218 research outputs found

    Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα

    Get PDF
    Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting

    Investigating the influence of (Deoxy)fluorination on the lipophilicity of non-UV-active fluorinated alkanols and carbohydrates by a new log P determination method

    No full text
    Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log?P) modulation. However, the determination of log?P is cumbersome for non-UV-active compounds. A new variation of the shake-flask log?P determination method is presented, enabling the measurement of log?P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log?P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reporte

    Association Among Serum Perfluoroalkyl Chemicals, Glucose Homeostasis, and Metabolic Syndrome in Adolescents and Adults

    Get PDF
    OBJECTIVE - Perfluoroalkyl chemicals (PFCs) have been used worldwide in a variety of consumer products. The effect of PFCs on glucose homeostasis is not known. RESEARCH DESIGN AND METHODS - We examined 474 adolescents and 969 adults with reliable serum measures of metabolic syndrome profile from the National Health and Nutrition Examination Survey 1999-2000 and 2003-2004. RESULTS - In adolescents, increased serum perfluorononanoic acid (PFNA) concentrations were associated with hyperglycemia (odds ratio [OR] 3.16 [95% Cl 1.39-7.16], P < 0.05). Increased serum PFNA concentrations also have favorable associations with serum HDL cholesterol (0.67 [0.45-0.99], P < 0.05). Overall, increased serum PFNA concentrations were inversely correlated with the prevalence of the metabolic syndrome (0.37 [0.21-0.64], P < 0.005). In adults, increased serum perfluorooctanoic acid concentrations were significantly associated with increased beta-cell function (beta coefficient 0.07 +/- 0.03, P < 0. 05 ). Increased serum perfluorooctane sulfate (PFOS) concentrations were associated with increased blood insulin (0.14 +/- 0.05, P < 0.01), homeostasis model assessment of insulin resistance (0.14 0.05, P < 0.01), and beta-cell function (0.15 +/- 0.05, P < 0.01). Serum PFOS concentrations were also unfavorably correlated with serum HDL cholesterol (OR 1.61 [95% Cl 1.15-2.26], P < 0.05). CONCLUSIONS - Serum PFCs were associated with glucose homeostasis and indicators of metabolic syndrome. Further clinical and animal studies are warranted to clarify putative causal relationships

    Using Complementary and Alternative Medicines to Target the Host Response during Severe Influenza

    Get PDF
    It is now accepted that an overwhelming inflammatory response is the cause of human deaths from avian H5N1 influenza infection. With this in mind we sought to examine the literature for examples of complementary and alternative medicines that reduce inflammation, and to place the results of this search in the context of our own work in a mouse model of influenza disease, using a pharmaceutical agent with anti-inflammatory properties. Two Chinese herbs, Angelica sinensis (Dang Gui) and Salvia miltiorrhiza (Danshen), have been recently shown to protect mice during lethal experimental sepsis via inhibition of the novel inflammatory cytokine High Mobility Group Box 1 protein (HMGB1). Biochanin A, a ligand of the peroxisome proliferator activated receptors (PPAR) alpha and gamma and the active isoflavone in Trifolium pratense (red clover), has anti-inflammatory properties, and thus could be used as an influenza treatment. This is of great interest since we have recently shown that gemfibrozil, a drug used to treat hyperlipidemia in humans and a synthetic ligand of PPAR alpha, significantly reduces the mortality associated with influenza infections in mice. The inflammation-modulating abilities of these natural agents should be considered in light of what is now known about the mechanisms of fatal influenza, and tested as potential candidates for influenza treatments in their own right, or as adjunct treatments to antivirals

    The logic of transcriptional regulator recruitment architecture at cis-regulatory modules controlling liver functions.

    Get PDF
    Control of gene transcription relies on concomitant regulation by multiple transcriptional regulators (TRs). However, how recruitment of a myriad of TRs is orchestrated at cis-regulatory modules (CRMs) to account for coregulation of specific biological pathways is only partially understood. Here, we have used mouse liver CRMs involved in regulatory activities of the hepatic TR, NR1H4 (FXR; farnesoid X receptor), as our model system to tackle this question. Using integrative cistromic, epigenomic, transcriptomic, and interactomic analyses, we reveal a logical organization where trans-regulatory modules (TRMs), which consist of subsets of preferentially and coordinately corecruited TRs, assemble into hierarchical combinations at hepatic CRMs. Different combinations of TRMs add to a core TRM, broadly found across the whole landscape of CRMs, to discriminate promoters from enhancers. These combinations also specify distinct sets of CRM differentially organized along the genome and involved in regulation of either housekeeping/cellular maintenance genes or liver-specific functions. In addition to these TRMs which we define as obligatory, we show that facultative TRMs, such as one comprising core circadian TRs, are further recruited to selective subsets of CRMs to modulate their activities. TRMs transcend TR classification into ubiquitous versus liver-identity factors, as well as TR grouping into functional families. Hence, hierarchical superimpositions of obligatory and facultative TRMs bring about independent transcriptional regulatory inputs defining different sets of CRMs with logical connection to regulation of specific gene sets and biological pathways. Altogether, our study reveals novel principles of concerted transcriptional regulation by multiple TRs at CRMs

    Endoplasmic Reticulum Stress-Induced JNK Activation Is a Critical Event Leading to Mitochondria-Mediated Cell Death Caused by β-Lapachone Treatment

    Get PDF
    β-lapachone (β-lap) is a bioreductive agent that is activated by the two-electron reductase NAD(P)H quinone oxidoreductase 1 (NQO1). Although β-lap has been reported to induce apoptosis in various cancer types in an NQO1-dependent manner, the signaling pathways by which β-lap causes apoptosis are poorly understood.β-lap-induced apoptosis and related molecular signaling pathways in NQO1-negative and NQO1-overexpressing MDA-MB-231 cells were investigated. Pharmacological inhibitors or siRNAs against factors involved in β-lap-induced apoptosis were used to clarify the roles played by such factors in β-lap-activated apoptotic signaling pathways. β-lap leads to clonogenic cell death and apoptosis in an NQO1- dependent manner. Treatment of NQO1-overexpressing MDA-MB-231 cells with β-lap causes rapid disruption of mitochondrial membrane potential, nuclear translocation of AIF and Endo G from mitochondria, and subsequent caspase-independent apoptotic cell death. siRNAs targeting AIF and Endo G effectively attenuate β-lap-induced clonogenic and apoptotic cell death. Moreover, β-lap induces cleavage of Bax, which accumulates in mitochondria, coinciding with the observed changes in mitochondria membrane potential. Pretreatment with Salubrinal (Sal), an endoplasmic reticulum (ER) stress inhibitor, efficiently attenuates JNK activation caused by β-lap, and subsequent mitochondria-mediated cell death. In addition, β-lap-induced generation and mitochondrial translocation of cleaved Bax are efficiently blocked by JNK inhibition.Our results indicate that β-lap triggers induction of endoplasmic reticulum (ER) stress, thereby leading to JNK activation and mitochondria-mediated apoptosis. The signaling pathways that we revealed in this study may significantly contribute to an improvement of NQO1-directed tumor therapies

    Transcriptional activation of the Axl and PDGFR-α by c-Met through a ras- and Src-independent mechanism in human bladder cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A cross-talk between different receptor tyrosine kinases (RTKs) plays an important role in the pathogenesis of human cancers.</p> <p>Methods</p> <p>Both NIH-Met5 and T24-Met3 cell lines harboring an inducible human c-Met gene were established. C-Met-related RTKs were screened by RTK microarray analysis. The cross-talk of RTKs was demonstrated by Western blotting and confirmed by small interfering RNA (siRNA) silencing, followed by elucidation of the underlying mechanism. The impact of this cross-talk on biological function was demonstrated by Trans-well migration assay. Finally, the potential clinical importance was examined in a cohort of 65 cases of locally advanced and metastatic bladder cancer patients.</p> <p>Results</p> <p>A positive association of Axl or platelet-derived growth factor receptor-alpha (PDGFR-α) with c-Met expression was demonstrated at translational level, and confirmed by specific siRNA knock-down. The transactivation of c-Met on Axl or PDGFR-α <it>in vitro </it>was through a <it>ras</it>- and Src-independent activation of mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK/ERK) pathway. In human bladder cancer, co-expression of these RTKs was associated with poor patient survival (<it>p </it>< 0.05), and overexpression of c-Met/Axl/PDGFR-α or c-Met alone showed the most significant correlation with poor survival (<it>p </it>< 0.01).</p> <p>Conclusions</p> <p>In addition to c-Met, the cross-talk with Axl and/or PDGFR-α also contributes to the progression of human bladder cancer. Evaluation of Axl and PDGFR-α expression status may identify a subset of c-Met-positive bladder cancer patients who may require co-targeting therapy.</p

    Senescent cells as a source of inflammatory factors for tumor progression

    Get PDF
    Cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, therefore constituting a potent tumor suppressive mechanism. Recent studies show that, despite the beneficial effects of cellular senescence, senescent cells can also exert harmful effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescent-associated secretory phenotype (SASP), which entails a striking increase in the secretion of pro-inflammatory cytokines. Here, we summarize our knowledge of the SASP and the impact it has on tissue microenvironments and ability to stimulate tumor progression
    corecore