16 research outputs found

    Engineering phosphatidylinositol-4,5-bisphosphate model membranes enriched in endocytic cargo: a neutron reflectometry, AFM and QCM-D structural study

    Get PDF
    The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological membranes with the incorporation of inositol phospholipids and synthetic endocytic motifs.publishe

    Anisotropic Diffusion of Macromolecules in the Contiguous Nucleocytoplasmic Fluid during Eukaryotic Cell Division

    Get PDF
    SummaryCharacter and rapidity of protein diffusion in intracellular fluids are key determinants of the dynamics and steady state of a plethora of biochemical reactions [1, 2]. So far, an anomalous diffusion in cytoplasmic fluids with viscoelastic and even glassy characteristics has been reported in a variety of organisms on several length scales and timescales [3–6]. Here, we show that the contiguous fluid of former cytoplasm and nucleoplasm features an anisotropically varying diffusion of macromolecules during eukaryotic cell division. In metaphase, diffusion in the contiguous nucleocytoplasmic fluid appears less anomalous along the spindle axis as compared to perpendicular directions. As a consequence, the long-time diffusion of macromolecules preferentially points along the spindle axis, leading to prolonged residence of macromolecules in the spindle region. Based on our experimental data, we suggest that anisotropic diffusion facilitates the encounter and interaction of spindle-associated proteins, e.g., during the formation of a dynamic spindle matrix [7]

    Engineering Phosphatidylinositol-4,5-bisphosphate model membranes enriched 1 in endocytic cargo: a neutron reflectometry, AFM and QCM-D structural study

    No full text
    The combination of in vitro models of biological membranes based on solid-supported lipid bilayers (SLBs) and of surface sensitive techniques, such as neutron reflectometry (NR), atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D), is well suited to provide quantitative information about molecular level interactions and lipid spatial distributions. In this work, cellular plasma membranes have been mimicked by designing complex SLB, containing phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P2) lipids as well as incorporating synthetic lipo-peptides that simulate the cytoplasmic tails of transmembrane proteins. The QCM-D results revealed that the adsorption and fusion kinetics of PtdIns4,5P2 are highly dependent of Mg2+. Additionally, it was shown that increasing concentrations of PtdIns4,5P2 leads to the formation of SLBs with higher homogeneity. The presence of PtdIns4,5P2 clusters was visualized by AFM. NR provided important insights about the structural organization of the various components within the SLB, highlighting that the leaflet symmetry of these SLBs is broken by the presence of CD4-derived cargo peptides. Finally, we foresee our study to be a starting point for more sophisticated in vitro models of biological mem-branes with the incorporation of inositol phospholipids and synthetic endocytic motifs
    corecore