184 research outputs found
SUBTLEX-CY: A new word frequency database for Welsh
We present SUBTLEX-CY, a new word frequency database created from a 32 million word corpus of Welsh television subtitles. An experiment comprising of a lexical decision task examined SUBTLEX-CY frequency estimates against words with inconsistent frequencies in a much smaller Welsh corpus that is often used by researchers, the Cronfa Electroneg o’r Gymraeg (CEG; Ellis et al., 2001) as well as four other Welsh word frequency databases. Words were selected that were classified as low frequency (LF) in SUBTLEX-CY and high frequency (HF) in CEG and compared to words that were classified as medium frequency (MF) in both SUBTLEX-CY and CEG. Reaction time analyses showed that HF words in CEG were responded to more slowly compared to medium frequency (MF) words, suggesting that SUBTLEX-CY corpus provides a more reliable estimate of Welsh word frequencies. The new Welsh word frequency database that also includes part-of-speech, contextual diversity, and other lexical information is freely available for research purposes on the Open Science Framework repository at https://osf.io/9gkqm/
MARVELS-1: A face-on double-lined binary star masquerading as a resonant planetary system; and consideration of rare false positives in radial velocity planet searches
We have analyzed new and previously published radial velocity observations of
MARVELS-1, known to have an ostensibly substellar companion in a ~6- day orbit.
We find significant (~100 m/s) residuals to the best-fit model for the
companion, and these residuals are naively consistent with an interior giant
planet with a P = 1.965d in a nearly perfect 3:1 period commensuribility
(|Pb/Pc - 3| < 10^{-4}). We have performed several tests for the reality of
such a companion, including a dynamical analysis, a search for photometric
variability, and a hunt for contaminating stellar spectra. We find many reasons
to be critical of a planetary interpretation, including the fact that most of
the three-body dynamical solutions are unstable. We find no evidence for
transits, and no evidence of stellar photometric variability. We have
discovered two apparent companions to MARVELS-1 with adaptive optics imaging at
Keck; both are M dwarfs, one is likely bound, and the other is likely a
foreground object. We explore false-alarm scenarios inspired by various
curiosities in the data. Ultimately, a line profile and bisector analysis lead
us to conclude that the ~100 m/s residuals are an artifact of spectral
contamination from a stellar companion contributing ~15-30% of the optical
light in the system. We conclude that origin of this contamination is the
previously detected radial velocity companion to MARVELS-1, which is not, as
previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.Comment: ApJ 770, 119. 24 pp emulate ApJ style, 12 figures (One is very
large). v2: corrects two (important!) errors: A priori chance of this
alignment or worse is 0.1% (not 0.01%) and the primary has THREE total
companions (not four
New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.
Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes
Comparative Omics-Driven Genome Annotation Refinement: Application across Yersiniae
Genome sequencing continues to be a rapidly evolving technology, yet most downstream aspects of genome annotation pipelines remain relatively stable or are even being abandoned. The annotation process is now performed almost exclusively in an automated fashion to balance the large number of sequences generated. One possible way of reducing errors inherent to automated computational annotations is to apply data from omics measurements (i.e. transcriptional and proteomic) to the un-annotated genome with a proteogenomic-based approach. Here, the concept of annotation refinement has been extended to include a comparative assessment of genomes across closely related species. Transcriptomic and proteomic data derived from highly similar pathogenic Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+) was used to demonstrate a comprehensive comparative omic-based annotation methodology. Peptide and oligo measurements experimentally validated the expression of nearly 40% of each strain's predicted proteome and revealed the identification of 28 novel and 68 incorrect (i.e., observed frameshifts, extended start sites, and translated pseudogenes) protein-coding sequences within the three current genome annotations. Gene loss is presumed to play a major role in Y. pestis acquiring its niche as a virulent pathogen, thus the discovery of many translated pseudogenes, including the insertion-ablated argD, underscores a need for functional analyses to investigate hypotheses related to divergence. Refinements included the discovery of a seemingly essential ribosomal protein, several virulence-associated factors, a transcriptional regulator, and many hypothetical proteins that were missed during annotation
Experimental annotation of post-translational features and translated coding regions in the pathogen Salmonella Typhimurium
<p>Abstract</p> <p>Background</p> <p>Complete and accurate genome annotation is crucial for comprehensive and systematic studies of biological systems. However, determining protein-coding genes for most new genomes is almost completely performed by inference using computational predictions with significant documented error rates (> 15%). Furthermore, gene prediction programs provide no information on biologically important post-translational processing events critical for protein function.</p> <p>Results</p> <p>We experimentally annotated the bacterial pathogen <it>Salmonella </it>Typhimurium 14028, using "shotgun" proteomics to accurately uncover the translational landscape and post-translational features. The data provide protein-level experimental validation for approximately half of the predicted protein-coding genes in <it>Salmonella </it>and suggest revisions to several genes that appear to have incorrectly assigned translational start sites, including a potential novel alternate start codon. Additionally, we uncovered 12 non-annotated genes missed by gene prediction programs, as well as evidence suggesting a role for one of these novel ORFs in <it>Salmonella </it>pathogenesis. We also characterized post-translational features in the <it>Salmonella </it>genome, including chemical modifications and proteolytic cleavages. We find that bacteria have a much larger and more complex repertoire of chemical modifications than previously thought including several novel modifications. Our <it>in vivo </it>proteolysis data identified more than 130 signal peptide and N-terminal methionine cleavage events critical for protein function.</p> <p>Conclusion</p> <p>This work highlights several ways in which application of proteomics data can improve the quality of genome annotations to facilitate novel biological insights and provides a comprehensive proteome map of <it>Salmonella </it>as a resource for systems analysis.</p
Appropriation of GPIb from platelet-derived extracellular vesicles supports monocyte recruitment in systemic inflammation
Interactions between platelets, leukocytes and the vessel wall provide alternative pathological routes of thrombo-inflammatory leukocyte recruitment. We found that when platelets were activated by a range of agonists in whole blood, they shed platelet-derived extracellular vesicles which rapidly and preferentially bound to blood monocytes compared to other leukocytes. Platelet-derived extracellular vesicle binding to monocytes was initiated by P-selectin-dependent adhesion and was stabilised by binding of phosphatidylserine. These interactions resulted in the progressive transfer of the platelet adhesion receptor GPIbα to monocytes. GPIbα+-monocytes tethered and rolled on immobilised von Willebrand Factor or were recruited and activated on endothelial cells treated with TGF-β1 to induce the expression of von Willebrand Factor. In both models monocyte adhesion was ablated by a function-blocking antibody against GPIbα. Monocytes could also bind platelet-derived extracellular vesicle in mouse blood in vitro and in vivo. Intratracheal instillations of diesel nanoparticles, to model chronic pulmonary inflammation, induced accumulation of GPIbα on circulating monocytes. In intravital experiments, GPIbα+-monocytes adhered to the microcirculation of the TGF-β1-stimulated cremaster muscle, while in the ApoE−/− model of atherosclerosis, GPIbα+-monocytes adhered to the carotid arteries. In trauma patients, monocytes bore platelet markers within 1 hour of injury, the levels of which correlated with severity of trauma and resulted in monocyte clearance from the circulation. Thus, we have defined a novel thrombo-inflammatory pathway in which platelet-derived extracellular vesicles transfer a platelet adhesion receptor to monocytes, allowing their recruitment in large and small blood vessels, and which is likely to be pathogenic
Strong Carbon Features and a Red Early Color in the Underluminous Type Ia SN 2022xkq
We present optical, infrared, ultraviolet, and radio observations of SN
2022xkq, an underluminous fast-declining type Ia supernova (SN Ia) in NGC 1784
( Mpc), from to 180 days after explosion. The
high-cadence observations of SN 2022xkq, a photometrically transitional and
spectroscopically 91bg-like SN Ia, cover the first days and weeks following
explosion which are critical to distinguishing between explosion scenarios. The
early light curve of SN 2022xkq has a red early color and exhibits a flux
excess which is more prominent in redder bands; this is the first time such a
feature has been seen in a transitional/91bg-like SN Ia. We also present 92
optical and 19 near-infrared (NIR) spectra, beginning 0.4 days after explosion
in the optical and 2.6 days after explosion in the NIR. SN 2022xkq exhibits a
long-lived C I 1.0693 m feature which persists until 5 days post-maximum.
We also detect C II 6580 in the pre-maximum optical spectra. These
lines are evidence for unburnt carbon that is difficult to reconcile with the
double detonation of a sub-Chandrasekhar mass white dwarf. No existing
explosion model can fully explain the photometric and spectroscopic dataset of
SN 2022xkq, but the considerable breadth of the observations is ideal for
furthering our understanding of the processes which produce faint SNe Ia.Comment: 38 pages, 16 figures, accepted for publication in ApJ, the figure 15
input models and synthetic spectra are now available at
https://zenodo.org/record/837925
Genetic effects on gene expression across human tissues
Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
Abdominal aortic aneurysm is associated with a variant in low-density lipoprotein receptor-related protein 1
Abdominal aortic aneurysm (AAA) is a common cause of morbidity and mortality and has a significant heritability. We carried out a genome-wide association discovery study of 1866 patients with AAA and 5435 controls and replication of promising signals (lead SNP with a p value < 1 × 10-5) in 2871 additional cases and 32,687 controls and performed further follow-up in 1491 AAA and 11,060 controls. In the discovery study, nine loci demonstrated association with AAA (p < 1 × 10-5). In the replication sample, the lead SNP at one of these loci, rs1466535, located within intron 1 of low-density-lipoprotein receptor-related protein 1 (LRP1) demonstrated significant association (p = 0.0042). We confirmed the association of rs1466535 and AAA in our follow-up study (p = 0.035). In a combined analysis (6228 AAA and 49182 controls), rs1466535 had a consistent effect size and direction in all sample sets (combined p = 4.52 × 10-10, odds ratio 1.15 [1.10-1.21]). No associations were seen for either rs1466535 or the 12q13.3 locus in independent association studies of coronary artery disease, blood pressure, diabetes, or hyperlipidaemia, suggesting that this locus is specific to AAA. Gene-expression studies demonstrated a trend toward increased LRP1 expression for the rs1466535 CC genotype in arterial tissues; there was a significant (p = 0.029) 1.19-fold (1.04-1.36) increase in LRP1 expression in CC homozygotes compared to TT homozygotes in aortic adventitia. Functional studies demonstrated that rs1466535 might alter a SREBP-1 binding site and influence enhancer activity at the locus. In conclusion, this study has identified a biologically plausible genetic variant associated specifically with AAA, and we suggest that this variant has a possible functional role in LRP1 expression
- …