×10 ⁻¹¹	0.39%	intron (MAD1L1)	0.36	-	-	AC110781.3, FTSJ2	-
rs12672286	7	1907009	8.29×10 ⁻¹¹	0.38%	intron (MAD1L1)	0.38	-	-	AC110781.3, FTSJ2	-
rs6978112	7	1966841	9.52×10 ⁻¹¹	0.34%	intron (MAD1L1)	0.84	-	-	MAD1L1	-
rs4721090	7	1873084	1.03×10 ⁻¹⁰	0.31%	intron (MAD1L1)	0.32	-	-	AC110781.3, FTSJ2	-
rs11761670	7	1904709	1.12×10 ⁻¹⁰	0.29%	intron (MAD1L1)	0.37	-	-	AC110781.3, FTSJ2	-
rs13224015	7	1913869	1.11×10 ⁻¹⁰	0.29%	intron (MAD1L1)	0.84	-	-	MAD1L1	MAD1L1
rs4721143	7	1918179	1.14×10 ⁻¹⁰	0.28%	intron (MAD1L1)	0.84	-	-	MAD1L1	MAD1L1
rs34120092	7	1861952	1.25×10 ⁻¹⁰	0.26%	intron (MAD1L1)	0.35	-	-	AC110781.3, FTSJ2	-
rs7786367	7	1863828	1.27×10 ⁻¹⁰	0.26%	intron (MAD1L1)	0.71	-	-	AC110781.3	-
rs13235380	7	1873894	1.27×10 ⁻¹⁰	0.26%	intron (MAD1L1)	0.32	-	-	AC110781.3, FTSJ2	-
rs9770241	7	1863164	1.37×10 ⁻¹⁰	0.24%	intron (MAD1L1)	0.37	-	-	AC110781.3, FTSJ2	-
rs10807751	7	1883476	1.39×10 ⁻¹⁰	0.24%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.70	-	-	AC110781.3	-
rs13221208	7	1913856	1.35×10 ⁻¹⁰	0.24%	intron (MAD1L1)	0.84	-	-	MAD1L1	MAD1L1
rs34256344	7	1861460	1.44×10 ⁻¹⁰	0.23%	intron (MAD1L1)	0.72	-	-	AC110781.3	-
rs10237989	7	1873343	1.42×10 ⁻¹⁰	0.23%	intron (MAD1L1)	0.32	-	-	AC110781.3, FTSJ2	-
rs13222183	7	1873879	1.44×10 ⁻¹⁰	0.23%	intron (MAD1L1)	0.32	-	-	AC110781.3, FTSJ2	-
rs6460944	7	1876199	1.45×10 ⁻¹⁰	0.23%	intron (MAD1L1)	0.58	-	-	AC110781.3	MAD1L1
rs12537387	7	1868582	1.64×10 ⁻¹⁰	0.20%	intron (MAD1L1)	0.57	-	-	-	MAD1L1
rs4719319	7	1888094	1.68×10 ⁻¹⁰	0.20%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs4719330	7	1914613	1.65×10 ⁻¹⁰	0.20%	intron (MAD1L1)	0.85	-	-	MAD1L1	MAD1L1
rs4721139	7	1917337	1.64×10 ⁻¹⁰	0.20%	intron (MAD1L1)	0.84	-	-	MAD1L1	MAD1L1
rs6949794	7	1908727	1.83×10 ⁻¹⁰	0.18%	intron (MAD1L1)	0.39	-	-	MAD1L1, AC110781.3, FTSJ2	-
rs10950400	7	1882470	1.99×10 ⁻¹⁰	0.17%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-
rs4639400	7	1917806	1.93×10 ⁻¹⁰	0.17%	intron (MAD1L1)	0.84	-	-	MAD1L1	MAD1L1

rs7783715	7	1923385	2.00×10 ⁻¹⁰	0.17%	intron (MAD1L1)	0.85	-	-	-	MAD1L1
rs6977733	7	1886725	2.05×10 ⁻¹⁰	0.16%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-
rs6954521	7	1886865	2.13×10 ⁻¹⁰	0.16%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-
rs6978048	7	1886872	2.13×10 ⁻¹⁰	0.16%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-
rs6954673	7	1886937	2.05×10 ⁻¹⁰	0.16%	intron (<i>MAD1L1</i>), missense (<i>AC110781</i> .3) [PolyPhen: Benign CADD: Likely benign]	0.33	-	-	AC110781.3, FTSJ2	-
rs4610628	7	1903100	2.08×10 ⁻¹⁰	0.16%	intron (<i>MAD1L1</i>)	0.36	-	-	AC110781.3, FTSJ2	-
rs10950411	7	1909153	2.13×10 ⁻¹⁰	0.16%	intron (MAD1L1)	0.85	-	-	MAD1L1	MAD1L1
rs4458759	7	1876081	2.23×10 ⁻¹⁰	0.15%	intron (<i>MAD1L1</i>)	0.58	-	-	AC110781.3	MAD1L1
rs6948403	7	1876768	2.28×10 ⁻¹⁰	0.15%	intron (<i>MAD1L1</i>)	0.58	-	-	AC110781.3	MAD1L1
rs6953693	7	1886388	2.25×10 ⁻¹⁰	0.15%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-
rs10950410	7	1909086	2.20×10 ⁻¹⁰	0.15%	intron (MAD1L1)	0.73	-	-	AC110781.3	MAD1L1
rs57216949	7	2030287	2.30×10 ⁻¹⁰	0.15%	intron (MAD1L1)	0.37	-	-	MAD1L1, FTSJ2	-
rs12534763	7	1868711	2.45×10 ⁻¹⁰	0.14%	intron (MAD1L1)	0.58	-	-	-	MAD1L1
rs6965935	7	1876895	2.44×10 ⁻¹⁰	0.14%	intron (MAD1L1)	0.58	-	-	AC110781.3	MAD1L1
rs6957894	7	1887362	2.38×10 ⁻¹⁰	0.14%	intron (<i>MAD1L1</i>), missense (<i>AC110781</i> .3) [PolyPhen: Probably damaging CADD: Likely benign]	0.33	-	-	AC110781.3, FTSJ2	-
rs4719318	7	1887930	2.38×10 ⁻¹⁰	0.14%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs35349665	7	1911166	2.48×10 ⁻¹⁰	0.14%	intron (MAD1L1)	0.84	-	-	-	MAD1L1
rs4721134	7	1912057	2.35×10 ⁻¹⁰	0.14%	intron (MAD1L1)	0.39	-	-	AC110781.3, FTSJ2	-
rs4449693	7	1884630	2.53×10 ⁻¹⁰	0.13%	intron (<i>MAD1L1</i>), intron (<i>AC11078</i> 1.3)	0.33	-	-	AC110781.3, FTSJ2	-
rs6952808	7	1886535	2.66×10 ⁻¹⁰	0.13%	intron (<i>MAD1L1</i>), intron (<i>AC110781</i> .3)	0.33	-	-	AC110781.3, FTSJ2	-

rs10260585	7	1889521	2.54×10 ⁻¹⁰	0.13%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs4256490	7	1890764	2.63×10 ⁻¹⁰	0.13%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs4601204	7	1890925	2.51×10 ⁻¹⁰	0.13%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs6948707	7	1870794	2.89×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.58	-	-	-	MAD1L1
rs3889797	7	1877924	2.91×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.58	-	-	AC110781.3	MAD1L1
rs4721122	7	1893311	2.74×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.33	-	-	AC110781.3, FTSJ2	-
rs12155225	7	1899479	2.91×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.38	-	-	MAD1L1, AC110781.3, FTSJ2	-
rs12538674	7	1925166	2.79×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.85	-	-	MAD1L1	MAD1L1
rs4721287	7	2028663	2.75×10 ⁻¹⁰	0.12%	intron (MAD1L1)	0.37	-	-	MAD1L1, FTSJ2	-
rs56727870	7	2029940	2.98×10 ⁻¹⁰	0.11%	intron (MAD1L1)	0.37	-	-	MAD1L1, FTSJ2	-
rs60995052	7	2030007	3.03×10 ⁻¹⁰	0.11%	intron (MAD1L1)	0.37	-	-	MAD1L1, FTSJ2	-
rs60755037	7	2030104	3.03×10 ⁻¹⁰	0.11%	intron (MAD1L1)	0.37	-	-	MAD1L1, FTSJ2	-
7:2036550	7	2036550	2.97×10 ⁻¹⁰	0.11%	intron (MAD1L1)	0.37	-	-	-	-

iii) Chromosome 8

rcid	Chr	Desition	CWAS D	Posterior	Annotation	R ² with	vitheQTL				
rsiu	Chr	POSILION	GWASP	Probability	Annotation	Sentinel	Lung eQTL	GTEx (lung)	GTEx (non-lung tissue)	NESDA-NTR	
rs28513081	8	120934126	1.20×10 ⁻⁹	4.51%	intron (DEPTOR)	Sentinel	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-	
rs6469878	8	120938448	1.66×10 ⁻⁹	3.33%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs7814294	8	120939436	1.71×10 ⁻⁹	3.23%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs2037346	8	120935452	1.73×10 ⁻⁹	3.19%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs10808505	8	120940206	1.85×10 ⁻⁹	3.00%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs4871787	8	120936418	2.08×10 ⁻⁹	2.68%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs1464276	8	120937041	2.21×10 ⁻⁹	2.53%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs10107579	8	120934569	2.62×10 ⁻⁹	2.16%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs56864850	8	120943444	2.74×10 ⁻⁹	2.07%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs55892034	8	120943507	2.74×10 ⁻⁹	2.07%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs9987332	8	120933963	4.18×10 ⁻⁹	1.39%	intron (DEPTOR)	0.96	DEPTOR, DSCC1	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-	
rs13265546	8	120919975	5.01×10 ⁻⁹	1.17%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs35006524	8	120930769	5.28×10 ⁻⁹	1.11%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-	
rs1607624	8	120929289	5.90×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	
rs7829901	8	120929834	5.90×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-	
rs13267896	8	120920654	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR	

rs13275524	8	120920941	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	-
								RP11-760H22.2	RP11-760H22.2, TAF2	
rs6469867	8	120921412	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR		DEPTOR, DSCCI, KB-14/1A8.1,	DEPTOR
								RP11-760H22.2	RP11-760H22.2, TAF2	
rs6469868	8	120921841	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	DEPTOR
								RP11-760H22.2	RP11-760H22.2, TAF2	
rs6469871	8	120922079	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR,	DEPTOR, DSCC1, KB-14/1A8.1,	-
								RP11-760H22.2	RP11-760H22.2, TAF2	
rs6469872	8	120922247	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	-
					. ,			RP11-760H22.2	RP11-760H22.2, TAF2	
rs7015470	8	120922341	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	-
	•		0.01 10	2.0070		0.00		RP11-760H22.2	RP11-760H22.2, TAF2	
rs6995139	8	120922397	5 91×10 ⁻⁹	1 00%	intron (DEPTOR)	0.93		DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	_
130555155		120522557	5.51/10	1.0070		0.55	DEFTOR	RP11-760H22.2	RP11-760H22.2, TAF2	
rs10217077	Q	120022182	5 01×10-9	1 0.0%	intron (DEPTOP)	0.03		DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	_
1310217077	0	120923183	5.91×10	1.00%		0.93	DEFION	RP11-760H22.2	RP11-760H22.2, TAF2	-
rc10217002	0	120022205	F 01v10-9	1.00%	intron (DEDTOR)	0.02		DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
1510217083	õ	120923285	5.91×10 °	1.00%	Introl (DEPTOR)	0.93	DEPTOR	RP11-760H22.2	RP11-760H22.2, TAF2	DEPTOR
me020242	0	120024270	F 01+10-9	1.00%		0.02	DEDTOD	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
rs939242	ð	120924270	5.91×10 ⁹	1.00%	Intron (DEPTOR)	0.93	DEPTOR	RP11-760H22.2	RP11-760H22.2, TAF2	-
000044			- - - - - - - - - -	1.000/	(0.507.00)	0.00	0.507.00	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
rs939241	8	120924537	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	RP11-760H22.2	RP11-760H22.2, TAF2	-
								DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
rs10216503	8	120925083	5.91×10 ⁻⁹	1.00%	intron (DEPTOR)	0.93	DEPTOR	RP11-760H22.2	RP11-760H22.2, TAF2	-
							DEPTOR.	DEPTOR.	DEPTOR. DSCC1. KB-1471A8.1.	
rs11785871	8	120925199	5.91×10 ⁻⁹	1.00%	intron (<i>DEPTOR</i>)	0.93	DSCC1	RP11-760H22.2	RP11-760H22.2. TAF2	-
								DEPTOR	DEPTOR DSCC1 KB-1471A8 1	
rs7824545	8	120925621	5.91×10 ⁻⁹	1.00%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	RP11-760H22.2	RP11-760H22.2. TAF2	-
								DEPTOR	DEPTOR DSCC1 KB-1471A8 1	
rs7387264	8	120925998	5.91×10 ⁻⁹	1.00%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	RP11-760H22 2	RP11-760H22 2 TAF2	-
									DEPTOR DSCC1 KB-147148 1	
rs7388508	8	120926153	5.91×10 ⁻⁹	1.00%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	RD11_760H22 2	RP11_760H22 2 TAE2	-
rs7462302	8	120917771	6.15×10 ⁻⁹	0.96%	intron (DEPTOR)	0.93	DEPTOR		DEPTOR, DSCC1, NB-1471A0.1,	DEPTOR
rs12545863	8	120918111	6.15×10 ⁻⁹	0.96%	intron (DEPTOR)	0.93	DEPTOR	DEPIOK,	DEFICK, DSCC1, KB-14/1A8.1,	-
								KP11-760H22.2	KP11-760H22.2, TAF2	

rs7002839	8	120918748	6.15×10 ⁻⁹	0.96%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7006905	8	120918923	6.15×10 ⁻⁹	0.96%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs9720591	8	120916840	6.36×10 ⁻⁹	0.93%	intron (<i>DEPTOR</i>)	0.93	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs4073560	8	120917388	6.36×10 ⁻⁹	0.93%	intron (DEPTOR)	0.93	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10110216	8	120887547	7.01×10 ⁻⁹	0.85%	intron (<i>DEPTOR</i>)	0.84	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10110223	8	120887566	7.05×10 ⁻⁹	0.84%	intron (<i>DEPTOR</i>)	0.84	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13257252	8	120912233	7.13×10 ⁻⁹	0.84%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs35272074	8	120910783	7.39×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10103660	8	120910787	7.39×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13281299	8	120909493	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7814496	8	120909628	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7814520	8	120909665	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7832923	8	120909780	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6469861	8	120909913	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6469862	8	120910036	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6469863	8	120910150	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6469864	8	120910225	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6469865	8	120910235	7.40×10 ⁻⁹	0.81%	intron (<i>DEPTOR</i>)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR

rs6987580	8	120910380	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR,	DEPTOR, RP11-	DEPTOR, DSCC1, KB-1471A8.1,	DEPTOR
rcC099011		120010528	7.40×10-9	0.910/	intron (DERTOR)	0.02	DSCCI DEPTOR,	DEPTOR, RP11-	DEPTOR, DSCC1, KB-1471A8.1,	
120399011	ð	120910538	7.40×10 °	0.81%	Introl (DEPTOR)	0.92	DSCC1	760H22.2	RP11-760H22.2, TAF2	DEPTOR
rs6993375	8	120911630	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6993797	8	120911645	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs6989741	8	120912154	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13258592	8	120912429	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10093230	8	120912846	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs9649947	8	120913357	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7465609	8	120913860	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-
rs7465612	8	120913885	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	-
rs13279398	8	120914270	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13277947	8	120914432	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13277992	8	120914527	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13253140	8	120914908	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs11777705	8	120915232	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs12681402	8	120915862	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7461290	8	120916394	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs9721029	8	120916555	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR

rs9721042	8	120916651	7.40×10 ⁻⁹	0.81%	intron (DEPTOR)	0.92	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10098306	8	120908921	7.50×10 ⁻⁹	0.80%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7459671	8	120908886	8.66×10 ⁻⁹	0.70%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7465181	8	120908589	8.72×10 ⁻⁹	0.69%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7462250	8	120908607	9.14×10 ⁻⁹	0.66%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs1467044	8	120887041	9.71×10 ⁻⁹	0.62%	intron (DEPTOR)	0.84	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs7003126	8	120888752	9.71×10 ⁻⁹	0.62%	intron (DEPTOR)	0.84	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs11781657	8	120889242	9.71×10 ⁻⁹	0.62%	intron (DEPTOR)	0.84	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs4871013	8	120907990	9.73×10 ⁻⁹	0.62%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs4871772	8	120907895	1.21×10 ⁻⁸	0.51%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs4871012	8	120907974	1.21×10 ⁻⁸	0.51%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs4871773	8	120907911	1.21×10 ⁻⁸	0.51%	intron (DEPTOR)	0.92	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs13265367	8	120904009	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10107251	8	120904348	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10107361	8	120904427	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10094455	8	120904676	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10094458	8	120904688	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR, DSCC1	DEPTOR, RP11- 760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR
rs10094587	8	120904800	1.74×10 ⁻⁸	0.36%	intron (DEPTOR)	0.90	DEPTOR, DSCC1	DEPTOR, RP11-760H22.2	DEPTOR, DSCC1, KB-1471A8.1, RP11-760H22.2, TAF2	DEPTOR

rs13275184 8 1	120005104	1 74×10-8	0.26%	intron (DEPTOP)	0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,		
1815275164	0	120905104	1.74×10 *	0.30%	IIIIIOII (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	-
***12240122	0	120005010	1 74×10-8	0.26%		0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
1815249122	0	120905919	1.74×10	0.50%	IIIIIOII (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEPTOR
rs13250594 8	120006201	1 74×10-8	0.26%	intron (DEDTOR)	0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,		
1815250594	0	120900591	1.74×10 *	0.30%	IIIIIOII (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEPTOR
rc12250000 8	120007192	1 75×10-8	0.26%	intron (DEDTOP)	0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,		
1812229990	0	120907185	1.75×10 -	0.50%		0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEITON
rc12261204	0	120007420	1 70×10-8			0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	
1815201504	0	120907420	1.79×10 -	0.55%	IIIIIOII (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEPTOR
rc12691622	0	120002956	1 91 10-8	0.25%	intron (DEDTOR)	0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,	050700
r\$12681623 8	120903830	0 1.81×10 °	0.35%	Intron (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEPIOR	
	120007250	1.96×10-8	0.24%		0.00	DEPTOR,	DEPTOR,	DEPTOR, DSCC1, KB-1471A8.1,		
1513200933	ð	120907250	1.80×10 °	0.34%	Introl (DEPTOR)	0.90	DSCC1	RP11-760H22.2	RP11-760H22.2, TAF2	DEPTOR
iv) Chromosome 10

reid	Chr	Desition	GWAS P	Posterior	Annotation	R ² with	eQTL					
rsiu	Chi	POSILION	GWASP	Probability	Annotation	sentinel	Lung eQTL	GTEx (lung)	GTEx (non-lung tissue)	NESDA-NTR		
rs537322302	10	93271016	3.43×10 ⁻⁸	48.25%	intron (HECTD2)	Sentinel	-	-	-	-		
rs547164341	10	93285553	3.41×10 ⁻⁶	42.03%	intergenic	0.77	-	-	-	-		
rs143984698	10	93059485	0.012	5.31%	intergenic	0.20	-	-	-	-		

v) Chromosome 20

unial	ahu	Desition	CIMAS D	Posterior	Annotation	R ² with			eQTL	
rsia	chr	Position	GWASP	Probability	Annotation	sentinel	Lung eQTL	GTEx (lung)	GTEx (non-lung tissue)	NESDA-NTR
rs116905074	20	62377853	8.28×10 ⁻¹⁰	33.16%	intron (ZBTB46)	0.71	-	-	-	-
rs41308092	20	62324391	7.65×10 ⁻¹⁰	28.99%	intron (<i>RTEL1, RTEL1-</i> <i>TNFRSF6B</i>)	Sentinel	-	-	LIME1	-
rs118130858	20	62345681	1.28×10 ⁻⁹	22.25%	intron (<i>ZGPAT, RP4-</i> <i>583P15.15</i>)	0.81	-	-	-	-
rs115610405	20	62325833	2.42×10 ⁻⁹	14.20%	missense (<i>RTEL1</i> , <i>RTEL1</i> - <i>TNFRSF6B</i>) [SIFT: Tolerated PolyPhen: Possibly damaging CADD: Likely benign REVEL: Likely benign MetaLR: Tolerated MutationAssessor: Low]	0.86	-	-	-	-

Table E4 - DeepSEA results for predicted chromatic effects of rs2013701

Predicted chromatin effects from the DeepSEA analysis for the rs2013701 variant in *FAM13A*. Difference is the difference between the probabilities of chromatin effects between the alternative and reference allele. E-value is the expected proportion of SNPs with larger predicted effect (from reference allele to alternative allele) for this chromatin feature computed based on the empirical distributions of predicted effects for 1000 Genomes SNPs. We report predicted functional effects as those with difference > 0.1 and E-value < 0.05.

Chromatin feature	Cell line (treatment)	Fold change	Difference	E-value
DNase	Prostate adenocarcinoma (androgen)	0.840	0.130	7.32×10 ⁻⁴
DNase	Primary tracheal epithelial cells	1.281	0.111	0.003
DNase	Epithelial cell line derived from a mammary ductal carcinoma	0.988	0.116	6.82×10 ⁻⁴
DNase	Epithelial cell line derived from a lung carcinoma tissue	1.086	0.152	0.002
DNase	Mammary epithelial cells	1.534	0.179	0.002
DNase	Prostate adenocarcinoma	0.843	0.134	0.002
DNase	Mammary gland	1.106	0.187	7.89×10 ⁻⁴
DNase	Choroid plexus epithelial cells	1.883	0.112	0.003
DNase	Esophageal epithelial cells	1.662	0.177	0.003
DNase	Iris pigment epithelial cells	1.949	0.146	0.004
DNase	Renal cortical epithelial cells	1.804	0.151	0.002
DNase	Renal epithelial cells	2.011	0.121	0.002
DNase	Villous mesenchymal fibroblast cells	1.660	0.106	0.003
DNase	Pancreatic carcinoma	1.258	0.130	0.001
DNase	Prostate epithelial cell line	1.803	0.254	0.001
DNase	Small airway epithelial cells	1.672	0.194	0.002
DNase	Embryonic lung fibroblast cells (40HTAM_20nM_72hr)	1.654	0.116	0.003
DNase	Embryonic lung fibroblast cells	1.747	0.122	0.003
FOXA1	Epithelial cell line derived from a mammary ductal carcinoma (DMSO_0.02pct)	0.592	0.102	0.002

<u>Table E5 - SNPsea results for enrichment of IPF susceptibility signals in IPF specific</u> <u>differentially expressed genes across four lung epithelial cell types</u>

Cell type	P value
Normal AT2 cells	0.366
Indeterminate cells	0.485
Basal cells	0.236
Club/Goblet	0.475

Table E6 - Results for IPF risk variants in interstitial lung abnormalities and lung function GWAS

This table shows the results from the interstitial lung abnormality (ILA) and lung function analyses for the 16 signals that reached genome-wide significance in the IPF case-control discovery meta-analysis. All results are presented for the allele that is associated with increased risk of IPF. The IPF odds ratios are the discovery meta-analysis results. FEV₁ is the forced expiratory volume after 1 second, FVC is the forced vital capacity and PEF is the peak expiratory flow. Variants that show an association after multiple testing corrections for 96 tests (P < 0.00052) are shown in green (variants that have P < 0.05 but do not reach significance are shown in yellow).

					IPF	Any ILA	Subpleural ILA	FEV ₁	FVC	FEV ₁ / FVC	PEF
Chr	rsid	Locus	Effect allele	EAF	OR [95% CI]	OR [95% CI]	OR [95% CI]	β [95% Cl]	β [95% CI]	β [95% Cl]	β [95% Cl]
					Р	Р	Р	Р	Р	Р	Р
					1.54	1.15	1.18	-0.011	-0.022	0.017	0.000
3	rs78238620	KIF15	A	5.3%	[1.38, 1.73]	[0.95, 1.40]	[0.95, 1.46]	[-0.022, 0.000]	[-0.033, 0.011]	[0.006, 0.028]	[-0.011, 0.011]
					2.94×10 ⁻¹⁴	0.161	0.126	0.069	2.92×10 ⁻⁴	0.005	0.851
					1.31	1.10	1.18	-0.006	-0.007	0.001	0.001
3	rs12696304	LRRC34/TERC	G	27.9%	[1.21, 1.40]	[0.99, 1.21]	[1.05, 1.31]	[-0.011, 0.000]	[-0.012, -0.001]	[-0.004, 0.007]	[-0.005, 0.006]
					7.09×10 ⁻¹³	0.073	0.004	0.046	0.023	0.673	0.770
					1.28	1.13	1.11	0.006	-0.014	0.043	0.019
4	rs2013701	FAM13A	G	51.3%	[1.19, 1.35]	[1.03, 1.23]	[1.01, 1.23]	[0.001, 0.011]	[-0.019, -0.009]	[0.038, 0.048]	[0.014, 0.024]
					3.30×10 ⁻¹³	0.009	0.039	0.013	1.02×10 ⁻⁷	3.56×10 ⁻⁶⁰	2.16×10 ⁻¹³
					1.39	1.05	1.06	-0.005	-0.007	0.004	0.001
5	rs7725218	TERT	G	67.5%	[1.30, 1.49]	[0.95, 1.16]	[0.95, 1.18]	[-0.010, 0.000]	[-0.012, -0.002]	[-0.001, 0.009]	[-0.004, 0.007]
					1.54×10 ⁻²⁰	0.333	0.310	0.042	0.007	0.154	0.526
					1.46	1.18	1.21	-0.002	-0.013	0.023	0.006
6	rs2076295	DSP	G	46.9%	[1.37, 1.56]	[1.08, 1.29]	[1.10, 1.33]	[-0.007 <i>,</i> 0.003]	[-0.018, -0.009]	[0.019, 0.028]	[0.001, 0.011]
					2.79×10 ⁻³⁰	2.84×10 ⁻⁴	1.56×10 ⁻⁴	0.432	4.22×10 ⁻⁷	2.52×10 ⁻¹⁹	0.020
					1.28	1.04	0.98	-0.007	-0.011	0.008	-0.001
7	rs12699415	MAD1L1	A	42.0%	[1.22, 1.35]	[0.95, 1.14]	[0.89, 1.09]	[-0.012, -0.002]	[-0.016, -0.007]	[0.003, 0.012]	[-0.006, 0.004]
					5.50×10 ⁻²⁰	0.438	0.707	0.011	1.41×10 ⁻⁵	0.005	0.581
					1.30	1.03	1.07	0.007	-0.004	0.025	0.012
7	rs2897075	7q22.1	Т	39.1%	[1.21, 1.38]	[0.94, 1.13]	[0.97, 1.19]	[0.003, 0.012]	[-0.009, 0.000]	[0.020, 0.030]	[0.007, 0.017]
					3.10×10 ⁻¹⁴	0.560	0.165	0.004	0.143	6.06×10 ⁻²¹	2.86×10 ⁻⁶
					1.20	1.03	1.05	0.001	-0.005	0.011	0.005
8	rs28513081	DEPTOR	A	57.2%	[1.14, 1.27]	[0.94, 1.12]	[0.95, 1.16]	[-0.004, 0.006]	[-0.010, -0.001]	[0.006, 0.016]	[0.000, 0.010]
					1.84×10 ⁻¹¹	0.494	0.331	0.822	0.045	4.22×10 ⁻⁵	0.073

					3.82	3.25	6.23	-0.005	-0.014	0.019	0.021
10	rs537322302	HECTD2	G	0.3%	[2.25, 6.48]	[1.01, 10.5]	[1.87, 20.8]	[-0.042, 0.032]	[-0.051, 0.023]	[-0.018, 0.056]	[-0.016, 0.059]
					7.41×10 ⁻⁷	0.049	0.003	0.832	0.524	0.386	0.312
					4.84	1.98	2.23	-0.005	-0.013	0.015	0.008
11	rs35705950	MUC5B	Т	14.9%	[4.37, 5.36]	[1.75, 2.24]	[1.94, 2.57]	[-0.013, 0.002]	[-0.021, -0.006]	[0.008, 0.023]	[0.000, 0.016]
					1.18×10 ⁻²⁰³	4.45×10 ⁻²⁷	4.94×10 ⁻²⁹	0.147	8.21×10 ⁻⁴	7.11×10 ⁻⁴	0.063
					1.30	1.07	1.08	0.011	0.006	0.012	0.011
13	rs9577395	ATP11A	С	79.3%	[1.20, 1.41]	[0.96, 1.19]	[0.96, 1.21]	[0.005, 0.017]	[0.000, 0.012]	[0.007, 0.018]	[0.005, 0.017]
					1.34×10 ⁻¹⁰	0.236	0.225	2.82×10 ⁻⁴	0.041	2.04×10 ⁻⁴	3.70×10 ⁻⁴
					1.31	1.11	1.15	-0.014	-0.015	0.000	-0.005
15	rs59424629	IVD	Т	53.8%	[1.22, 1.40]	[1.01, 1.20]	[1.04, 1.25]	[-0.019, -0.009]	[-0.020, 0.011]	[-0.005, 0.004]	[-0.000, 0.000]
					7.30×10 ⁻¹⁶	0.027	0.005	1.14×10 ⁻⁷	6.97×10 ⁻⁹	0.851	0.072
					1.27	1.14	1.09	-0.001	0.001	-0.003	-0.004
15	rs62023891	AKAP13	A	30.0%	[1.18, 1.36]	[1.03, 1.25]	[0.98, 1.21]	[-0.006, 0.004]	[-0.005, 0.006]	[-0.008, 0.003]	[-0.010, 0.001]
					1.27×10 ⁻¹⁰	0.008	0.124	0.726	0.834	0.356	0.109
					1.41	1.23	1.23	0.045	0.044	0.012	0.025
17	rs2077551	MAPT	Т	81.4%	[1.30, 1.54]	[1.07, 1.41]	[1.05, 1.43]	[0.039, 0.052]	[0.038, 0.050]	[0.006, 0.018]	[0.018, 0.031]
					2.83×10 ⁻¹⁶	0.003	0.008	1.02×10 ⁻⁴²	3.21×10 ⁻³⁹	5.81×10 ⁻⁴	2.04×10 ⁻¹³
					1.31	1.12	1.22	-0.001	-0.004	0.004	0.005
19	rs12610495	DPP9	G	30.5%	[1.22, 1.42]	[1.00, 1.25]	[1.08, 1.37]	[-0.006, 0.004]	[-0.009, 0.001]	[-0.001, 0.009]	[0.000, 0.011]
					2.92×10 ⁻¹²	0.041	0.001	0.682	0.127	0.153	0.051
					1.83	0.76	0.87	-0.016	-0.022	0.009	-0.011
20	rs41308092	RTEL1	A	2.1%	[1.52, 2.20]	[0.48, 1.19]	[0.54, 1.40]	[-0.033, 0.001]	[-0.039, -0.004]	[-0.008, 0.027]	[-0.028, 0.007]
					1.38×10 ⁻¹⁰	0.232	0.563	0.084	0.022	0.321	0.335

Table E7 - Results from IPF discovery meta-genome-wide analysis for the 279 variants previously reported as associated with lung function

The table below shows the results for the 279 variants that are reported as associated with lung function²⁰. "Lung function trait" is the measure of lung function that the variant showed the strongest association with out of FEV₁, FVC, FEV₁/FVC and PEF. The beta and p value are the effect size of the variant and strength of association on the trait in the "Lung function trait" column. Rows highlighted in green are significantly associated with IPF risk after a Bonferroni correction for 279 tests ($p < 1.79 \times 10^{-4}$).

Chr	Position	rsid	Locus	Effect allele	Effect allele frequency	IPF OR	IPF risk p	Lung function trait	Lung function beta	Lung function p
1	6678864	rs9661802	PHF13	С	34.2%	1.00 [0.94, 1.08]	0.891	FEV ₁ /FVC	-0.025 [-0.030, -0.020]	5.56×10 ⁻²³
1	17308254	rs9435733	MFAP2	Т	47.3%	1.03 [0.97, 1.10]	0.369	FEV ₁ /FVC	0.039 [0.034, 0.044]	5.95×10 ⁻⁶¹
1	22612690	rs12737805	MIR4418	А	77.9%	1.06 [0.98, 1.14]	0.159	FEV ₁	0.020 [0.015, 0.025]	6.57×10 ⁻¹³
1	26775367	rs9438626	DHDDS	G	78.6%	1.00 [0.93, 1.08]	0.963	FVC	-0.018 [-0.023, -0.013]	8.06×10 ⁻¹⁰
1	26796922	rs12096239	DHDDS	G	74.3%	1.02 [0.95, 1.10]	0.573	FEV ₁	0.019 [0.014, 0.024]	2.08×10 ⁻¹²
1	39995074	rs755249	LOC101929516	Т	23.6%	1.05 [0.98, 1.14]	0.179	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	9.82×10 ⁻¹⁸
1	51243374	rs1416685	FAF1	С	41.5%	1.05 [0.98, 1.12]	0.170	FEV ₁ /FVC	0.020 [0.015, 0.025]	5.62×10 ⁻¹⁷
1	60966772	rs72673461	LOC101926964	Т	95.3%	1.07 [0.92, 1.25]	0.376	FEV ₁ /FVC	0.051 [0.040, 0.062]	3.12×10 ⁻²⁰
1	78387270	rs9661687	NEXN	Т	86.5%	1.03 [0.94, 1.14]	0.539	FEV ₁ /FVC	-0.027 [-0.034, -0.02]	6.11×10 ⁻¹⁵
1	92077097	rs1192415	TGFBR3	G	18.7%	1.07 [0.99, 1.17]	0.096	FEV ₁ /FVC	-0.044 [-0.050, -0.038]	2.28×10 ⁻⁴⁷
1	92106637	rs10874851	TGFBR3	А	48.9%	1.08 [1.01, 1.15]	0.030	FEV ₁ /FVC	-0.014 [-0.019, -0.009]	5.07×10 ⁻⁹
1	92381483	rs11165787	TGFBR3	G	31.2%	1.05 [0.98, 1.12]	0.204	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	1.63×10 ⁻²¹
1	111737398	rs9970286	DENND2D	А	32.2%	1.06 [0.99, 1.14]	0.089	FEV ₁ /FVC	0.024 [0.019, 0.029]	1.92×10 ⁻²¹
1	118911295	rs35043843	SPAG17	G	23.9%	1.03 [0.95, 1.11]	0.473	FVC	0.024 [0.019, 0.029]	4.12×10 ⁻¹⁸
1	150249101	rs11205354	C1orf54	А	44.3%	1.04 [0.98, 1.11]	0.211	PEF	0.017 [0.012, 0.022]	2.49×10 ⁻¹¹
1	150547747	rs878471	MCL1	А	57.7%	1.15 [1.08, 1.23]	2.94×10 ⁻⁵	FVC	-0.028 [-0.033, -0.023]	1.50×10 ⁻³¹
1	155137395	rs141942982	KRTCAP2	G	89.3%	1.15 [1.04, 1.28]	0.008	FEV ₁ /FVC	0.036 [0.028, 0.044]	9.57×10 ⁻²¹
1	178719306	rs4651005	RALGPS2	Т	31.0%	1.07 [1.00, 1.15]	0.064	FEV ₁	0.018 [0.013, 0.023]	1.38×10 ⁻¹³
1	186090370	rs2146098	MIR548F1	А	64.5%	1.01 [0.95, 1.08]	0.702	FVC	-0.018 [-0.023, -0.013]	2.03×10 ⁻¹³
1	186113852	rs17531405	MIR548F1	С	18.1%	1.06 [0.97, 1.15]	0.192	FEV ₁ /FVC	0.028 [0.022, 0.034]	2.80×10 ⁻¹⁹
1	198898157	rs10919604	MIR181A1HG	G	40.1%	1.08 [1.01, 1.15]	0.024	FEV ₁ /FVC	-0.020 [-0.025, -0.015]	4.48×10 ⁻¹⁶
1	200069216	rs2816992	NR5A2	G	41.5%	1.01 [0.95, 1.08]	0.776	FVC	0.016 [0.011, 0.021]	7.33×10 ⁻¹²

1	201884647	rs4309038	LMOD1	G	56.2%	1.01 [0.94, 1.08]	0.813	FEV ₁ /FVC	-0.015 [-0.020, -0.010]	2.13×10 ⁻¹⁰
1	204426295	rs1008833	РІКЗС2В	А	85.3%	1.07 [0.97, 1.17]	0.172	PEF	-0.032 [-0.039, -0.025]	1.50×10 ⁻¹⁹
1	215120596	rs556648	CENPF/KCNK2	А	22.1%	1.02 [0.94, 1.10]	0.618	FVC	0.015 [0.009, 0.021]	3.12×10 ⁻⁷
1	218521609	rs2799098	TGFB2	А	83.1%	1.03 [0.94, 1.12]	0.512	FEV ₁ /FVC	-0.028 [-0.034, -0.022]	5.00×10 ⁻²⁰
1	218631452	rs6604614	TGFB2	С	71.1%	1.04 [0.97, 1.12]	0.262	PEF	-0.016 [-0.021, -0.011]	2.13×10 ⁻⁸
1	218855029	rs28613267	MIR548F3/TGFB2	С	50.1%	1.05 [0.99, 1.12]	0.126	FEV ₁	0.017 [0.012, 0.022]	9.19×10 ⁻¹³
1	219483218	rs75128958	LYPLAL1	G	92.2%	1.12 [0.99, 1.26]	0.081	FEV ₁ /FVC	0.044 [0.035, 0.053]	2.33×10 ⁻²³
1	219853742	rs1338227	RNU5F-1	G	43.2%	1.07 [1.00, 1.14]	0.052	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	3.92×10 ⁻²⁴
1	221204299	rs17009288	HLX	С	29.2%	1.01 [0.94, 1.08]	0.815	FVC	0.025 [0.020, 0.030]	3.68×10 ⁻²²
1	221631938	rs12757436	C1orf140/DUSP10	А	33.3%	1.00 [0.93, 1.07]	0.952	FVC	0.016 [0.011, 0.021]	1.76×10 ⁻¹⁰
1	239857524	rs2355237	CHRM3	А	50.8%	1.02 [0.95, 1.09]	0.602	PEF	0.029 [0.024, 0.034]	9.42×10 ⁻³¹
2	15906854	rs2544536	LOC101926966	С	52.3%	1.05 [0.99, 1.12]	0.122	FEV ₁ /FVC	0.024 [0.019, 0.029]	4.15×10 ⁻²⁴
2	18287623	rs55884799	KCNS3	Т	81.5%	1.01 [0.93, 1.10]	0.754	FEV ₁ /FVC	-0.042 [-0.048, -0.036]	4.02×10 ⁻⁴⁰
2	18570024	rs6751968	RDH14	С	81.7%	1.00 [0.92, 1.09]	0.982	FVC	-0.025 [-0.031, -0.019]	1.27×10 ⁻¹⁶
2	18702313	rs13430465	RDH14	Т	7.7%	1.09 [0.96, 1.23]	0.175	FVC	0.037 [0.029, 0.045]	1.87×10 ⁻¹⁷
2	24018480	rs13009582	ATAD2B	G	54.0%	1.01 [0.95, 1.08]	0.720	FVC	-0.016 [-0.021, -0.011]	1.52×10 ⁻¹¹
2	26842146	rs732990	CIB4	С	44.3%	1.02 [0.95, 1.09]	0.629	FVC	-0.016 [-0.021, -0.011]	3.72×10 ⁻¹¹
2	42243850	rs4952564	PKDCC	А	67.9%	1.02 [0.96, 1.10]	0.500	FVC	-0.017 [-0.022, -0.012]	6.97×10 ⁻¹²
2	56096892	rs3791679	EFEMP1	G	22.9%	1.02 [0.94, 1.10]	0.598	FVC	-0.034 [-0.039, -0.029]	7.19×10 ⁻³⁵
2	102926362	rs12470864	IL1RL1	G	61.6%	1.07 [1.00, 1.15]	0.040	FEV ₁ /FVC	0.020 [0.015, 0.025]	1.04×10 ⁻¹⁶
2	135672187	rs62168891	CCNT2-AS1	С	56.7%	1.03 [0.96, 1.10]	0.442	FVC	-0.019 [-0.024, -0.014]	1.08×10 ⁻¹⁴
2	145797829	rs1406225	TEX41	G	71.6%	1.11 [1.03, 1.19]	0.007	FEV ₁ /FVC	0.020 [0.015, 0.025]	8.73×10 ⁻¹⁴
2	157016257	rs72902177	LOC101929378	С	87.2%	1.06 [0.96, 1.16]	0.279	FEV ₁	0.034 [0.027, 0.041]	1.76×10 ⁻²²
2	161276378	rs7424771	RBMS1	G	55.8%	1.03 [0.96, 1.10]	0.438	FEV ₁	0.017 [0.012, 0.022]	6.57×10 ⁻¹³
2	179260382	rs2304340	MIR548N	G	58.7%	1.02 [0.95, 1.09]	0.610	FEV ₁	0.014 [0.009, 0.019]	3.72×10 ⁻⁹
2	187530520	rs2084448	ITGAV	С	29.9%	1.04 [0.97, 1.11]	0.316	FEV ₁ /FVC	-0.020 [-0.025, -0.015]	4.65×10 ⁻¹⁴
2	199723365	rs1249096	SATB2	G	43.2%	1.01 [0.95, 1.08]	0.744	FVC	-0.021 [-0.026, -0.016]	3.94×10 ⁻¹⁸
2	201208692	rs985256	SPATS2L	А	21.9%	1.02 [0.95, 1.11]	0.571	FEV ₁ /FVC	0.018 [0.012, 0.024]	5.86×10 ⁻¹⁰
2	202970250	rs12997625	KIAA2012	С	47.8%	1.09 [1.02, 1.16]	0.014	FVC	0.017 [0.012, 0.022]	8.88×10 ⁻¹³

2	217614730	rs6435952	IGFBP5	Т	85.6%	1.01 [0.92, 1.11]	0.875	FEV ₁ /FVC	-0.026 [-0.032, -0.020]	1.06×10 ⁻¹⁴
2	218604356	rs4294980	DIRC3	G	21.0%	1.05 [0.97, 1.14]	0.254	FEV ₁	-0.018 [-0.024, -0.012]	4.02×10 ⁻¹⁰
2	218683154	rs2571445	TNS1	G	61.3%	1.07 [1.00, 1.14]	0.050	FEV ₁	0.028 [0.023, 0.033]	7.24×10 ⁻³³
2	220382700	rs4674407	ASIC4	Т	49.8%	1.00 [0.94, 1.07]	0.929	FVC	-0.015 [-0.020, -0.010]	2.84×10 ⁻¹⁰
2	229502197	rs62201738	PID1	С	7.7%	1.05 [0.93, 1.19]	0.412	FEV ₁ /FVC	0.074 [0.065, 0.083]	9.45×10 ⁻⁶³
2	239441308	rs6710301	TRAF3IP1	А	14.4%	1.01 [0.92, 1.11]	0.779	FEV ₁	0.024 [0.018, 0.030]	8.51×10 ⁻¹³
2	239604970	rs6431620	LINC01107	Т	78.1%	1.02 [0.95, 1.11]	0.567	FVC	0.018 [0.012, 0.024]	1.40×10 ⁻¹⁰
2	239881309	rs4308141	FLJ43879	G	20.0%	1.08 [0.99, 1.17]	0.077	FEV ₁ /FVC	0.048 [0.042, 0.054]	3.58×10 ⁻⁵⁹
2	241837000	rs9973765 ^a	C2orf54	Т	50.8%	1.01 [0.94, 1.08]	0.807	FVC	0.019 [0.014, 0.023]	1.19×10 ⁻¹³
2	242495953	rs6733504	BOK-AS1	G	45.6%	1.02 [0.95, 1.09]	0.615	FVC	-0.019 [-0.024, -0.014]	7.39×10 ⁻¹⁶
3	13787641	rs2974389	LINC00620	А	42.8%	1.07 [1.00, 1.14]	0.045	FEV ₁	0.016 [0.011, 0.021]	1.70×10 ⁻¹²
3	25179533	rs73048404	RARB	Т	86.0%	1.03 [0.94, 1.14]	0.491	FVC	0.021 [0.015, 0.027]	2.10×10 ⁻¹⁰
3	25520582	rs1529672	RARB	С	82.5%	1.04 [0.95, 1.13]	0.384	FEV ₁ /FVC	-0.042 [-0.048, -0.036]	1.73×10 ⁻⁴¹
3	29469675	rs17666332	RBMS3	G	27.8%	1.01 [0.94, 1.08]	0.847	FEV ₁ /FVC	-0.027 [-0.032, -0.022]	9.22×10 ⁻²⁴
3	55152319	rs12715478	CACNA2D3	А	59.6%	1.06 [0.99, 1.13]	0.092	FEV ₁ /FVC	0.025 [0.020, 0.030]	1.35×10 ⁻²⁴
3	57879611	rs6445932	SLMAP	G	25.3%	1.03 [0.96, 1.11]	0.391	FEV ₁	0.029 [0.024, 0.034]	3.82×10 ⁻²⁶
3	67455803	rs4132748	SUCLG2	С	70.4%	1.03 [0.96, 1.11]	0.387	FEV ₁	0.020 [0.015, 0.025]	1.18×10 ⁻¹⁵
3	71583177	rs35480566	FOXP1	А	57.0%	1.08 [1.01, 1.15]	0.028	FVC	-0.022 [-0.027, -0.017]	1.25×10 ⁻²⁰
3	73862616	rs586936	PDZRN3-AS1	А	40.1%	1.00 [0.94, 1.07]	0.907	FEV ₁ /FVC	-0.018 [-0.023, -0.013]	2.11×10 ⁻¹³
3	98822050	rs12497779	DCBLD2	Т	23.6%	1.04 [0.96, 1.12]	0.373	FVC	-0.032 [-0.037, -0.027]	1.85×10 ⁻³⁰
3	99420192	rs1610265	MIR548G	Т	7.1%	1.08 [0.95, 1.23]	0.249	FVC	-0.038 [-0.047, -0.029]	8.81×10 ⁻¹⁸
3	127931340	rs2999090	EEFSEC	А	87.6%	1.01 [0.91, 1.11]	0.905	FEV ₁ /FVC	-0.043 [-0.050, -0.036]	6.76×10 ⁻³²
3	158226886	rs12634907	RSRC1	А	66.2%	1.04 [0.97, 1.11]	0.267	FVC	0.026 [0.021, 0.031]	2.83×10 ⁻²⁶
3	165548529	rs1799807	BCHE	С	2.0%	1.05 [0.82, 1.33]	0.718	FEV ₁ /FVC	-0.06 [-0.077, -0.043]	8.59×10 ⁻¹²
3	168709843	rs879394	LOC100507661	G	77.4%	1.06 [0.98, 1.15]	0.138	FEV ₁	0.029 [0.024, 0.034]	1.36×10 ⁻²⁵
3	169295436	rs78101726	MECOM	А	85.5%	1.00 [0.91, 1.10]	0.945	FEV ₁	0.033 [0.027, 0.039]	7.72×10 ⁻²⁵
3	185530290	rs6769511 ^a	IGF2BP2	С	31.4%	1.03 [0.96, 1.11]	0.390	FEV ₁	-0.017 [-0.022, -0.013]	6.18×10 ⁻¹²
4	7879027	rs62289340	AFAP1	Т	43.7%	1.04 [0.97, 1.11]	0.295	FEV ₁ /FVC	0.017 [0.012, 0.022]	2.36×10 ⁻¹²
4	56012149	rs12331869	KDR	G	82.0%	1.02 [0.94, 1.12]	0.578	FEV ₁	0.018 [0.012, 0.024]	3.17×10 ⁻⁹

4	75676529	rs62316310	BTC	G	73.5%	1.04 [0.97, 1.12]	0.285	FEV ₁ /FVC	-0.027 [-0.032, -0.022]	2.24×10 ⁻²³
4	79403952	rs11098196	FRAS1	G	48.3%	1.03 [0.96, 1.10]	0.398	FEV ₁ /FVC	0.020 [0.015, 0.025]	2.42×10 ⁻¹⁶
4	89855495	rs2609279	FAM13A	Т	22.6%	1.32 [1.22, 1.43]	1.93×10 ⁻¹²	FEV ₁ /FVC	0.054 [0.048, 0.060]	2.08×10 ⁻⁷⁶
4	89869078	rs2869966	FAM13A	С	61.1%	1.25 [1.16, 1.33]	1.48×10 ⁻¹⁰	FEV ₁ /FVC	0.042 [0.037, 0.047]	5.78×10 ⁻⁶⁶
4	106133184	rs6533183	TET2	С	35.9%	1.06 [0.99, 1.13]	0.095	FEV ₁ /FVC	0.030 [0.025, 0.035]	2.60×10 ⁻³²
4	106766430	rs11722225	GSTCD	С	7.0%	1.10 [0.97, 1.25]	0.139	FEV ₁	0.073 [0.064, 0.082]	2.43×10 ⁻⁵⁴
4	106819053	rs34712979	NPNT	G	75.7%	1.00 [0.93, 1.08]	0.960	FEV ₁ /FVC	0.068 [0.063, 0.073]	4.18×10 ⁻¹³⁴
4	145330628	rs13109426	HHIP-AS1	G	40.2%	1.07 [1.00, 1.14]	0.060	FVC	0.023 [0.018, 0.028]	4.20×10 ⁻²¹
4	145442364	rs13116999	HHIP-AS1	А	53.9%	1.12 [1.05, 1.19]	0.001	PEF	0.066 [0.061, 0.071]	2.54×10 ⁻¹⁵³
4	145506456	rs13141641	HHIP-AS1	С	40.2%	1.04 [0.97, 1.11]	0.294	FEV ₁ /FVC	0.070 [0.065, 0.075]	3.65×10 ⁻¹⁸⁴
4	145740898	rs2353940	OTUD4/SMAD1	Т	75.1%	1.10 [1.02, 1.18]	0.017	PEF	0.038 [0.032, 0.044]	5.11×10 ⁻⁴⁰
5	609661	rs11739847	LOC100996325	G	80.9%	1.09 [1.00, 1.18]	0.046	FEV ₁	0.021 [0.015, 0.027]	4.30×10 ⁻¹³
5	33352738	rs268717	TARS	Т	90.9%	1.06 [0.94, 1.18]	0.345	FVC	-0.034 [-0.042, -0.026]	3.23×10 ⁻¹⁷
5	43976162	rs4866846	NNT	G	84.9%	1.01 [0.92, 1.11]	0.829	FEV_1	-0.028 [-0.034, -0.022]	2.47×10 ⁻¹⁷
5	44367221	rs6859730	FGF10	Т	67.1%	1.02 [0.96, 1.1]	0.494	FVC	-0.021 [-0.026, -0.016]	8.76×10 ⁻¹⁷
5	52187038	rs12522114	ITGA1	А	26.4%	1.08 [1.00, 1.16]	0.053	FEV ₁ /FVC	-0.037 [-0.042, -0.032]	1.47×10 ⁻⁴¹
5	53444498	rs2441026	ARL15	С	54.0%	1.04 [0.97, 1.11]	0.282	FVC	-0.018 [-0.023, -0.013]	7.79×10 ⁻¹⁴
5	77396400	rs425102	AP3B1	Т	76.0%	1.04 [0.96, 1.12]	0.338	FVC	0.021 [0.016, 0.026]	2.78×10 ⁻¹⁴
5	95025146	rs987068	SPATA9	G	31.3%	1.13 [1.06, 1.22]	0.001	FEV ₁ /FVC	0.030 [0.025, 0.035]	1.46×10 ⁻³⁰
5	121410529	rs10059661	LOX	С	82.6%	1.07 [0.98, 1.16]	0.154	FEV ₁ /FVC	-0.031 [-0.037, -0.025]	1.78×10 ⁻²²
5	128767384	rs17163397	ADAMTS19-AS1	G	12.2%	1.09 [0.99, 1.21]	0.087	FEV ₁ /FVC	0.031 [0.024, 0.038]	3.30×10 ⁻¹⁷
5	131421190	rs6898270 ª	P4HA2-AS1	Т	43.3%	1.07 [1.00, 1.15]	0.039	FVC	0.019 [0.014, 0.023]	7.02×10 ⁻¹⁵
5	147856522	rs7733410	HTR4	G	56.0%	1.03 [0.96, 1.10]	0.376	FEV ₁ /FVC	-0.050 [-0.055, -0.045]	1.56×10 ⁻⁹⁶
5	148206885	rs1800888	ADRB2	С	98.8%	1.06 [0.78, 1.44]	0.711	FEV_1	0.084 [0.065, 0.103]	6.45×10 ⁻¹⁸
5	148652302	rs11952673	ABLIM3	G	61.0%	1.02 [0.95, 1.09]	0.554	FEV ₁	0.019 [0.014, 0.024]	1.35×10 ⁻¹⁴
5	156908317	rs11134766	CYFIP2	С	93.5%	1.12 [0.98, 1.28]	0.094	FEV ₁ /FVC	0.063 [0.053, 0.073]	8.04×10 ⁻³⁸
5	156944199	rs11134789	ADAM19	С	65.4%	1.08 [1.01, 1.16]	0.032	FEV ₁ /FVC	0.041 [0.036, 0.046]	3.06×10 ⁻⁵⁹
5	170901463	rs10059996	FGF18	G	63.8%	1.09 [1.02, 1.17]	0.010	FEV ₁ /FVC	0.035 [0.030, 0.040]	1.53×10 ⁻⁴²
5	179598771	rs79898473	RASGEF1C	С	33.2%	1.00 [0.93, 1.07]	0.960	FEV ₁ /FVC	0.031 [0.026, 0.036]	2.31×10 ⁻³³

6	6741932	rs1294417	LY86	Т	45.5%	1.00 [0.94, 1.07]	0.911	FEV ₁ /FVC	-0.031 [-0.036, -0.026]	3.93×10 ⁻³⁹
6	7563232	rs2076295	DSP	G	46.9%	1.46 [1.37, 1.56]	2.79×10 ⁻³⁰	FEV ₁ /FVC	0.023 [0.018, 0.028]	6.95×10 ⁻²³
6	7720059	rs12198986	BMP6	А	47.5%	1.02 [0.95, 1.08]	0.647	FVC	-0.023 [-0.028, -0.018]	2.17×10 ⁻²²
6	7797840	rs10498672	BMP6	G	17.2%	1.02 [0.94, 1.12]	0.616	FVC	-0.035 [-0.041, -0.029]	7.50×10 ⁻³¹
6	22017543	rs13198081	CASC15	С	36.1%	1.12 [1.05, 1.20]	0.001	FEV ₁ /FVC	0.030 [0.025, 0.035]	3.07×10 ⁻³³
6	28301099	rs7752448	ZNF184	G	11.1%	1.16 [1.04, 1.28]	0.006	PEF	-0.055 [-0.062, -0.048]	1.21×10 ⁻⁴⁸
6	32151443	rs2070600	AGER	Т	5.8%	1.07 [0.93, 1.24]	0.320	FEV ₁ /FVC	0.145 [0.135, 0.155]	3.00×10 ⁻¹⁸⁹
6	32612396	rs9273084 ª	HLA-DQB1	Т	40.1%	1.07 [0.97, 1.19]	0.185	FEV ₁ /FVC	-0.047 [-0.053, -0.041]	9.79×10 ⁻⁵⁷
6	34188892	rs9689096	HMGA1	С	5.9%	1.03 [0.90, 1.18]	0.683	FVC	0.036 [0.026, 0.046]	1.99×10 ⁻¹³
6	44447598	rs9357446	CDC5L	А	52.1%	1.02 [0.95, 1.09]	0.577	FVC	-0.015 [-0.020, -0.010]	1.04×10 ⁻¹⁰
6	45530471	rs12202314	RUNX2	С	32.5%	1.01 [0.94, 1.08]	0.867	FEV ₁ /FVC	0.021 [0.016, 0.026]	2.17×10 ⁻¹⁶
6	45622748	rs9472541	RUNX2	Т	71.0%	1.02 [0.95, 1.10]	0.527	FVC	0.015 [0.010, 0.020]	2.47×10 ⁻⁹
6	56336406	rs2894837	RNU6-71P	G	37.0%	1.03 [0.96, 1.10]	0.357	FEV_1	-0.018 [-0.023, -0.013]	9.22×10 ⁻¹³
6	73663814	rs13206405	KCNQ5	А	20.1%	1.09 [1.01, 1.19]	0.033	FEV ₁ /FVC	0.034 [0.028, 0.040]	4.67×10 ⁻³¹
6	109268050	rs2798641	ARMC2	С	81.9%	1.06 [0.97, 1.16]	0.173	FEV ₁ /FVC	0.045 [0.039, 0.051]	3.89×10 ⁻⁴⁸
6	126990392	rs6918725	MIR588	G	52.1%	1.06 [0.99, 1.13]	0.100	FVC	0.021 [0.016, 0.026]	4.73×10 ⁻¹⁹
6	134339265	rs2627237	SLC2A12	G	40.4%	1.02 [0.95, 1.09]	0.567	FEV_1	-0.014 [-0.019, -0.009]	3.50×10 ⁻⁹
6	140271357	rs1102077	LOC100507477	А	76.4%	1.01 [0.93, 1.09]	0.872	FEV ₁	0.022 [0.017, 0.027]	4.21×10 ⁻¹⁵
6	142560957	rs9385988	VTA1	G	27.2%	1.09 [1.01, 1.17]	0.026	FEV ₁	0.028 [0.023, 0.033]	1.40×10 ⁻²⁶
6	142688969	rs17280293	GPR126	А	97.0%	1.07 [0.88, 1.29]	0.511	FEV ₁ /FVC	-0.18 [-0.195, -0.165]	2.34×10 ⁻¹³¹
6	142745883	rs7753012	GPR126	G	31.7%	1.01 [0.94, 1.09]	0.712	FEV ₁ /FVC	0.071 [0.066, 0.076]	4.71×10 ⁻¹⁶⁵
7	7256490	rs4318980	C1GALT1	G	59.0%	1.02 [0.96, 1.09]	0.510	FEV ₁ /FVC	0.017 [0.012, 0.022]	9.08×10 ⁻¹³
7	15506007	rs4721442	AGMO	Т	83.0%	1.03 [0.94, 1.12]	0.505	FVC	0.022 [0.016, 0.028]	7.21×10 ⁻¹²
7	15872324	rs4721457	MEOX2-AS1	С	15.1%	1.03 [0.94, 1.13]	0.528	FEV ₁ /FVC	-0.024 [-0.03, -0.018]	1.73×10 ⁻¹³
7	26848830	rs559233	SKAP2	Т	48.7%	1.01 [0.95, 1.08]	0.727	FEV_1	0.017 [0.012, 0.022]	7.80×10 ⁻¹³
7	27182329	rs62454414	HOXA-AS3	Т	87.2%	1.01 [0.92, 1.12]	0.780	FVC	0.021 [0.014, 0.028]	1.31×10 ⁻⁹
7	28200097	rs1513272	JAZF1	Т	49.1%	1.03 [0.97, 1.10]	0.310	FEV ₁	0.020 [0.015, 0.025]	1.11×10 ⁻¹⁷
7	46448518	rs17232687	IGFBP3	С	50.4%	1.00 [0.94, 1.07]	0.942	FVC	0.018 [0.013, 0.023]	6.81×10 ⁻¹⁵
7	84569510	rs12707691	SEMA3D	G	33.4%	1.02 [0.96, 1.10]	0.492	FEV ₁	0.020 [0.015, 0.025]	1.67×10 ⁻¹⁶

7	99692993	rs2261360	ZKSCAN1	Т	25.3%	1.25 [1.16, 1.34]	5.50×10 ⁻⁹	FEV ₁ /FVC	0.022 [0.017, 0.027]	8.74×10 ⁻¹⁵
7	116431427	rs193686	MET	С	32.2%	1.01 [0.94, 1.08]	0.868	FEV ₁ /FVC	0.018 [0.013, 0.023]	4.07×10 ⁻¹²
7	156127246	rs12698403	LOC285889	G	57.0%	1.09 [1.02, 1.16]	0.016	FEV ₁	0.027 [0.022, 0.032]	6.42×10 ⁻³¹
8	9018590	rs330939	PPP1R3B	Т	60.9%	1.01 [0.94, 1.09]	0.742	FEV ₁ /FVC	0.023 [0.018, 0.028]	4.46×10 ⁻²¹
8	11823332	rs4128298	DEFB136	С	26.9%	1.01 [0.93, 1.10]	0.755	FEV ₁	0.017 [0.012, 0.022]	3.48×10 ⁻¹¹
8	70367248	rs7465401	LOC100505739	С	28.1%	1.03 [0.96, 1.11]	0.385	FEV ₁	0.021 [0.016, 0.026]	9.09×10 ⁻¹⁶
8	145504343	rs7838717	BOP1	Т	36.5%	1.05 [0.98, 1.13]	0.133	FVC	-0.023 [-0.028, -0.018]	6.47×10 ⁻²¹
9	1568941	rs771662	DMRT2/SMARCA2	С	65.9%	1.03 [0.96, 1.10]	0.450	FVC	0.016 [0.011, 0.021]	1.08×10 ⁻¹⁰
9	4120648	rs1570203	GLIS3	А	52.8%	1.01 [0.95, 1.08]	0.699	FEV ₁ /FVC	0.025 [0.020, 0.030]	5.78×10 ⁻²⁵
9	18013733	rs7041139	SH3GL2	С	67.8%	1.07 [1.00, 1.15]	0.047	FEV_1	0.017 [0.012, 0.022]	3.09×10 ⁻¹²
9	23587027	rs1107677	FLJ35282/ELAVL2	Т	49.3%	1.00 [0.94, 1.07]	0.931	FEV ₁ /FVC	0.022 [0.017, 0.027]	3.88×10 ⁻²⁰
9	98266855	rs28446321	PTCH1	А	9.2%	1.02 [0.91, 1.15]	0.693	FEV ₁ /FVC	-0.052 [-0.06, -0.044]	4.72×10 ⁻³⁶
9	98878881	rs72743974	LOC158434	G	16.8%	1.02 [0.94, 1.12]	0.590	FEV ₁ /FVC	0.023 [0.017, 0.029]	3.98×10 ⁻¹³
9	101632854	rs57649467	GALNT12	А	39.2%	1.08 [1.01, 1.15]	0.035	FEV ₁ /FVC	0.018 [0.013, 0.023]	5.39×10 ⁻¹³
9	109483517	rs1491106	TMEM38B/ZNF462	G	62.7%	1.14 [1.06, 1.22]	2.20×10 ⁻⁴	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	2.81×10 ⁻²³
9	119234058	rs10983184	ASTN2	С	35.3%	1.02 [0.95, 1.09]	0.670	FEV ₁ /FVC	-0.027 [-0.032, -0.022]	9.05×10 ⁻²⁸
9	131943843	rs967497	IER5L	А	31.0%	1.02 [0.95, 1.09]	0.576	FEV ₁	0.015 [0.010, 0.020]	2.79×10 ⁻⁹
9	139100413	rs7024579	QSOX2	Т	31.7%	1.00 [0.93, 1.07]	0.996	FVC	-0.023 [-0.028, -0.018]	4.48×10 ⁻²⁰
9	139259349	rs4073153	DNLZ	G	43.7%	1.02 [0.96, 1.09]	0.528	FVC	-0.014 [-0.019, -0.009]	8.64×10 ⁻⁹
10	12278021	rs7090277	CDC123	А	53.2%	1.03 [0.96, 1.10]	0.383	FEV ₁ /FVC	0.041 [0.036, 0.046]	3.97×10 ⁻⁶⁷
10	30268770	rs7914842	KIAA1462	А	57.1%	1.01 [0.95, 1.08]	0.710	PEF	0.016 [0.011, 0.021]	1.02×10 ⁻¹⁰
10	34480582	rs1274475	PARD3	А	38.8%	1.02 [0.95, 1.09]	0.630	FEV ₁ /FVC	0.017 [0.012, 0.022]	8.30×10 ⁻¹²
10	64998971	rs7082066	JMJD1C	А	19.5%	1.02 [0.94, 1.11]	0.618	FEV ₁	0.022 [0.016, 0.028]	2.20×10 ⁻¹³
10	69962954	rs10998018	MYPN	А	49.2%	1.01 [0.94, 1.07]	0.838	FVC	-0.022 [-0.027, -0.017]	2.43×10 ⁻²¹
10	75580014	rs7098573	CAMK2G	G	27.2%	1.09 [1.01, 1.17]	0.030	FEV ₁	0.025 [0.020, 0.030]	2.75×10 ⁻²¹
10	75639578	rs60820984	CAMK2G	С	81.2%	1.04 [0.96, 1.14]	0.329	PEF	0.020 [0.014, 0.026]	6.38×10 ⁻¹⁰
10	77119039	rs1259605	COMTD1/ZNF503-AS1	С	24.6%	1.01 [0.94, 1.09]	0.746	FVC	0.012 [0.007, 0.017]	1.19×10 ⁻⁵
10	78312002	rs2637254	C10orf11	А	51.6%	1.02 [0.96, 1.09]	0.465	FEV ₁	-0.028 [-0.033, -0.023]	3.91×10 ⁻³⁴
10	81706324	rs721917	SFTPD	А	57.7%	1.00 [0.94, 1.07]	0.998	FEV ₁ /FVC	0.019 [0.014, 0.024]	1.65×10 ⁻¹⁵

10	105639611	rs11191841	OBFC1	С	50.8%	1.15 [1.08, 1.23]	2.05×10 ⁻⁵	FEV ₁	0.017 [0.012, 0.022]	6.21×10 ⁻¹³
10	124297637	rs4279944	HTRA1	Т	15.1%	1.09 [0.99, 1.19]	0.079	FEV ₁ /FVC	0.022 [0.015, 0.029]	2.18×10 ⁻¹⁰
11	35308988	rs10836366	SLC1A2	С	24.9%	1.04 [0.97, 1.12]	0.288	FEV ₁ /FVC	-0.019 [-0.024, -0.014]	2.33×10 ⁻¹²
11	43690717	rs17596617	HSD17B12	Т	32.0%	1.02 [0.95, 1.10]	0.501	FVC	-0.020 [-0.025, -0.015]	3.58×10 ⁻¹⁵
11	45244903	rs10838435	PRDM11	С	15.6%	1.06 [0.97, 1.16]	0.219	FEV_1	0.021 [0.015, 0.027]	1.46×10 ⁻¹⁰
11	62370155	rs71490394	EML3	А	37.0%	1.01 [0.94, 1.08]	0.760	FEV ₁	0.026 [0.021, 0.031]	1.66×10 ⁻²⁷
11	73036179	rs2027761	ARHGEF17	С	88.6%	1.00 [0.91, 1.11]	0.942	FEV ₁ /FVC	-0.037 [-0.044, -0.030]	1.31×10 ⁻²²
11	86448839	rs11234768	PRSS23	Т	85.0%	1.03 [0.94, 1.12]	0.588	FEV ₁ /FVC	0.030 [0.024, 0.036]	5.07×10 ⁻²⁰
11	126009500	rs541601	RPUSD4	Т	19.0%	1.04 [0.96, 1.13]	0.356	FEV ₁ /FVC	-0.024 [-0.030, -0.018]	5.29×10 ⁻¹⁵
12	2908330	rs56196860	FKBP4	А	2.8%	1.09 [0.89, 1.33]	0.421	FVC	-0.053 [-0.067, -0.039]	1.45×10 ⁻¹⁴
12	4243749	rs12811814	CCND2-AS1	Т	45.9%	1.03 [0.97, 1.10]	0.337	FEV ₁	0.015 [0.010, 0.020]	2.57×10 ⁻¹⁰
12	19808912	rs10841302	AEBP2	G	44.9%	1.05 [0.98, 1.12]	0.177	FEV ₁ /FVC	-0.017 [-0.022, -0.012]	2.29×10 ⁻¹²
12	28588242	rs7977418	CCDC91	Т	54.4%	1.03 [0.96, 1.10]	0.381	FVC	0.038 [0.033, 0.043]	9.57×10 ⁻⁵⁹
12	56396768	rs1689510	RAB5B	G	66.8%	1.02 [0.95, 1.09]	0.559	FEV ₁	0.015 [0.010, 0.020]	5.57×10 ⁻¹⁰
12	57527283	rs11172113	LRP1	Т	59.9%	1.04 [0.98, 1.12]	0.202	FEV ₁ /FVC	-0.023 [-0.028, -0.018]	7.04×10 ⁻²¹
12	65075332	rs1244869	RASSF3	G	36.5%	1.01 [0.94, 1.08]	0.810	FEV ₁ /FVC	-0.015 [-0.020, -0.010]	6.16×10 ⁻¹⁰
12	65793153	rs12825748	MSRB3	G	69.1%	1.01 [0.94, 1.08]	0.794	FEV ₁	-0.020 [-0.025, -0.015]	6.27×10 ⁻¹⁵
12	66409367	rs11176001	MIR6074	А	13.1%	1.02 [0.92, 1.12]	0.754	FEV ₁	-0.029 [-0.036, -0.022]	4.88×10 ⁻¹⁷
12	85719906	rs56390486	ALX1/RASSF9	А	28.7%	1.01 [0.94, 1.09]	0.756	PEF	0.020 [0.015, 0.025]	1.72×10 ⁻¹²
12	94194890	rs9788269	CRADD	А	74.4%	1.03 [0.96, 1.12]	0.389	FVC	-0.014 [-0.019, -0.009]	3.97×10 ⁻⁷
12	95554771	rs113745635	FGD6	Т	21.5%	1.01 [0.93, 1.10]	0.759	FEV ₁ /FVC	-0.028 [-0.034, -0.022]	2.36×10 ⁻²¹
12	96242109	rs7970544	SNRPF	G	80.9%	1.10 [1.01, 1.20]	0.022	FEV ₁ /FVC	-0.044 [-0.050, -0.038]	1.45×10 ⁻⁴⁶
12	102824921	rs972936	IGF1	С	73.7%	1.06 [0.99, 1.15]	0.100	PEF	-0.029 [-0.035, -0.023]	1.85×10 ⁻²³
12	114669870	rs2701110	TBX5	С	83.1%	1.00 [0.92, 1.09]	0.953	FEV ₁	-0.026 [-0.032, -0.020]	1.91×10 ⁻¹⁶
12	115201436	rs10850377	ТВХЗ	А	34.7%	1.06 [0.99, 1.14]	0.097	FEV_1	0.020 [0.015, 0.025]	4.02×10 ⁻¹⁵
12	115501127	rs35505	ТВХЗ	А	68.5%	1.01 [0.94, 1.09]	0.727	FVC	0.022 [0.017, 0.027]	1.92×10 ⁻¹⁸
13	44820608	rs9533803	MIR8079	С	78.7%	1.03 [0.95, 1.12]	0.431	FEV ₁ /FVC	0.026 [0.020, 0.032]	2.92×10 ⁻¹⁹
13	50707087	rs2812208	DLEU1	С	2.1%	1.25 [1.00, 1.57]	0.052	FEV ₁	0.061 [0.045, 0.077]	4.95×10 ⁻¹⁴
13	71647588	rs803765	LINC00348	С	64.6%	1.08 [1.01, 1.15]	0.029	FVC	0.024 [0.019, 0.029]	1.74×10 ⁻²³

13	80467235	rs4885681	LINC00382	С	27.4%	1.00 [0.93, 1.08]	0.898	FEV ₁	-0.019 [-0.024, -0.014]	1.83×10 ⁻¹²
13	99665512	rs11620380	DOCK9	С	89.3%	1.04 [0.94, 1.16]	0.466	FEV ₁ /FVC	0.027 [0.019, 0.035]	4.61×10 ⁻¹²
13	109918493	rs9634470	MYO16	Т	74.0%	1.10 [1.02, 1.18]	0.013	FEV ₁ /FVC	-0.021 [-0.026, -0.016]	2.73×10 ⁻¹⁴
14	23429729	rs1951121	HAUS4	G	39.6%	1.03 [0.97, 1.10]	0.340	FEV ₁ /FVC	-0.019 [-0.024, -0.014]	7.55×10 ⁻¹⁵
14	54346010	rs74053129	MIR5580	А	9.9%	1.07 [0.96, 1.20]	0.210	FEV ₁ /FVC	0.039 [0.031, 0.047]	2.15×10 ⁻²²
14	54419106	rs35107139	BMP4	С	42.4%	1.00 [0.94, 1.07]	0.929	FEV ₁ /FVC	-0.032 [-0.037, -0.027]	3.40×10 ⁻³⁶
14	74817418	rs10141786	VRTN	А	40.2%	1.05 [0.99, 1.13]	0.123	FVC	0.021 [0.016, 0.026]	9.53×10 ⁻¹⁹
14	84338431	rs1756281	LINC00911	G	30.9%	1.01 [0.94, 1.08]	0.853	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	1.38×10 ⁻¹⁹
14	92512143	rs11160037	TRIP11	G	37.9%	1.10 [1.02, 1.17]	0.008	FEV ₁	0.018 [0.013, 0.023]	4.69×10 ⁻¹³
14	93098339	rs11621587	RIN3	G	81.8%	1.01 [0.93, 1.10]	0.826	FVC	-0.036 [-0.042, -0.030]	1.39×10 ⁻³²
15	40397191	rs34245505	BMF	G	19.8%	1.05 [0.97, 1.14]	0.234	FVC	-0.021 [-0.027, -0.015]	1.56×10 ⁻¹²
15	40716253	rs2304645	IVD	С	53.0%	1.31 [1.22, 1.39]	7.34×10 ⁻¹⁶	FEV ₁	-0.015 [-0.020, -0.010]	2.93×10 ⁻¹¹
15	41255396	rs4924525	CHAC1	А	52.6%	1.05 [0.99, 1.13]	0.111	FVC	-0.017 [-0.022, -0.012]	3.45×10 ⁻¹³
15	41840238	rs2012453	RPAP1	G	58.6%	1.05 [0.98, 1.12]	0.153	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	4.26×10 ⁻²³
15	41953211	rs56383987	MGA	С	95.0%	1.15 [0.99, 1.34]	0.066	FEV ₁ /FVC	0.036 [0.026, 0.046]	7.08×10 ⁻¹²
15	49409527	rs79234094	COPS2	G	74.2%	1.10 [1.02, 1.18]	0.016	FEV ₁ /FVC	-0.027 [-0.032, -0.022]	3.18×10 ⁻²³
15	49706145	rs35251997	FAM227B	Т	7.2%	1.11 [0.98, 1.26]	0.102	FEV ₁ /FVC	0.051 [0.042, 0.060]	2.82×10 ⁻²⁷
15	63866877	rs62012772	USP3	С	18.1%	1.03 [0.95, 1.12]	0.485	FEV ₁ /FVC	0.029 [0.023, 0.035]	2.42×10 ⁻²⁰
15	67491274	rs12917612	AAGAB	С	76.7%	1.01 [0.94, 1.09]	0.795	FVC	0.023 [0.018, 0.028]	2.04×10 ⁻¹⁶
15	71612514	rs1441358	THSD4	Т	66.5%	1.07 [1.00, 1.15]	0.045	FEV ₁ /FVC	0.064 [0.059, 0.069]	4.12×10 ⁻¹⁴⁵
15	71803450	rs62015883	THSD4	С	83.1%	1.05 [0.96, 1.14]	0.300	FEV ₁	0.021 [0.015, 0.027]	1.16×10 ⁻¹¹
15	73833600	rs7176074	REC114	G	95.2%	1.00 [0.86, 1.17]	0.990	FEV ₁ /FVC	-0.034 [-0.045, -0.023]	6.60×10 ⁻¹⁰
15	84274591	rs1896797	SH3GL3	А	49.8%	1.02 [0.96, 1.09]	0.510	FEV ₁ /FVC	0.029 [0.024, 0.034]	2.48×10 ⁻³⁴
16	3583173	rs3751837	CLUAP1	Т	21.4%	1.02 [0.94, 1.11]	0.626	FVC	-0.031 [-0.036, -0.026]	9.07×10 ⁻²⁸
16	4361138	rs56104880	GLIS2-AS1	С	30.7%	1.06 [0.98, 1.13]	0.136	FEV ₁ /FVC	-0.020 [-0.025, -0.015]	5.29×10 ⁻¹⁵
16	10136889	rs11074547	GRIN2A	Т	73.4%	1.02 [0.95, 1.10]	0.576	FVC	-0.017 [-0.022, -0.012]	1.99×10 ⁻¹⁰
16	10740982	rs78442819	TEKT5	С	19.7%	1.04 [0.96, 1.13]	0.302	FEV ₁ /FVC	-0.036 [-0.042, -0.030]	2.25×10 ⁻³¹
16	28870962	rs12446589	IL27	А	39.4%	1.01 [0.94, 1.08]	0.812	FEV ₁	-0.013 [-0.018, -0.008]	2.76×10 ⁻⁸
16	50188929	rs76219171	PAPD5	А	6.0%	1.08 [0.95, 1.24]	0.248	FVC	-0.035 [-0.045, -0.025]	2.09×10 ⁻¹²

16	53935407	rs35420030	FTO	Т	95.0%	1.04 [0.90, 1.21]	0.587	FEV ₁ /FVC	-0.045 [-0.055, -0.035]	3.08×10 ⁻¹⁷
16	58063513	rs11648508	MMP15	G	30.2%	1.06 [0.98, 1.14]	0.124	FEV ₁ /FVC	-0.033 [-0.038, -0.028]	9.86×10 ⁻³⁹
16	69891510	rs8047194	WWP2	Т	49.1%	1.02 [0.95, 1.09]	0.627	FEV ₁	-0.021 [-0.026, -0.016]	6.70×10 ⁻¹⁹
16	75411445	rs11858992	CFDP1	А	40.9%	1.01 [0.95, 1.08]	0.736	FEV ₁ /FVC	0.038 [0.033, 0.043]	4.83×10 ⁻⁵⁵
16	78225633	rs2345443	WWOX	G	67.9%	1.02 [0.95, 1.09]	0.657	FEV_1	-0.022 [-0.027, -0.017]	3.03×10 ⁻¹⁸
16	86403821	rs12918140	LINC00917	С	11.0%	1.14 [1.02, 1.26]	0.016	FEV ₁ /FVC	-0.027 [-0.034, -0.020]	6.72×10 ⁻¹³
16	86579223	rs6539952	MTHFSD	С	74.6%	1.08 [1.00, 1.16]	0.052	FEV ₁	0.017 [0.012, 0.022]	3.50×10 ⁻¹⁰
17	3882613	rs8082036	ATP2A3	G	48.5%	1.03 [0.96, 1.10]	0.413	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	7.31×10 ⁻²⁴
17	6469793	rs4796334	PITPNM3	G	50.5%	1.02 [0.95, 1.09]	0.600	FEV ₁	0.014 [0.009, 0.019]	7.43×10 ⁻⁹
17	7163350	rs1215	CLDN7	А	84.7%	1.00 [0.91, 1.11]	0.936	FVC	0.022 [0.016, 0.028]	9.64×10 ⁻¹¹
17	7448457	rs4968200	TNFSF12-TNFSF13	G	85.8%	1.02 [0.93, 1.12]	0.686	FEV ₁	0.022 [0.016, 0.028]	4.54×10 ⁻¹¹
17	15959714	rs9652828 ª	NCOR1	Т	53.9%	1.03 [0.97, 1.10]	0.320	FVC	-0.015 [-0.019, -0.010]	3.43×10 ⁻¹⁰
17	28072327	rs2244592	SSH2	А	46.9%	1.01 [0.94, 1.08]	0.790	FEV ₁ /FVC	-0.032 [-0.037, -0.027]	4.60×10 ⁻⁴²
17	29210595	rs62070648	SUZ12P1	G	73.2%	1.01 [0.94, 1.09]	0.839	FVC	-0.021 [-0.026, -0.016]	5.28×10 ⁻¹⁵
17	36915540	rs35246838	PSMB3	Т	86.8%	1.02 [0.92, 1.12]	0.728	FEV ₁ /FVC	0.039 [0.032, 0.046]	1.41×10 ⁻²⁷
17	37504933	rs8069451	FBXL20	С	26.0%	1.03 [0.96, 1.11]	0.442	FVC	-0.020 [-0.025, -0.015]	7.29×10 ⁻¹⁴
17	43940021	rs79412431	MAPT-AS1	G	79.0%	1.36 [1.26, 1.48]	3.83×10 ⁻¹⁴	FEV ₁	0.043 [0.037, 0.049]	3.10×10 ⁻⁴⁹
17	46552229	rs12945803	LOC101927166	С	21.8%	1.03 [0.96, 1.12]	0.403	FVC	-0.020 [-0.025, -0.015]	1.88×10 ⁻¹²
17	54195453	rs28519449	ANKFN1	Т	40.1%	1.00 [0.94, 1.07]	0.974	FVC	0.021 [0.016, 0.026]	1.27×10 ⁻¹⁸
17	59286644	rs8068952	BCAS3	G	22.7%	1.03 [0.96, 1.12]	0.420	FEV ₁ /FVC	0.028 [0.022, 0.034]	1.21×10 ⁻²²
17	62497964	rs77672322	DDX5	С	98.0%	1.15 [0.89, 1.49]	0.277	FVC	0.045 [0.030, 0.060]	3.02×10 ⁻⁹
17	62686730	rs11653958	SMURF2	G	26.0%	1.00 [0.93, 1.08]	0.979	FEV ₁ /FVC	-0.020 [-0.025, -0.015]	9.17×10 ⁻¹³
17	68976415	rs6501431	CASC17	С	21.7%	1.01 [0.93, 1.09]	0.831	FVC	-0.017 [-0.023, -0.011]	1.12×10 ⁻⁹
17	69201811	rs6501455	CASC17	А	51.0%	1.05 [0.98, 1.12]	0.178	FEV ₁	0.030 [0.025, 0.035]	1.28×10 ⁻³⁶
17	69371318	rs996865	CASC17	С	92.4%	1.06 [0.94, 1.20]	0.320	FEV ₁ /FVC	0.048 [0.039, 0.057]	1.82×10 ⁻²⁵
17	73525670	rs9892893	TSEN54	Т	26.6%	1.07 [0.99, 1.15]	0.073	FEV ₁	0.020 [0.015, 0.025]	2.08×10 ⁻¹³
17	79952944	rs59606152	ASPSCR1	С	89.0%	1.10 [0.98, 1.23]	0.113	FVC	-0.037 [-0.045, -0.029]	9.16×10 ⁻²¹
18	8801351	rs513953	MTCL1	А	25.0%	1.01 [0.93, 1.08]	0.892	FEV ₁	-0.027 [-0.032, -0.022]	1.24×10 ⁻²⁴
18	10078071	rs8089099	VAPA	G	72.7%	1.01 [0.94, 1.09]	0.703	FEV ₁ /FVC	-0.024 [-0.029, -0.019]	1.52×10 ⁻¹⁸

18	19816712	rs1985511	GATA6	Т	54.8%	1.00 [0.94, 1.07]	0.973	FEV ₁ /FVC	-0.016 [-0.021, -0.011]	5.60×10 ⁻¹²
18	20234336	rs11082051	CTAGE1/RBBP8	А	51.8%	1.06 [1.00, 1.14]	0.069	FEV_1	0.013 [0.008, 0.018]	3.66×10 ⁻⁸
18	20708321	rs9947743	CABLES1	А	78.9%	1.04 [0.96, 1.13]	0.306	FEV ₁	-0.020 [-0.025, -0.015]	1.24×10 ⁻¹²
18	21074255	rs303752	C18orf8	А	41.3%	1.01 [0.94, 1.08]	0.774	FVC	-0.016 [-0.021, -0.011]	6.97×10 ⁻¹²
18	22290711	rs1668091	LOC729950	С	31.2%	1.02 [0.95, 1.09]	0.617	FVC	0.017 [0.012, 0.022]	5.24×10 ⁻¹²
18	42827898	rs9807668	SLC14A2	Т	9.7%	1.02 [0.92, 1.14]	0.667	FEV ₁	0.029 [0.021, 0.037]	1.39×10 ⁻¹³
18	51022606	rs12607758	DCC	С	40.5%	1.03 [0.96, 1.10]	0.446	FVC	-0.013 [-0.018, -0.008]	1.78×10 ⁻⁸
18	53566471	rs2202572	LOC101927273	С	67.1%	1.01 [0.94, 1.08]	0.873	FVC	-0.016 [-0.021, -0.011]	7.01×10 ⁻¹¹
19	10819967	rs11085744	QTRT1	С	43.8%	1.06 [0.99, 1.13]	0.074	FEV ₁	0.015 [0.010, 0.020]	7.83×10 ⁻¹¹
19	31829613	rs9636166	TSHZ3	С	13.0%	1.07 [0.97, 1.18]	0.194	FEV ₁ /FVC	-0.036 [-0.043, -0.029]	3.66×10 ⁻²³
19	36881643	rs2967516	ZFP82	G	28.8%	1.02 [0.95, 1.10]	0.518	FVC	0.015 [0.010, 0.020]	3.72×10 ⁻⁹
19	41117300	rs34093919	LTBP4	А	1.4%	1.02 [0.77, 1.37]	0.869	FEV ₁ /FVC	0.154 [0.133, 0.175]	1.69×10 ⁻⁴⁷
20	6626218	rs2145272	BMP2	А	63.4%	1.01 [0.94, 1.08]	0.826	FVC	0.026 [0.021, 0.031]	1.42×10 ⁻²⁶
20	10745545	rs6032942	LOC101929395	С	23.1%	1.03 [0.95, 1.11]	0.498	FEV ₁	0.017 [0.012, 0.022]	3.47×10 ⁻¹⁰
20	25282608	rs2236180	ABHD12	С	18.9%	1.04 [0.96, 1.13]	0.350	FEV ₁	-0.021 [-0.027, -0.015]	1.02×10 ⁻¹²
20	30858967	rs4413223	C20orf112	G	82.8%	1.04 [0.95, 1.13]	0.426	FEV ₁ /FVC	0.023 [0.017, 0.029]	1.30×10 ⁻¹³
20	34025756	rs143384	UQCC1	А	58.5%	1.05 [0.98, 1.12]	0.159	FVC	0.024 [0.019, 0.029]	1.03×10 ⁻²³
20	45486817	rs12481092	EYA2	Т	26.8%	1.03 [0.96, 1.11]	0.451	FVC	0.026 [0.021, 0.031]	1.56×10 ⁻²²
20	62372706	rs4809221	SLC2A4RG	А	69.0%	1.15 [1.07, 1.23]	1.82×10 ⁻⁴	FVC	-0.029 [-0.034, -0.024]	5.81×10 ⁻³¹
21	35368402	rs12627254	LINC00649	G	86.9%	1.05 [0.96, 1.16]	0.286	FEV ₁ /FVC	-0.036 [-0.043, -0.029]	6.85×10 ⁻²⁴
21	35675966	rs62213732	KCNE2	Т	63.4%	1.06 [0.99, 1.13]	0.118	FEV ₁ /FVC	0.025 [0.020, 0.030]	9.34×10 ⁻²⁴
22	18448113	rs1978968	MICAL3	С	76.4%	1.03 [0.96, 1.12]	0.396	FEV ₁	-0.029 [-0.034, -0.024]	9.09×10 ⁻²⁷
22	20790723	rs9610955	SCARF2	С	19.6%	1.05 [0.97, 1.14]	0.247	FEV ₁	-0.019 [-0.025, -0.013]	6.94×10 ⁻¹¹
22	28181399	rs2283847	MN1	Т	55.5%	1.01 [0.95, 1.08]	0.684	FEV ₁ /FVC	-0.022 [-0.027, -0.017]	3.62×10 ⁻¹⁹
22	50867711	rs113111175	PPP6R2	С	87.8%	1.01 [0.92, 1.12]	0.806	FEV ₁	-0.022 [-0.029, -0.015]	1.11×10 ⁻⁹

^a Where the top lung function variant was not included in the IPF discovery GWAS, results are presented for proxy variants.

Supplementary Figures

Figure E1 - Study level QC

<u>Figure E2 – Number of overlapping variants between studies included in the discovery</u> <u>genome-wide meta-analysis</u>

Venn diagram showing the number of variants in each study and the amount of overlapping variants between studies used for the discovery genome-wide meta-analysis.

Figure E3 - QQ plot for discovery genome-wide meta-analysis

QQ plot for the genome-wide analysis with expected $-\log_{10}(P \text{ value})$ on the x axis and observed $-\log(P \text{ value})$ on the y axis. The red line shows where the expected equals the observed. To aid in viewing the figure, the y axis has been truncated at $-\log_{10}(P \text{ value}) = 40$. Variant rs35705950 (found in the *MUC5B* promoter region) has $-\log_{10}(P \text{ value}) = 202.9$.

The QQ plot above shows an increasing line before plateuing with a large number of variants with the same p value. This is due to the inversion region around *KANSL1* and *MAPT* where a large number of variants in very high LD show similar strengths of association with IPF. Below is the QQ plot excluding this inversion region on chromosome 17. To aid in viewing the figure, the y axis has been truncated at 40.

Figure E4 - Region plots for all 17 previously reported association signals

Region plots for each of the 17 previously reported signals. The x axis shows chromosomal position and y axis the $-\log(P \text{ value})$. The sentinel (or previously reported variant if there is no signal in the meta-analysis) is shown in blue with all other variants coloured by LD with the sentinel variant. Credible sets were calculated for each signal and variants in the credible set are shown by squares. The red horizontal line shows $P = 5 \times 10^{-8}$.

iv) *DSP*

v) EHMT2

vi) 7q22.1

vii) *OBFC1*

viii) *MUC5B*

ix) ATP11A

x) MDGA2

xi) *IVD*

xii) *AKAP13*

xiii) MAPT

xiv) *DPP9*

Figure E5 - Region plots and conditional analyses for the five novel IPF association signals in the discovery genome-wide analysis

Region plots for each of the five novel signals in discovery analysis and after conditioning on the sentinel variant. The x axis shows chromosomal position and y axis the $-\log(P \text{ value})$. The sentinel is shown in blue with all other variants coloured by LD with the sentinel variant. Credible sets were calculated and variants in the credible set are shown by squares. The red horizontal line shows $P = 5 \times 10^{-8}$.

i) Chromosome 3 Region plot

After conditioning on sentinel variant

ii) Chromosome 7

iii) Chromosome 8

Region plot

After conditioning on sentinel variant

iv) Chromosome 10

Region plot

After conditioning on sentinel variant

v) Chromosome 20

After conditioning on sentinel variant

<u>Figure E6 - Forest plot of discovery and replication study level results for the five not</u> previously reported variants signals reaching genome-wide significance in the discovery <u>meta-analysis</u>

i) Forest plot for rs78238620

Study	OR	95% CI	р
Chicago	1.74	[1.16, 2.60]	0.007
Colorado	1.47	[1.23, 1.78]	4.01 X 10 ⁻⁵
UK	1.77	[1.35, 2.33]	4.54 × 10 ⁻⁵
Discovery meta-analysis	1.58	[1.37, 1.83]	5.12 X 10 ⁻¹⁰
UUS	1.46	[1.18, 1.80]	4.39 × 10 ⁻⁴
Genentech	1.55	[1.11, 2.16]	0.010
Replication meta-analysis	1.48	[1.24, 1.77]	1.43 x 10 ⁻⁵
Discovery and replication meta	1.54	[1.38, 1.72]	4.05 X 10 ⁻¹⁴

rs78238620 (KIF15)

ii) Forest plot for rs12699415

rs12699415 (MAD1L1)

Study	OR	95% CI	р
Chicago	1.43	[1.20, 1.69]	5.31 x 10 ⁻⁵
Colorado	1.23	[1.12, 1.33]	3.67 x 10 ⁻⁶
UK	1.30	[1.15, 1.47]	3.51 x 10 ⁻⁵
Discovery meta-analysis	1.28	[1.19, 1.37]	7.15 x 10 ⁻¹³
UUS	1.24	[1.12, 1.38]	6.39 x 10 ⁻⁵
Genentech	1.41	[1.20, 1.66]	3.82 x 10 ⁻⁵
Replication meta-analysis	1.29	[1.18, 1.41]	2.27 X 10 ⁻⁸
Discovery and replication meta	1.28	[1.21, 1.35]	9.38 x 10 ⁻²⁰

OR

iii) Forest plot for rs28513081

iv) Forest plot for rs537322302

rs537322302 (HECTD2)

-	
	-
•	
	- •

0

5

10

15

OR

20

25

v) Forest plot for rs41308092

Figure E7 - GWAS vs eQTL results for novel IPF susceptibility signal on chromosome 3

Each point represents a variant with chromosomal position on the x axis and $-\log(P \text{ value})$ on the y axis. Above the x axis is the $-\log(P \text{ value})$ from the IPF susceptibility discovery genome-wide meta-analysis and below the y axis is the $-\log(P \text{ value})$ from the eQTL database. The sentinel variant from the IPF susceptibility analysis is coloured in blue with all other variants coloured by LD with the sentinel variant (variants in red have $r^2 \ge 0.8$ with the sentinel variant, variants in orange have $0.6 \le r^2 < 0.8$, variants in yellow have $0.4 \le r^2 < 0.6$, variants in light yellow have $0.2 \le r^2 < 0.4$ and variants in grey have $r^2 < 0.2$ with the sentinel variant. The area in green on the x axis denotes the location of the gene implicated by the eQTL analysis.

i) *KIF15* - Brain (Putamen) - Colocalisation probability = 95.6%

Figure E8 - GWAS vs eQTL for novel IPF susceptibility signal on chromosome 7

Each point represents a variant with chromosomal position on the x axis and $-\log(P \text{ value})$ on the y axis. Above the x axis is the $-\log(P \text{ value})$ from the IPF susceptibility discovery genome-wide meta-analysis and below the y axis is the $-\log(P \text{ value})$ from the eQTL database. The sentinel variant from the IPF susceptibility analysis is coloured in blue with all other variants coloured by LD with the sentinel variant (variants in red have $r^2 \ge 0.8$ with the sentinel variant, variants in orange have $0.6 \le r^2 < 0.8$, variants in yellow have $0.4 \le r^2 < 0.6$, variants in light yellow have $0.2 \le r^2 < 0.4$ and variants in grey have $r^2 < 0.2$ with the sentinel variant. The area in green on the x axis denotes the location of the gene implicated by the eQTL analysis.

i) MAD1L1 - Heart (Atrial Appendage) - Colocalisation probability = 95.3%

MAD1L1 - GTEx (Heart - Atrial Appendage)

Figure E9 - GWAS vs eQTL for novel IPF susceptibility signal on chromosome 8

Each point represents a variant with chromosomal position on the x axis and $-\log(P \text{ value})$ on the y axis. Above the x axis is the $-\log(P \text{ value})$ from the IPF susceptibility discovery genome-wide meta-analysis and below the y axis is the $-\log(P \text{ value})$ from the eQTL database. The sentinel variant from the IPF susceptibility analysis is coloured in blue with all other variants coloured by LD with the sentinel variant (variants in red have $r^2 \ge 0.8$ with the sentinel variant, variants in orange have $0.6 \le r^2 < 0.8$, variants in yellow have $0.4 \le r^2 < 0.6$, variants in light yellow have $0.2 \le r^2 < 0.4$ and variants in grey have $r^2 < 0.2$ with the sentinel variant. The area in green on the x axis denotes the location of the gene implicated by the eQTL analysis.

i) DEPTOR - Colon (Sigmoid) - Colocalisation probability = 89.6%

ii) DEPTOR - Lung - Colocalisation probability = 89.2%

iii) DEPTOR - Lung - Colocalisation probability = 89.5%

Note: The lung eQTL dataset showed two independent signals of association for *DEPTOR* expression. The eQTL results here are those obtained after conditioning on the top eQTL for *DEPTOR* to condition out the strongest signal which was driven by different variants to those driving the IPF risk association.

iv) DEPTOR - Lung - Colocalisation probability = 89.9%

Note: The lung eQTL dataset showed two independent signals of association for *DEPTOR* expression. The eQTL results here are those obtained after conditioning on the top eQTL for *DEPTOR* to condition out the strongest signal which was driven by different variants to those driving the IPF risk association.

v) *DEPTOR* - Skin (Not sun exposed) - Colocalisation probability = 90.0%

vi) *DEPTOR* - Skin (Sun exposed) - Colocalisation probability = 86.5%

viii) TAF2 - Colon (Transverse) - Colocalisation probability = 87.5%

ix) RP11-760H22.2 - Adipose (Subcutaneous) - Colocalisation probability = 84.9%

xii) KB-1471A8.1 - Adipose (Subcutaneous) - Colocalisation probability = 85.6%

xiii) KB-1471A8.1 - Adipose (Visceral) - Colocalisation probability = 90.9%

Figure E10 - FORGE analysis for enrichment of IPF susceptibility signals in regulatory regions

SNPs in DNase1 sites (probably TF sites) in cell lines for forge/YT6B/1549642609

Figure E11 - GARFIELD analysis for enrichment of IPF susceptibility signals in DNase I hypersensitivity sites by tissue

Radial plots for enrichment. The distance from the centre is equal to the odds ratio with the peaks shown in black to be when using a *P* threshold in the IPF genome-wide analysis of 5×10^{-8} and in blue for 5×10^{-5} . There are two rings of dots on the outside which show whether the site is significantly enriched after adjusting for multiple testing ($P < 3.59 \times 10^{-4}$). If there is a dot on the outermost ring then the site is significantly enriched when including all variants with $P < 5 \times 10^{-8}$ and if there is a dot on the inner ring then the site is enriched when including all variants with $P < 5 \times 10^{-5}$. If the site is significant for both thresholds there will be two dots.

Figure E12 - Strength of association and model fit of the polygenic risk score in target dataset (UUS) by *P* threshold used

The x axis shows the P threshold (P_T) used for selecting variants to include in the risk score calculation. The black line and y axis on the left side shows the significance ($-\log(P \text{ value})$) for the risk score for each P_T tested. The red dotted line shows the threshold of 0.001 used for determining whether the risk score was significantly associated with IPF susceptibility. The orange line and y axis on the right side shows the model fit (Nagelkerke's R²) of the risk score at each P_T tested.

Supplementary References

- 1. Noth I, Zhang Y, Ma S, et al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: A genome-wide association study. *The Lancet Respiratory Medicine*. 2013;1(4):309-317.
- 2. Fingerlin TE, Murphy E, Zhang W, et al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. *Nat Genet*. 2013;45(6):613-620.
- 3. Fingerlin TE, Zhang W, Yang IV, et al. Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia. *BMC genetics*. 2016;17(1):1.
- 4. Allen RJ, Porte J, Braybrooke R, et al. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of european ancestry: A genome-wide association study. *The Lancet Respiratory Medicine*. 2017.
- 5. Dressen A, Abbas AR, Cabanski C, et al. Analysis of protein-altering variants in telomerase genes and their association with MUC5B common variant status in patients with idiopathic pulmonary fibrosis: A candidate gene sequencing study. *The Lancet Respiratory Medicine*. 2018.
- 6. Wakefield J. A bayesian measure of the probability of false discovery in genetic epidemiology studies. *The American Journal of Human Genetics*. 2007;81(2):208-227.
- 7. Hao K, Bossé Y, Nickle DC, et al. Lung eQTLs to help reveal the molecular underpinnings of asthma. *PLoS Genet*. 2012;8(11):e1003029.
- 8. Lamontagne M, Couture C, Postma DS, et al. Refining susceptibility loci of chronic obstructive pulmonary disease with lung eqtls. *PLoS One*. 2013;8(7):e70220.
- 9. Obeidat M, Miller S, Probert K, et al. GSTCD and INTS12 regulation and expression in the human lung. *PLoS One*. 2013;8(9):e74630.
- 10. Jansen R, Hottenga J, Nivard MG, et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. *Hum Mol Genet*. 2017;26(8):1444-1451.
- 11. GTEx Consortium. Genetic effects on gene expression across human tissues. *Nature*. 2017;550(7675):204.
- 12. Giambartolomei C, Vukcevic D, Schadt EE, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. *PLoS genetics*. 2014;10(5):e1004383.
- 13. McLaren W, Gil L, Hunt SE, et al. The ensembl variant effect predictor. *Genome Biol*. 2016;17(1):122.
- Ward LD, Kellis M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. *Nucleic Acids Res*. 2011;40(D1):D930-D934.

- 15. Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning–based sequence model. *Nature methods*. 2015;12(10):931.
- 16. Dunham I, Kulesha E, Iotchkova V, Morganella S, Birney E. FORGE: A tool to discover cell specific enrichments of GWAS associated SNPs in regulatory regions. *F1000Research*. 2015;4.
- 17. lotchkova V, Ritchie GR, Geihs M, et al. GARFIELD-GWAS analysis of regulatory or functional information enrichment with LD correction. *bioRxiv*. 2016:085738.
- 18. Slowikowski K, Hu X, Raychaudhuri S. SNPsea: An algorithm to identify cell types, tissues and pathways affected by risk loci. *Bioinformatics*. 2014;30(17):2496-2497.
- 19. Xu Y, Mizuno T, Sridharan A, et al. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. *JCI insight*. 2016;1(20).
- 20. Shrine N, Guyatt AL, Erzurumluoglu AM, et al. New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. *Nat Genet*. 2019:1.
- 21. Euesden J, Lewis CM, O'Reilly PF. PRSice: Polygenic risk score software. *Bioinformatics*. 2015;31(9):1466-1468.