693 research outputs found

    Neisseria gonorrhoeae challenge increases matrix metalloproteinase-8 expression in fallopian tube explants

    Get PDF
    Indexación: Scopus.Background: Neisseria gonorrhoeae (Ngo) is the etiological agent of gonorrhea, a sexually transmitted infection that initially infects the female lower genital tract. In untreated women, the bacteria can ascend to the upper genital reproductive tract and infect the fallopian tube (FTs), which is associated with salpingitis and can lead to impaired FT function and infertility. The extracellular matrix (ECM) plays an important role in cell migration and differentiation in the female genital tract, and some pathogens modify the ECM to establish successful infections. The ECM is regulated by matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs), their endogenous inhibitors; MMP deregulation causes pathological conditions in a variety of tissues. Results: The aim of this work was to analyze the expression and localization of MMP-3, MMP-8, MMP-9, and TIMP-1 in FT explants during Ngo infection using real-time PCR, immunohistochemistry, zymography and ELISA. No significant variations in MMP-3, MMP-9, and TIMP-1 transcript levels were observed. In contrast, a significant increase (p < 0.05) was observed for MMP-8 expression and was accompanied by stromal immunoreactivity in infected explants. ELISA results supported these findings and showed that MMP-8 release increased upon gonococcal infection. Conclusions: Our results indicate that gonococcal infection induces increased MMP-8 expression, which might contribute to FT damage during infection. © 2017 Juica, Rodas, Solar, Borda, Vargas, Muñoz, Paredes, Christodoulides and Velasquez.https://www.frontiersin.org/articles/10.3389/fcimb.2017.00399/ful

    Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach

    Get PDF
    This study reviews soil water balance (SWB) model approaches to determine crop irrigation requirements and scheduling irrigation adopting the FAO56 method. The Kc-ETo approach is discussed with consideration of baseline concepts namely standard vs. actual Kc concepts, as well as single and dual Kc approaches. Requirements for accurate SWB and appropriate parameterization and calibration are introduced. The one-step vs. the two-step computational approaches is discussed before the review of the FAO56 method to compute and partition crop evapotranspiration and related soil water balance. A brief review on transient state models is also included. Baseline information is concluded with a discussion on yields prediction and performance indicators related to water productivity. The study is continued with an overview on models development and use after publication of FAO24, essentially single Kc models, followed by a review on models following FAO56, particularly adopting the dual Kc approach. Features of dual Kc modeling approaches are analyzed through a few applications of the SWB model SIMDualKc, mainly for derivation of basal and single Kc, extending the basal Kc approach to relay intercrop cultivation, assessing alternative planting dates, determining beneficial and nonbeneficial uses of water by an irrigated crop, and assessing the groundwater contribution to crop ET in the presence of a shallow water table. The review finally discusses the challenges placed to SWB modeling for real time irrigation scheduling, particularly the new modeling approaches for large scale multi-users application, use of cloud computing and adopting the internet of things (IoT), as well as an improved wireless association of modeling with soil and plant sensors. Further challenges refer to the use of remote sensing energy balance and vegetation indices to map Kc, ET and crop water and irrigation requirements. Trends are expected to change research issues relative to SWB modeling, with traditional models mainly used for research while new, fastresponding and multi-users models based on cloud and IoT technologies will develop into applications to the farm practice. Likely, the Kc-ETo will continue to be used, with ETo from gridded networks, re-analysis and other sources, and Kc data available in real time from large databases and remote sensinginfo:eu-repo/semantics/publishedVersio

    Caracterización funcional de la estepa magallánica y su transición a matorral de Mata Negra (Patagonia austral)a partir de imágenes de resolución espacial intermedia

    Get PDF
    La PPNA es indicadora de la biomasa disponible y se relaciona con la capacidad de carga de los sistemas pastoriles extensivos. Es posible estimarla a partir de índices de vegetación obtenidos de sensores remotos. El objetivo de esta tesis fue caracterizar funcional y estructuralmente una estepa graminosa (Estepa Magallánica Seca-EMS)y una arbustiva ((Matorral de Mata Negra-MMN)de la Patagonia Austral. En 18 sitios se midió cobertura vegetal (2004 y 2010)y biomasa por estratos (2004 y 2005). Se obtuvieron 8 índices de vegetación a partir de imágenes MODIS (resolución 16 días, 250m, 2003-2010). Se caracterizaron las comunidades vegetales (PCA). Se extrajeron los índices en áreas de 3x3 pixeles y correlacionaron con la biomasa y cobertura medidas a campo. Ambas áreas están dominadas por especies perennes con una cobertura de 66 por ciento En MMN la mitad de este valor corresponde a arbustos. La biomasa aérea total fue de aproximadamente 1000 Kg MS/ha en EMS y el triple en MMN, en ambos casos un 33 por ciento corresponde a material verde. Los índices presentan patrones temporales similares entre áreas, con un máximo a fines de octubre, aunque NDVI y RVI mostraron un segundo pico en abril. El MMN posee mayor biomasa pero los índices fueron 20 por ciento menores que EMS. El NDVI caracterizó mejor la vegetación de la EMS, con correlaciones de 0,69, 0,43 y 0,48 con la fracción verde de biomasa total, intercoironal y coironal, respectivamente. Reflejó además el crecimiento otoñal característico de ambientes con régimen isohigro, limitados por temperatura y humedad. Por el contrario, en el MMN, los índices espectrales y los indicadores de biomasa no correlacionaron. Los valores de regresión obtenidos indican que la evaluación de biomasa disponible a partir de sensores remotos es solo posible en uno de los ecosistemas y muestran que para estimar la receptividad, seria necesaria una calibración local de los índices, dado que la estructura de la vegetación modifica los valores espectrales

    Reference grass evapotranspiration with reduced data sets: parametrization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables

    Get PDF
    The computation of the grass reference evapotranspiration with the FAO56 Penman-Monteith equation (PM-ETo) requires data on maximum and minimum air temperatures (Tmax, Tmin), actual vapour pressure (ea), shortwave solar radiation (Rs), and wind speed at 2m height (u2). Nonetheless, related datasets are often not available, are incomplete, or have uncertain quality. To overcome these limitations, several alternatives were considered in FAO56, while many other procedures were tested and proposed in very numerous papers. The present study reviews the computational procedures relative to predicting the missing variables from temperature, i.e., the PM temperature approach (PMT), and estimating ETo with the Hargreaves-Samani (HS) equation. For the PMT approach, procedures refer to predicting: (a) the dew point temperature (Tdew) from the minimum or the mean air temperature; (b) shortwave solar radiation (Rs) from the air temperature difference (TD=Tmax-Tmin) combined with a calibrated radiation adjustment coefficient (kRs); and (c) wind speed (u2) using a default value or a regional or local average. The adequateness of computing Tdew from air temperature was reassessed and the preference for using an average u2 has been defined. To ease the estimation of Rs, for the PMT approach and the coefficient of the HS equation, multiple linear regression equations for predicting kRs were developed using local averages of the temperature difference (TD), relative humidity (RH) and wind speed as independent variables. All variables were obtained from the Mediterranean set of CLIMWAT climatic data. Two types of kRs equations were developed: climate-focused equations specific to four climate types - humid, sub-humid, semi-arid, and hyper-arid and arid -, and a global one, applicable to any type of climate. The usability of the kRs equations for the PMT and HS methods was assessed with independent data sets from Bolivia, Inner Mongolia, Iran, Portugal and Spain, covering a variety of climates, from hyper-arid to humid. With this purpose, ETo estimated with PMT and HS (ETo PMT and ETo HS) were compared with PM-ETo computed with full data sets to evaluate the usability of the kRs equations. Adopting the climate-focused kRs equations with ETo PMT, the RMSE averaged 0.59, 0.64, 0.65 and 0.72mm d−1 for humid, sub-humid, semi-arid, and arid and hyper-arid climates, respectively, while the RMSE values relative to ETo HS when using the respective climate-focused kRs equations averaged 0.58, 0.60, 0.60 and 0.69mm d−1 for the same climates. These results are similar to those obtained with the kRs global equation. The accuracy of the PMT approach when using the kRs equations was also evaluated when one, two, or all three Tdew, Rs and u2 variables are missing and the resulting goodness-of-fit indicators demonstrated the advantage of the combined use of observed and estimated weather variables. The usability of the kRs equations for an efficient parameterization of both the PMT approach and the HS equation is demonstrated with similar performance of PMT and HS procedures for a variety of climates. Because the ETo HS results depend almost linearly on temperature, the PMT approach, using estimates of the weather variables, is able to mitigate those temperature impacts, which trends may be contrary to those of other variables that determine ETo. The clear advantage of the PMT approach is that it allows using the available weather data in combination with estimates of the missing variables, which provides for more accurate ETo computationsinfo:eu-repo/semantics/publishedVersio

    Gestión de colecciones del Museo del Hidalgo

    Full text link
    SIAM. Series Iberoamericanas de Museología. Año 3, Vol.

    Actual and standard crop coefficients for semi‑natural and planted grasslands and grasses: a review aimed at supporting water management to improve production and ecosystem services

    Get PDF
    Natural and planted grasslands play a very important role in agriculture as source of various ecosystem services, including carbon sequestration and biodiversity, and are responsible for a large fraction of agricultural water use in rainfed and irrigated fields. It is, therefore, relevant to precisely know their water use and vegetation requirements with consideration of relevant climate, from extremely cold, dry, with long winter seasons, to tropical humid and hot climates, thus with a large variability of vegetation. Semi-natural grasslands are basically used for grazing and mainly refer to highland pastures and meadows, steppes, savannas, pampas, and mixed forest systems. The FAO method to compute crop (vegetation) evapotranspiration (ETc) through the product of a crop coefficient (K c ) by the reference evapotranspiration (ETo ) is adopted. The selected papers were those where actual ETc (ETc act ) was derived from field observations and ETo was computed with the FAO56 definition, or with another method that could be referred to the former. Field derived ETc act methods included soil water balance, Bowen ratio and eddy covariance measurements, as well as remote sensing vegetation indices or surface energy balance models, thus reviewed Kc act (ETc act/ETo) values were obtained from field data. These Kc act refer to initial, mid-season and end season (K c act ini , K c act mid , K c act end ) when reported values were daily or monthly; otherwise, only average values (K c act avg ) were collected. For cases relative to cold or freezing winters, data refer to the warm season only. For grasses cut for hay, K c act ini , Kc act mid , and Kc act end refer to a cut cycle. Kc act values rarely exceeded 1.25, thus indicating that field measurements reported did respect the available energy for evaporation. Overall, K c act mid for semi-natural grasslands in cold climates were lower than those in hot climates except when available water was high, with K c act mid for meadows and mountain pastures gener- ally high. Steppes have K c act mid values lower than savannas. Grasses commonly planted for hay and for landscape generally showed high K c act mid values, while a larger variability was observed with grasses for grazing. The collected K c act values were used to define standard Kc values for all grassland and grasses. Nevertheless, the tabulated Kc act are indicative values of K c to be used for actual water management purposes and/or irrigation scheduling of planted grasslands. It is expected that a better knowledge of the standard and/or indicative K c values for a wide variety of grasslands and grasses will support better management aimed to improve grass productivity and ecosystem services, including biodiversity and carbon sequestrationinfo:eu-repo/semantics/publishedVersio

    Evapotranspiration partition and crop coefficients of Tifton 85 bermudagrass as affected by the frequency of cuttings. Application of the FAO56 Dual Kc Model

    Get PDF
    ArticleThis study aims to model the impacts of the frequency of cuttings of Tifton 85 bermudagrass on the dynamics of evapotranspiration (ETc) and to derive crop coefficients appropriate for grass water management. Two seasons of experimentation were used with four different cutting treatments which provided field data for calibration and validation of the soil water balance model SIMDualKc for all treatments. Cuttings were performed after the cumulative growth degree days (CGDD) attained 124 C, 248 C and 372 C, thus from short to very long intervals between cuttings. SIMDualKc adopts the Food and Agriculture Organization (FAO) dual Kc approach for partitioning ET into crop transpiration and soil evaporation, thus providing for an assessment of their dynamics. All treatments were irrigated to avoid water stress. Grass ETc was modelled adopting a Kcb curve to describe the ET variation for each cutting cycle, that is, using the FAO Kc curve that consists of a series of Kcb curves relative to each cutting cycle. Each individual Kcb curve consisted of three segments constructed when knowing the Kcb values at the initial, at the end of rapid growth, and at cutting, respectively Kcb ini, Kcb gro and Kcb cut. These Kcb values were first estimated using the equation relating Kcb to the density coefficient (Kd), which is computed from the fraction of ground cover (fc) and canopy height (h) at the same dates. The goodness of fit indicators relative to the calibration and validation of the SIMDualKc model were rather good, with the normalized root mean square error (RMSE) ranging from 4.0% to 6.7% of the mean available soil water. As an example, the standard Kcb values obtained after model calibration relative to the cuttings treatment with CGDD of 248 C are: Kcb ini = 0.86, Kcb gro = 0.91 and Kcb cut = 0.96. Kcb values were smaller when the frequency of cuts was larger because h and fc were smaller, and were larger for reduced cuttings frequency since h and fc were then larger. Because the soil was wet most of the time, the soil evaporation Ke varied little but its value was small due to the combined effects of the fraction of crop cover and plant litter covering the soil. The values of Kc = Kcb+Ke also varied little due to the influence of Ke and the Kc curve obtained a form different from the Kcb curves, and a single Kc value was adopted for each cutting frequency, e.g., Kc = 0.99 for the treatment with CGDD of 248 C. Results of the soil water balance have shown that, during the experimental periods, likely due to the effects of the El Niño Southern Oscillation (ENSO), runoff and deep percolation exceeded ETc. Moreover, the soil evaporation ratio was small: 14% in case of frequent cuttings and less for more spaced cuttings, thus with a transpiration ratio close to 90%, which indicates a very high beneficial consumptive water use, mainly when cuttings are not very frequentinfo:eu-repo/semantics/publishedVersio

    Assessing Spatio-Temporal Dynamics of Deep Percolation Using Crop Evapotranspiration Derived from Earth Observations through Google Earth Engine

    Get PDF
    Excess irrigation may result in deep percolation and nitrate transport to groundwater. Furthermore, under Mediterranean climate conditions, heavy winter rains often result in high deep percolation, requiring the separate identification of the two sources of deep percolated water. An integrated methodology was developed to estimate the spatio-temporal dynamics of deep percolation, with the actual crop evapotranspiration (ETc act) being derived from satellite images data and processed on the Google Earth Engine (GEE) platform. GEE allowed to extract time series of vegetation indices derived from Sentinel-2 enabling to define the actual crop coefficient (Kc act) curves based on the observed lengths of crop growth stages. The crop growth stage lengths were then used to feed the soil water balance model ISAREG, and the standard Kc values were derived from the literature; thus, allowing the estimation of irrigation water requirements and deep drainage for independent Homogeneous Units of Analysis (HUA) at the Irrigation Scheme. The HUA are defined according to crop, soil type, and irrigation system. The ISAREG model was previously validated for diverse crops at plot level showing a good accuracy using soil water measurements and farmers’ irrigation calendars. Results show that during the crop season, irrigation caused 11 3% of the total deep percolation. When the hotspots associated with the irrigation events corresponded to soils with low suitability for irrigation, the cultivated crop had no influence. However, maize and spring vegetables stood out when the hotspots corresponded to soils with high suitability for irrigation. On average, during the off-season period, deep percolation averaged 54 6% of the annual precipitation. The spatial aggregation into the Irrigation Scheme scale provided a method for earth-observation-based accounting of the irrigation water requirements, with interest for the water user’s association manager, and at the same time for the detection of water losses by deep percolation and of hotspots within the irrigation schemeinfo:eu-repo/semantics/publishedVersio

    Centro juvenil de diagnostico y rehabilitación para la reinserción del menor infractor en la Ciudad de Ica

    Get PDF
    La presente tesis se basa en el desarrollo de un proyecto arquitectónico, el cual comprende el diseño de un centro juvenil de diagnóstico y rehabilitación para menores infractores de la ley penal en modalidad cerrada, y que a su vez comprende la incorporación de la modalidad abierta (Servicio de Orientación al Adolescente – S.O.A.) y de un Centro de Educación Básico Alternativo (C.E.B.A.) ubicado en la ciudad de Ica. El objetivo del proyecto es generar una eficiente infraestructura de carácter educativo-correctivo, brindando a la ciudad con un espacio de acogida necesario, fomentando el control, y resultando de este modo en una rehabilitación e integración social de los menores. La metodología se basa en un análisis de la problemática de la ciudad de Ica desde la perspectiva del servicio correccional conductual de la población juvenil. A partir de la información cualitativa y cuantitativa desarrollada, se planteará una ubicación óptima y la programación determinando la capacidad del proyecto. Los recursos empleados se basan en los criterios y las normas que estipula el Reglamento Nacional de Edificaciones, también en materia de Educación, sistemas de evacuación, condiciones de seguridad, entre otros datos y documentos referentes que nos resulten relevantes. A continuación, se presentará el desarrollo arquitectónico, indicando sus características espaciales, funcionales y ambientales en concordancia con la idea conceptual. Y se finalizará con la presentación de las especialidades correspondientes al desarrolloThis test is based on the development of an architectural project, which includes the design of a juvenile diagnostic and rehabilitation center for juvenile offenders of the criminal law in closed mode, and which in turn includes the integration of open flexibility (Adolescent Orientation Service - SOA) and an Alternative Basic Education Center (CEBA) located in the city of Ica. The objective of the project is to generate an efficient infrastructure of an educational-corrective nature, providing the city with a necessary reception space, promoting control, and thus resulting in the rehabilitation and social integration of minors. The methodology is based on an analysis of the problem of the city of Ica from the perspective of the behavioral correctional service of the youth population. Based on the qualitative and quantitative information developed, an optimal location and programming will be considered determining the capacity of the project. The resources used are based on the criteria and standards stipulated in the National Building Regulations in education, evacuation systems, security conditions, among other data and documents regarding the relevant results. Next, the architectural development will be presented, indicating its spatial, functional and environmental characteristics in accordance with the conceptual idea. In addition, it will end with the presentation of the specialties corresponding to the development.Tesi

    Imagenología e Inteligencia Artificial y Covid 19, para más efectividad y calidad en los servicios

    Get PDF
    Imaging and Artificial Intelligence and Covid 19, for more effectiveness and quality in servicesImagenología e Inteligencia Artificial y Covid 19, para más efectividad y calidad en los servicio
    corecore