41 research outputs found

    The role of renal biopsy in a patient with multiple synchronous cancers: a case report

    Get PDF
    A 51-year-old male with a long history of tobacco smoking presented to the outpatient clinic with left renal colic. A renal ultrasound revealed a mass in the left kidney. The patient was admitted to surgical clinic of Russian Scientific Center of Roentgen-Radiology of Rosmedtechnology. A renal biopsy and subsequent histopathological tests revealed adenocarcinoma of the right kidney of most likely metastatic origin. This discovery has lead to vigorous diagnostics search for the primary tumor. Finally, the following diagnosis was established: Primarily-multiple synchronous cancer: cancer of the left kidney T1N0M0, cancer of the thyroid gland T2N0M1, metastasis to the right kidney and lungs. The patient had left kidney and thyroid gland removed and was successfully treated with radioiodine therapy. The patient remains alive and well 7 months since his admission to our clinic. We report this case to emphasize the importance of the renal biopsy and thorough histological analysis, which made it possible to diagnose thyroid cancer in this patient

    Spin-dependent potentials: spurious singularity and bounds on contact terms

    Full text link
    This work applies a recent theoretical treatment of spin-dependent potentials to experimental searches, in particular in antiprotonic helium. The considered spin-dependent potentials between fermions or spin-polarised macroscopic objects result from an exchange of exotic spin-0 or spin-1 bosons. We address a superficial singularity in one of the potentials, as well as technical issues with contact terms, and use the results to obtain a bound on the pseudovector coupling constants and boson masses.Comment: 4 pages, 4 figure

    Constraints on Spin-Spin-Velocity-Dependent Interaction

    Full text link
    The existence of exotic spin-dependent forces may shine light on new physics beyond the Standard Model. We utilize two iron shielded SmCo5_5 electron-spin sources and two optically pumped magnetometers to search for exotic long-range spin-spin-velocity-dependent force. The orientations of spin sources and magnetometers are optimized such that the exotic force is enhanced and common-mode noise is effectively subtracted. We set direct limit on proton-electron interaction in the force range from 1\,cm to 1\,km. Our experiment represents more than ten orders of magnitude improvement than previous works

    Bone Stress-Strain State Evaluation Using CT Based FEM

    Get PDF
    Nowadays, the use of a digital prototype in numerical modeling is one of the main approaches to calculating the elements of an inhomogeneous structure under the influence of external forces. The article considers a finite element analysis method based on computed tomography data. The calculations used a three-dimensional isoparametric finite element of a continuous medium developed by the authors with a linear approximation, based on weighted integration of the local stiffness matrix. The purpose of this study is to describe a general algorithm for constructing a numerical model that allows static calculation of objects with a porous structure according to its computed tomography data. Numerical modeling was carried out using kinematic boundary conditions. To evaluate the results obtained, computational and postprocessor grids were introduced. The qualitative assessment of the modeling data was based on the normalized error. Three-point bending of bone specimens of the pig forelimbs was considered as a model problem. The numerical simulation results were compared with the data obtained from a physical experiment. The relative error ranged from 3 to 15%, and the crack location, determined by the physical experiment, corresponded to the area where the ultimate strength values were exceeded, determined by numerical modeling. The results obtained reflect not only the effectiveness of the proposed approach, but also the agreement with experimental data. This method turned out to be relatively non-resource-intensive and time-efficient

    Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020

    Get PDF
    We show the distribution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three genomic nomenclature systems to all sequence data from the World Health Organization European Region available until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation, compare the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2

    Terrestrial Very-Long-Baseline Atom Interferometry:Workshop Summary

    Get PDF
    This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio
    corecore