REVIEW

Actual and standard crop coefficients for semi-natural and planted grasslands and grasses: a review aimed at supporting water management to improve production and ecosystem services

Luis S. Pereira¹ · Paula Paredes¹ · Dalila Espírito-Santo¹ · Maher Salman²

Received: 17 February 2023 / Accepted: 16 May 2023 $\ensuremath{\mathbb{O}}$ The Author(s) 2023

Abstract

Natural and planted grasslands play a very important role in agriculture as source of various ecosystem services, including carbon sequestration and biodiversity, and are responsible for a large fraction of agricultural water use in rainfed and irrigated fields. It is, therefore, relevant to precisely know their water use and vegetation requirements with consideration of relevant climate, from extremely cold, dry, with long winter seasons, to tropical humid and hot climates, thus with a large variability of vegetation. Semi-natural grasslands are basically used for grazing and mainly refer to highland pastures and meadows, steppes, savannas, pampas, and mixed forest systems. The FAO method to compute crop (vegetation) evapotranspiration (ET_c) through the product of a crop coefficient (K_o) by the reference evapotranspiration (ET_o) is adopted. The selected papers were those where actual ET_c ($ET_{c act}$) was derived from field observations and ET_o was computed with the FAO56 definition, or with another method that could be referred to the former. Field derived ET_{c act} methods included soil water balance, Bowen ratio and eddy covariance measurements, as well as remote sensing vegetation indices or surface energy balance models, thus reviewed K_{c act} (ET_{c act}/ET_o) values were obtained from field data. These K_{c act} refer to initial, mid-season and end season (K_{c act ini}, K_{c act mid}, K_{c act end}) when reported values were daily or monthly; otherwise, only average values (K_{c act avg}) were collected. For cases relative to cold or freezing winters, data refer to the warm season only. For grasses cut for hay, K_{c act ini}, K_{c act mid}, and K_{c act end} refer to a cut cycle. K_{c act} values rarely exceeded 1.25, thus indicating that field measurements reported did respect the available energy for evaporation. Overall, K_{c act mid} for semi-natural grasslands in cold climates were lower than those in hot climates except when available water was high, with K_{c act mid} for meadows and mountain pastures generally high. Steppes have $K_{c act mid}$ values lower than savannas. Grasses commonly planted for hay and for landscape generally showed high K_{c act mid} values, while a larger variability was observed with grasses for grazing. The collected K_{c act} values were used to define standard K_c values for all grassland and grasses. Nevertheless, the tabulated K_{c act} are indicative values of K_c to be used for actual water management purposes and/or irrigation scheduling of planted grasslands. It is expected that a better knowledge of the standard and/or indicative Kc values for a wide variety of grasslands and grasses will support better management aimed to improve grass productivity and ecosystem services, including biodiversity and carbon sequestration.

Introduction

Grassland is a main biome in Earth, occurring in every country or region, and having a great variability in relation to climate, landforms and elevation, environmental conditions, use and management. It includes rangelands, shrublands, pastureland, and cropland sown with pasture. Regional descriptions of grasslands of various types are provided in the FAO book edited by Suttie Reynolds Batello (2005). A recent classification and world mapping of grassland types, also referring to their biodiversity, has been provided by Dixon et al. (2014). The analysis by Seo (2021) reports many famed grasslands including the Pampas, the Llanos,

Paula Paredes pparedes@isa.ulisboa.pt

¹ LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal

² Land and Water Division, Food and Agriculture Organization (FAO), Viale delle Termi di Caracalla, 00153 Rome, Italy

the Prairie, the Steppe, the Savannas, and the Rangelands. The importance of grasslands is well recognized.

Grasslands account for 26% of the world's global icefree land area (Lorenz and Lal 2018), corresponding to the second greatest land use in the Earth (Lü et al. 2022), while forest land accounts for about 30%, and cultivated land for 12%. However, other authors considered that "grassland is the largest terrestrial biome on Earth" (Hobohm et al. 2021), accounting for up to 40% of the terrestrial area (Petermann and Buzhdygan 2021; Seo 2021). There are different concepts of grassland, e.g., with Dixon et al. (2014) defining grassland as a non-wetland type with at least 10% vegetation cover, dominated or co-dominated by graminoid and forb growth forms, and where the trees form a single-layer canopy with either less than 10% cover and 5 m height (temperate) or less than 40% cover and 8 m height (tropical). However, these limitations let out several semi-natural grasslands such as those of Mediterranean regions. Hobohm et al. (2021) state that grasslands support the livelihoods of 1 billion people with pastoralism (rising of livestock) with 20 million km² of grassland used for livestock feed production and for a variety of ecosystem services. Lü et al. (2022) pointed out the case of China, which has the second largest grassland area in the world, representing about 41% of China's national territorial area. Mongolia has a smaller grassland area, but it corresponds to 83% of its land area (Angerer et al. 2008). The overall importance of grassland is therefore evidenced, which justifies the attention of many researchers to improve their use for livestock feed production and for ecosystem services.

The research studies relative to evapotranspiration (ET) cover many planted and semi-natural grasslands, as well as grasses, graminoids, and legumes used for planted grasslands and lawns. ET studies very often aim at assessing climate change impacts and future coping measures, or are relative to hydrologic and water resources assessments, particularly when referring to semi-natural grasslands. Studies focusing on management mostly refer to planted permanent grasslands for hay and grazing, namely when irrigated, and include water-grass-yield relationships. Research on grassland management focusing on ecosystem services is rare but many studies intend to recognize specific ecosystem services. It is well known that grasslands play an important role in ecological environment protection and animal husbandry development (Lü et al. 2022), but ecosystem services commonly identified often have relations with water despite these aspects are evaluated with a low value degree (Kang et al. 2020; Liu et al. 2022a). High valued ecosystem services refer to biodiversity, carbon sequestration, soil erosion control, and soil fertility enhancement, mainly when grass legumes are used. Runoff is retarded by the vegetation, thus favoring soil infiltration, which is also larger because grass cover impedes crust formation, therefore increasing water storage in the soil and improving water availability. Other commonly reported services include purifying chemical fertilizers and pesticides, and regulating groundwater, mainly in lowlands, while contributing to climate regulation, and extremes mitigation are also mentioned. Recreation, snow sports, and landscape aesthetics are extremely important ecosystems services in mountain areas of Europe and northern America, contrarily to other regions. Depending on the type and management of the grasslands, biodiversity and carbon fixation are quite relevant services, often object of research, namely in relation with the degradation of grasslands (Lal 2018; Hobohm et al. 2021).

According to Lal (2018), anthropogenic activities have affected about 40% of earth's surface, and almost 92% of the natural grasslands and ecosystems, which have been converted to human use as grazing and croplands. Bonanomi et al. (2019) added that protecting forests at the expense of semi-natural grasslands can lead to the open-habitat loss of the Brazilian Cerrado biome. Hobohm et al. (2021) referred, as causes for degradation of grasslands, the expansion of urban areas, tree plantations, use of mineral fertilizers and pesticides, suppression of natural fires, over- and undergrazing, and intensification of use. Reforms of agri-environmental policies have aimed at incorporating environmental objectives into agriculture, such as biodiversity and carbon (C) sequestration in grasslands. However, many threats remain, "in both the now-fragmented areas of agriculturally improved productive lowlands" and in the marginal areas of Europe, where traditional systems are disappearing, and lands are abandoned (Hopkins and Holz 2006). Climate change, world population growth, and uncertainties over energy and water call for more focused research.

Land use conversion has depleted the terrestrial ecosystem C stock with major loss of the vegetation and soil C stock (Lal 2018; Lorenz and Lal 2018). Conversion to a restorative land use and adoption of good management practices may create a positive soil/ecosystem C budget that can lead to improved C sequestration rates in pastures, permanent crops, and lawns, and resulting from the restoration of soils prone to water erosion, also operated with grasslands. The adoption of best management practices-continuous ground cover, complex rotations, integrated nutrient management and no soil disturbance-can protect the soil organic carbon (SOC) stock and enhance ecosystem services (Lal 2018). Bai and Cotrufo (2022) reported that grasslands store near one-third of the global terrestrial C stocks, can act as an important soil carbon sink, with plant diversity increasing SOC storage.

Improved grazing management and biodiversity can provide C gains in global grasslands. Zhao et al. (2017) indicated that temperature, grazing intensity, and water availability are the major factors influencing SOC in grasslands of Inner Mongolia, China, while temperature and soil pH are more influencing in Mongolia, where grassland C sequestration is higher. Soussana et al. (2010) stated that soil carbon sequestration is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector and that grassland C sequestration has a strong potential to contribute for mitigating the GHG balance of ruminant production systems. However, CH₄ and N₂O emissions from livestock sector needs to be reduced and current SOC stocks preserved. More recently, Viglizzo et al. (2019) stated that grasslands sequester more carbon than forests because they are less sensitive to water stress and wildfires. This resilience of grasslands helps to preserve sequestered terrestrial C and prevent it from returning the atmosphere. The UN Decade on Ecosystem Restoration does not encourage afforestation of remaining semi-natural grassland and savannah ecosystems (Dudley et al. 2020) but proposes adopting a set of properly planned ecological, cultural, and social approaches for successful grassland and savannah restoration.

Enhancing biodiversity implies a good identification of grassland specialist species and of causes for favoring alien species richness. Noda et al. (2022) report that mowing is effective for the conservation of grassland specialists' diversity, but it is required to pay attention to the invasion of alien species from adjacent areas. Biodiversity in rangelands is decreasing due to the intensification of their use for production (Alkemade et al. 2013). Extensively managed grasslands are recognized globally for their high biodiversity and their social and cultural values (Bengtsson et al. 2019). These authors propose that "ecosystem service and food security research and policy should give higher priority to understand how grasslands can be managed for fodder and meat production alongside other ecosystem service". Texeira et al. (2015) reported that C gains are a key aspect of ecosystem functioning. In the Pampa biome, more than 80% of the species recorded by 1930 are still present, but the number of exotics has seven-fold increased (Burkart et al. 2011). In that case, the water availability was the main driving factor of floristic heterogeneity.

The brief review above definitely shows the importance of the grassland ecosystems at the world scale, as well as the importance of management for grassland to achieve improved production and ecosystem services, particularly C sequestration and biodiversity, and to mitigate and adapt to climate change. Grasslands management require knowledge of evapotranspiration (ET) as a main component of the water balance and as the driving force of plants transpiration and growth. Thus, considering the good number of published ET studies, it has been possible to perform a review aimed at extending the tabulated values of FAO56 (Allen et al. 1998), hence focusing on various types of grasslands, semi-natural ecosystems, and grasses. The review focused on the crop coefficient as defined by the FAO56 method (Allen et al. 1998), where vegetation (crop) ET (ET_c) is computed as $\text{ET}_{c} = \text{K}_{c} \text{ET}_{o}$, product of the reference ET (ET_o), also known as potential ET (PET, assumed equal to ET_o), by the specific (vegetation) crop coefficient (K_c). Thus, the articles published after 1998 were targeted. The FAO56 method (Allen et al. 1998) was the most often used in the papers reviewed, is the most common and easy method used for the generality of agricultural crops in the field practice, and their K_c are tabulated in FAO56. For these reasons, and as an opportunity to update and expand the Tables in FAO56, the FAO method was selected for the current review.

Nevertheless, other approaches to compute ET_c were adopted in the reviewed studies, which also computed ET_o and actual (ET_{c act}), thus allowing to obtain $K_{c act} = ET_{c act}$ ET_o. Therefore, the current paper shows the tabulated values of K_{c act} for irrigated and non-irrigated grasslands, meadows, and pastures, for semi-natural vegetation consisting of steppes, savannas and other ecosystems, and tabulated K_{c act} values for grasses, with distinction of their use for animal production or for landscape, presented in Sections "Seminatural and planted grasslands", "Semi-natural grassland ecosystems" and "Grasses for hay, grazing and landscape", respectively. The analysis of the tabulated $K_{c act}$ allowed to derive standard transferable K_c values for the considered grassland ecosystems and grasses, which are presented in Section "Standard crop coefficients". Therefore, the current review consists of a full update and extension of standard K_c values proposed in the FAO56 guidelines for computing crop evapotranspiration aimed at supporting improved field and water management of grasslands, and more accurate water balances and hydrologic studies, thus easing the consideration of water balances in studies relative to ecosystem services where water plays a role.

Materials and methods

The review aimed at collecting the available $K_{c act}$ for grasslands and was performed through the widest possible search focused on papers reporting on actual K_c obtained from field measurements of grasses and grasslands actual evapotranspiration (ET_{c act}).

The search was performed in Science Direct and through the on-line pages of various journals, as well as using the bibliography lists of selected articles. Several languages were considered: English, Spanish, Portuguese, French, Italian, and German. In addition to the keywords evapotranspiration and crop coefficients, numerous other keywords were used including grass, semi-natural grasslands, planted grasslands, pastures, meadows, rangelands, steppe, savanna, prairie, shrubland, pampas, chaparral, and *páramos*. Only full articles were reviewed. The criteria used for the selection of the papers from where single and basal $K_{c act}$ values were collected consist of the following:

- (1) The papers should be of good/acceptable quality, without preference of journals where published.
- (2) The K_{c act} values should have been derived from adequate field research, exceptionally from solid review papers.
- (3) The field methods should be well described and readable by any interested reader, and should refer to consistent methodologies that provide for computing the ET_{c act}, including when less common empirical field methods were used.
- (4) The grass reference ET_o should be computed with full daily data sets using the FAO Penman Monteith equation (FAO-PM-ET_o). When a different equation was used, including when data sets with missing variables were available, either the ratio of the equation used to the FAO-PM-ET_o was commonly known, or information was available from the authors; a conversion factor of 1.15 was used when the ASCE-PM ET_r equation for alfalfa (Allen et al. 2006) or the Penman equation (Doorenbos and Pruitt 1977) were adopted.
- (5) Under the conditions referred before, the K_{c act} values were provided by the authors in Tables, graphics or in the text; for a few cases, when only ET_{c act} and ET_o were provided, K_{c act} (average) values were computed. Otherwise, data could not be considered.
- (6) Another important aspect was relative to the description of the studied grassland; when information was too brief the paper was excluded; nevertheless, depending upon the rarity of the crop's information, data from papers where that information was less good, namely on botanical data, were used.
- (7) In addition, the field and computation methods should be sufficiently descriptive, in line with the recommendations by Allen et al. (2011), to understand if the reported methods provided for reliable ET_{c act} data. Otherwise, the study was not considered.

Among research studies on grasslands ET, many did not use the FAO56 method but, as for the generality of other methods, required specific field procedures. Field research methods included: the soil-water balance (SWB) based on observations of the soil water content (SWC) using soil sampling and various types of sensors; the field or catchment hydrologic water balance (HWB); the Bowen ratio energy balance (BREB); the eddy covariance system (EC); weighing and drainage lysimeters (WL and DL); mini or micro lysimeters (ML) to assess soil evaporation; and diverse but consistent empirical methods such as testing different K_c values against observed yields. Most field methods are described and analyzed for accuracy by Allen et al. (2011).

The methods used to compute and assess ET_{c act}, in addition to the FAO56 method (Allen et al. 1998), included the Penman method (Doorenbos and Pruitt 1977), the Penman-Monteith combination equation (Montheith 1965; PM), the Priestley-Taylor equation (Priestley and Taylor 1972; PT), and the double source method of Shuttleworth and Wallace (Shuttleworth and Wallace 1985; SW). The PM, the PT and the SW equations require specific field methods different from the SWB. Several studies were performed with support of properly calibrated models. The most used software models comprise SIMDualKc (Rosa et al. 2012; Pereira et al. 2020) and HYDRUS (Simunek et al. 2016). In addition, remote sensing (RS) was largely used mainly in the last decade. Both surface energy balance models such as METRIC, SEBAL, and SEBS (Allen et al. 2007), and RS vegetation indices such as NDVI (Glenn et al. 2011; Pôças et al. 2020), were adopted. A list of symbols, acronyms and abbreviations is included in Appendix B.

The tables for grasslands $K_{c act}$ were divided into three main groups with each one divided again according to the types of grasslands, and where the reviewed papers are "grouped" following the ecosystems type and/or farm use:

- 1. Semi-natural and planted grasslands and meadows, divided into semi-natural, non-irrigated and irrigated,
- Semi-natural grassland ecosystems, comprising savannas, steppes, and other semi-natural ecosystems such as mixed forests and shrublands, and
- 3. Grasses for hay, for grazing and for landscape uses.

The tables provide information on the location of the studied sites, the authors, and the main grasses and the actual crop coefficients, and the conditions corresponding to the determination of the presented actual K_c values for the initial, mid-season and end season ($K_{c ini}$, $K_{c mid}$ and $K_{c end}$ respectively, Fig. 1), following the FAO56 definitions (Allen et al. 1998). The information provided aims at easing the transferability of K_c values, including when users consult the original papers.

Information on climate, the methods used for determining ET_{o} and $\text{ET}_{c \text{ act}}$, the management adopted, the growing season and water supply are given in Appendix A, complementing data in Tables 1, 2, and 3.

The selected papers designate grasses, shrubs, and trees with the scientific or the common names. In this review paper, the scientific names are used. To ease recognizing the plants, a Table in Appendix C lists the scientific names used and the corresponding common name when known.

The tabulated actual K_c values are not adjusted to climate (Allen et al. 1998) because grasslands very often have a small height, thus small variation of K_c with wind speed and

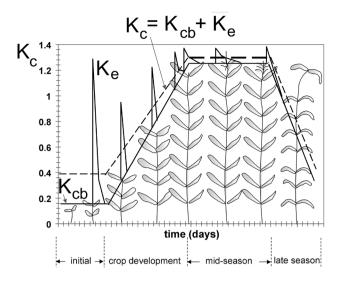


Fig.1 Typical K_c/K_{cb} curves for a grassland used for grazing or seed (FAO56, Allen et al. 1998)

relative humidity. In addition, users generally know well that the transferability of K_c information is related to the type of grassland and the environmental conditions and, therefore, they are able to well transfer the tabulated values adopting small empirical corrections to K_c , of 5–10%, which values may slightly increase K_c in dry and windy conditions, and lower K_c in humid and calm environments as recommended in FAO56 (Allen et al. 1998).

The dual K_c approach proposed in FAO56 (Fig. 1a) was used by a few authors who reported basal crop coefficients (K_{cb}) representing the transpiration (T_c) component of ET, i.e., $K_{cb} = T_c/ET_o$ (Allen et al. 1998; Pereira et al. 2020). The actual K_{cb} values are tabulated together with the single K_c act but using a bold and italic format of the characters. Since grasslands typically have a large density of plants well shading the ground, it results in a small soil evaporation (Paredes et al. 2018) and quite small differences to the single K_c , thus concluding that information on single averaged K_c is definitely sufficient for further assessment of water use and water balance.

Seminatural and planted grasslands

This section refers to actual K_c for the various types of grasslands that are used for animal feeding through grazing and hay, or to produce grass seed. The generic grasslands name is used. The first group of grasslands consist of the irrigated and non-irrigated grasslands, the latter being the most common ones, that include numerous semi-natural grasslands, which water supply is precipitation or, less often, high groundwater tables.

Semi-natural and planted non-irrigated grasslands

Table 1 shows $K_{c act}$ for semi-natural grasslands, meadows, and pastures in high elevation sites with identification of the field study location, reference of selected articles, the floristic composition, and conditions relative to the crop when the $K_{c act}$ were derived. Semi-natural grasslands occur in various cold and temperate climate ecosystems, as meadows in high elevation mountains of the Qilian Mountains and the Tibetan Plateau, the Andean *páramos* of the Equator, or the Alpine pasture of the Aosta Valley (Table 1).

The highland sites show large K_{c act} values, around 1.0, for the summer, unfreeze period, similar to the high elevation grasslands reported in Section "Semi-natural and planted non-irrigated grasslands". Those high values mean that soil water was well available for satisfaction of the vegetation after the winter snow and ice melting. The period of grass growth has both high water and energy availability, however, with growth limited by the temperature. In high mountain and plateau locations, the winter is long and freezing, so reducing the mid-season and conditions for killing frost exist causing that the end-season may be anticipated. They are located far from farms and the rural population. The high elevation grasslands are generally semi-natural, whose reported grasses are rarely planted (not included in the Tables for grasses in Section "Grasses for hay, grazing and landscape").

Table 2 reports $K_{c act}$ for low mountain and lowland grasslands, where the crop season is longer, the winter is less cold and grasslands are located not far from farms, thus where human interventions have occurred, altering the flora by planting more productive grasses, and using fertilizers and pesticides, and adopting other management practices, like cutting for hay, not usual in semi-natural grasslands. The low mountain non-irrigated grasslands may be semi-natural, but those in low land are very often planted. The abandonment or mismanagement of the semi-natural grasslands also cause alterations due to the progressive invasion of shrubs and trees, which compete with grasses for water, nutrients, and energy.

The reported values (Table 1) show that $K_{c \text{ act ini}}$ range 0.25 to 0.65, corresponding to the regrowth of grasses in spring, that depends upon the soil water availability by then. They are much lower than the $K_{c \text{ act mid}}$, which ranges from 0.85 to 1.20; there are, however, lower mid-season values when water is much insufficient. $K_{c \text{ act end}}$ values may be quite lower than $K_{c \text{ mid}}$ when solar radiation progressively decreases, then followed by the decrease and end of growth, particularly for higher latitudes, and cold time installs. End season values may be close to the mid-season when growth stops abruptly due to sudden changes of temperature and radiation in the Fall due to killing frost occurrence. This

Identification	Reference	Main grasses	Actual crop coefficient de	erived from	n field ob	servations	
			Conditions	K _{c act avg}	K _{c act ini}	K _{c act mid}	K _{c act end}
Alpine pasture at Tor- gnon, Aosta Valley, Italy	Corbari et al. (2017)	Nardus stricta, Festuca nigrescens, Arnica montana, Carex spp.				0.85	0.45
Mountain grasslands of Aosta Alps, Italy	Gisolo et al. (2022)	n/r		0.70			
Alpine grasslands in Canton of Valais, Switzerland	Smith et al. (2012)	Grasses from multiple sites at various eleva- tions	Short season Long season	0.95 0.88			
Andean Zhurucay	Carrillo-Rojas et al.	Tussock grasses	Wet period	0.93			
páramo, Cajas Massif, Southern Ecuador	(2019)	Calamagrostis spp.	Non-wet period	0.87			
High elevation Andean páramos, Machangara,	Buytaert et al. (2006)	n/r	Natural vegetation, high slope	0.42			
southern Ecuador			Planted grass, gentle slope	0.92			
Humid alpine meadow, Haibei, Qinghai- Tibetan Plateau, China	Dai et al. (2021)	<i>Kobresia</i> sp., and <i>Poaceae</i>	May–Sep	1.01	0.65	1.20	1.05
Subalpine meadows, Heihe River basin, Qil- ian Mountains, China	Gao et al. (2019)	Elymus nutans, Foenicu- lum vulgare	May–Oct	0.81	0.45	1.05	0.25
High mountain meadow, Yeniugou, Qilian Mountains, China	Yang et al. (2013)	Kobresia capillifolia, Carex moorcroftii	Summer	0.86			
Alpine meadow, Qilian	Yang et al. (2017)	Kobresia capillifolia,	Unfrozen	0.82	0.25	1.20	0.40
Mountains Heihe basin, China		Carex moorcroftii	Frozen	0.19			
Alpine meadow of the Tibetan Plateau, China	Chang et al. (2017)	n/r			0.50	0.95	0.85
Humid meadow at Fenghuoshan, Qinghai- Tibetan Plateau, China	Li and Wang (2015)	Stipa aliena, Kobresia tibetica, Festuca spp., Carex atrofusca		0.55	0.30	0.85	0.40
Alpine meadow, Qing- hai-Tibetan Plateau,	Li et al. (2013)	Kobresia humilis, K. pygmaea, K. tibetica,	Growing season (May– Sep)	1.00	0.65	1.20	n/r
China		Stipa aliena	Non-growing	0.34			
Global ecosystem ET/ ET _o , Global FluxNet	Liu et al. (2017)	n/r	World average of multi- ple sites		0.45	0.86	0.41

Table 1 Field derived actual crop coefficients ($K_{c act}$) for semi-natural high mountain grasslands and meadows for grazing and hay, with identification of the study sites, article reference, and main grasses

Symbols, abbreviations and acronyms are given in Appendix B

condition is not likely to occur in less elevation grasslands (Table 1).

The K_{c act mid} tend to be higher where water is available, either due to rainfall or, in altitude, due to snow and ice melt; lower values refer to the grasslands in plateau steppes (e.g., Xilin, Zhao et al. 2010), where water availability is scarce. For the cases where only an average K_{c act} value is reported, it may be observed that higher actual K_{c avg} correspond to conditions similar to high K_{c act mid}. Overall, small values are for grasslands in dry areas. Selected main characteristics of the grasslands description, namely the crop season period, water supply (precipitation and/or groundwater (GW)) and the methods used for determination of ET_o and ET_c act, are provided in Appendix A, in Tables 12 and 13, in correspondence to the Tables 1 and 2. Analyzing the variability of K_c act values, it was found that those data are important to identify the type of grasslands and the quality of field and lab research work behind the reported K_c act, but do not help to explain their variability.

Irria	ation	Scie	ence
mig	acion	Jere	

Table 2	Field derived actual crop coefficie	nts (K _{c act} an	nd K _{cb act}) for 1	on-irrigated grasslands	s and meadows in highland plateau	and prairies
---------	-------------------------------------	----------------------------	--------------------------------	-------------------------	-----------------------------------	--------------

Identification	Reference	Main grasses	Actual crop coefficient derived from	om field obser	vations		
			Conditions	K _{c act avg}	K _{c act ini}	K _{c act mid}	K _{c act end}
GW fed Pasture in Horqin Sandy Land, Inner Mon- golia, China	Wu et al. (2016)	Leymus chinensis	Avg 2 sites: <i>K_{cb}</i> K _c		0.30 0.50	0.70 0.75	0.40 0.60
Grasslands of Xilin,	Zhao et al. (2010)	Leymus chinensis	Ungrazed-1979		0.24	0.40	0.31
Inner Mongolia,		Stipa grandis	Ungrazed 1999		0.23	0.38	0.33
China			Moderate grazed		0.22	0.35	0.35
			Heavy grazed		0.20	0.30	0.28
			Grassland		0.45	0.86	0.41
Grassland at Zhang- gutai, Liaoning, China	Zheng et al. (2012)	n/r	Grassland		0.15	0.89	0.65
Chippewa prairie	Baeumler et al.	Alisma spp., Carex	Previous burn		0.75	0.90	0.40
grasslands, West- Central Minnesota, USA	(2019)	spp., <i>Cirsium</i> spp., <i>Dichanthelium</i> spp.	Recent burn		0.71	0.80	0.35
Perennial pastures,	Howes et al. (2015)	n/r	Avg. 2 fields		0.72	0.90	
Central Valley			Rainy season	0.71			
of California +			Dry season	0.10			
Carson Valley of Nevada, USA							
Gudmundsen Sand Hills meadow, Nebraska, USA	Healey et al. (2011)	Elymus smithii, Bouteloua gracili, Poa pratensis	Growing season		0.54	0.90	0.55
Tallgrass prairie at	Krueger et al. (2021)	Schizachyrium	K _{cb}		0.17	0.86	0.17
Stillwater, Okla- homa, USA		scoparium, Andropogon gerar- dii, Sorghastrum nutans	K _c		0.22	0.96	0.22
Pastureland at Hills- borough County, Central Florida, USA	Nachabe et al. (2005)	n/r			0.40	0.70	0.50
Pasture at Floral City, Central Florida, USA	Sumner and Jacobs (2005)	Paspalum notatum	2 years mean		0.59	0.95	0.45
Grassland in North Dakota, USA	Niaghi and Jia (2017)	n/r	2 years mean	0.80			
Meadow and grass-	Hwang et al. (2020)	Phalaris arundi-	Meadow, Reed canary grass		0.96	1.19	
lands in northern		nacea			0.98	1.32	
New York State, USA			Reed canary grass		1.05	1.23	
Intensively grazed pasture at Waikato, New Zealand	Pronger et al. (2016)	Lolium perenne, Trifolium repens			1.05	1.05	1.05
Wet grasslands in	Kiptala et al. (2013)	n/r	Wet season	0.60			
Upper Pangani River Basin, Tanzania			Dry sesaon	0.20			
Mountain semi- natural pastures at Montalegre, northern Portugal	Pôças et al. (2013)	Cytisus spp., Erica spp., Festuca rubra, Agrostis spp., Nardus stricta	Grazing	0.65			

Table 2 (continued)

Identification	Reference	Main grasses	Actual crop coefficient	derived from fie	eld observ	vations		
			Conditions		K _{c act avg}	K _{c act ini}	K _{c act mid}	K _{c act end}
Pasture at Ribeir- inha, Terceira Island, Azores, Portugal	Fontes et al. (2004)	Lolium perenne Trifolium repens	Year average Grazing and hay		1.02			
Grasslands at	Dietrich et al. (2021)	n/r	HL, Wet year		1.09	0.90	1.10	1.00
Havelländisches			Dry year		0.85			
Luch (HL)and Spreewald Wetland			SW, Wet year		0.95	0.75	0.95	0.80
(SW), eastern Germany			Dry year		0.81			
Grassland at Rolles-	Groh et al. (2015)	Lolium perenne,	1st cut			0.75	1.25	1.50
broich, Lower		Cynosurus cris-	2nd cut			0.40	1.05	1.20
Rhine Valley, Germany		tatus	3rd cut			0.50	1.25	1.40
Germany			4th cut			0.40	1.20	1.25
			Grazing			0.50	1.00	1.00
Mountain pasture sward in the West- ern Carpathians, Poland	Kuźniar et al. (2011)	Lolium perenne, Cynosurus cris- tatus	Grazing		0.75			
Meadows in Poland	Kasperska-	n/r	High yield	1st cut		0.50	1.20	1.30
	Wołowicz and			2nd cut		0.55	1.30	1.35
	Łabędzki (2006)		Median yield	1st cut		0.45	1.10	1.30
				2nd cut		0.45	1.15	1.25
Pastures and mead-	Szejba (2011)	n/r	Pasture			0.70	0.89	n/r
ows in North-East			Meadow 1st cut			0.96	1.22	1.24
Poland			2nd cut			0.80	1.16	1.20
Grass near Fenéka pond, Hungary	Anda et al. (2015)	Festuca spp.				0.90	1.10	n/r

Symbols, abbreviations and acronyms are given in Appendix B

Bold italics are to highligh that these values are K_{cb} which differ from the other values which are K_{c}

Irrigated grasslands

Irrigated grasslands are commonly located in lowland areas or in low slope fields, generally of low altitude, and are planted for grazing or for hay. The information on sites and $K_{c act}$ and $K_{cb act}$ values are reported in Table 3, while data further characterizing the irrigated grasslands are shown in Appendix (Table 14).

When grasslands are cropped for hay, their $K_{c act}$ values refer to the observed cycles of grass cutting or to an average or representative cycle according to decision criteria of authors. Each cycle is described by the common FAO K_c curve (Fig. 1) comprising four crop coefficient stages—initial, development, mid-season, and late season stages—as presented in Fig. 2 for a case with four cycles. Thus, each cycle is characterized by a $K_{c ini}$, $K_{c mid}$ and $K_{c end}$. The $K_{c ini}$ corresponds to the K_c that follows the cut, while $K_{c end}$ refers to the K_c when the cut is performed, the K_c cut. Grass height h and cover fraction f_c may use the same subscripts as for K_c .

In rotary grazing, similarly, there are various cycles comprising a period when the livestock is grazing followed by a period of grass development until animals start grazing again. Only two K_c are necessary for fully describing these cycles, the $K_{c \ high}$ when the animals enter in the grass field, and $K_{c \ low}$ when they end grazing. For turf grass in any landscape grass is mowed to the height h_{low} when it attains the height h_{max} . Researchers, however, do not yet adopt a standardized nomenclature, which may result in confusing. This nomenclature is used in the Tables presented in this article.

Table 3 shows that, with a single exception, the reported $K_{c \text{ act } avg}$ and the $K_{c \text{ act } mid}$ for irrigated grasslands are close to 1.0 with values ranging between 0.80 and 1.20. These values are higher than for non-irrigated grasslands (Tables 1 and 2) because there is more water available due to irrigation and, likely, the grasses' soils are often

Irrigation	Science
------------	---------

Identification	Reference	Main grasses	•	Actual crop coefficie	ent derive	d from fie	ld observa	tions
			h (m)	Conditions	K _{c act avg}	K _{c act ini}	K _{c act mid}	K _{c act enc}
Pasture in Gareh Bygone Plain, South of Zagros, Shiraz, Iran	Pakparvar et al. (2014)	Helianthemum lippii, Artemisia sieberi, Aegilops cerasa, Medicago polymorpha	Grazing	Average Peak by Jan-Feb	0.47	0.42	0.55 1.00	0.55
Dairy pastures in Goulburn-Murray District, Victoria, Australia	Abuzar et al. (2017)	n/r	Grazing	Top 5% NDVI	0.85			
Irrigated pasture, Murray-Darling Basin, Australia	Bethune and Wang (2004)	Trifolium repens, Lolium perenne Paspalum spp.	Grazing f _c =0.97	Annual average.	1.05	0.80	1.04	0.80
Irrigated grasses at Kyabram,	Greenwood et al. (2009)	Lollium multiflo- rum	f _c =0.97	Ryegrass + white clover	K _{cb}	0.70	1.20	
northern Victoria, Australia		Trifolium repens, T. resupinatum		Tall fescue +w. clover		0.90	1.20	
		T. subterraneum Festuca rundiná-		Alfalfa		0.25	1.20	
		cea, Medicago sativa		Persian clover + Italian ryegrass		0.80	1.10	
				Subterranean clover + Italian ryegrass		1.00	1.15	
Irrigated pasture in	Qassim et al.	Lolium perenne,	Grazing	Spring-summer	1.04			
northern Victoria, Australia	(2008)	Trifolium spp., Paspalum dila- tatum	-	Winter	0.96			
Pastures at New England Univer-	Alam et al. (2018)	Festuca arundi- nacea	Mowing h _{low} =0.05	2 weeks after mow- ing		0.30	0.50	
sity, New South Wales, Australia				3 weeks after mow- ing			0.85	
Grazing pastures,	KC et al. (2018)	Lolium perenne	Rotational grazing	Height 5 cm	0.50			
Christchurch, New Zealand			h = 0.05 - 0.30	10 cm	0.60			
New Zealand				20 cm	0.80			
				30 cm	1.00			
Meadows in mountain areas, Montalegre, Portugal	Pôças et al. (2013)	Holcus lanatus, Plantago lan- ceolata, Dactylis glomerata, Festuca spp.	Hay and grazing		0.88			
Pastures at Terra	Cancela et al.	Lolium perenne,	Grazing and cuts	1st cut cycle		0.55	1.05	0.55
Chã, Galize,	(2006)	Trifolium repens	for hay	2nd cut cycle		0.55	1.05	0.55
Spain				3rd cut cycle		0.55	0.80	0.55
				Grazing		0.55	0.90	
Irrigated grasses at	Sanches et al.	Megathyrsus	7cut cycles	Fall-Winter	1.09			
Piracicaba, São Paulo, Brazil	(2019)	<i>maximus</i> cv. 'Mombaça'	6 cycles	Spring-Summ	0.99			
		Idem, + Avena strigosa + Lol- lium spp.	5 cycles	Fall-Winter	0.96			
		Cynodon dactylon	6 cycles	Fall-Winter	0.93			
			7 cycles	Spring-Summ	1.00			
		Idem, + Avena strigosa + Lol- lium spp.	5 cycles	Fall-Winter	1.02			

Table 3 Field derived actual single and basal crop coefficients (K_{c act} and K_{cb act}) for irrigated grasslands, meadows, and pastures

Table 3 (continued)

Identification	Reference	Main grasses	Management f_c and	Actual crop coeffic	eient derived	d from fie	ld observa	tions
			h (m)	Conditions	K _{c act avg}	K _{c act ini}	K _{c act mid}	K _{c act end}
'Marandú' pali- sade-grass single	Souza et al. (2021)	Brachiaria bri- zantha	Grazing	(S), year		0.62	0.95	n/r
(S) and combined		cv."Marandu",		(C), Aut-Win		0.67	0.80	0.50
(C) in Piracicaba, Brazil		Avena strigosa, Lolium multiflorum		(C), Spg-Sum		0.50	0.90	0.83
Pasture at Twitchell Island, Sacra- mento River, CA, USA	Snyder et al. (2008)	Lollium spp., Festuca arundi- nacea, Cynodon dactylon	Grazing $h_{cut} = 0.10-0.20$	Apr–Sep	0.98			
Pasture at Camp- bell Tract, Davis, CA, USA	Snyder et al. (2008)	Festuca arundina- cea, Trifolium sp.	Mowing h _{cut} =0.08-0.12	Apr–Sep	1.00			
Bahiagrass at Citra, Central Florida, USA	Jia et al. (2009)	Paspalum notatum	Grazing		0.64	0.35	0.77	0.35
Permanent pastures in Imperial Val- ley, USA	Allen et al. (2005a)	n/r	Grazing f _c =1.0	K _{cb}		0.35	0.85	0.70

Symbols, abbreviations and acronyms are given in Appendix B

Bold italics are to highligh that these values are K_{cb} which differ from the other values which are K_{c}

of better quality and management of nutrients are more careful. An exception refers to a deficit irrigation site in the arid Gareh Bigorn Plain, southern Iran (Pakparvar et al. 2014). The reported ground cover fraction is always high, i.e., $f_c = 1.0$, which indicates that grasslands were well managed. Most of the cases in Table 3 report average information; only one case refers 3 cycles cutting for hay.

Two cases report $K_{cb act}$ values, one with $K_{cb act mid}$ lower than $K_{cb act ini}$ and $K_{cb act end}$ because the site is dry and hot (Imperial Valley, California, Allen et al. 2005a), thus affecting plant growth, so with higher values when weather is mild. The other (in Victoria, Australia, Greenwood et al. 2009) reports experimental $K_{cb act}$ results that correspond to good plant growth, thus to high $K_{cb act}$.

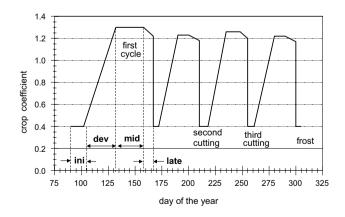


Fig.2 Typical K_c/K_{cb} curves for a grassland cropped for hay with multiple cutting cycles (FAO56, Allen et al. 1998)

Semi-natural grassland ecosystems

Semi-natural savanna and steppe type grasslands

Both savanna and steppe designations, herein, do not refer to specific biomes but include a variety of other biome like cerrado and catinga in Brazil, dehesa or montado in the Iberian Peninsula, or to grasslands in open forests. Naturally, the grasslands included under those designations vary much with climate and, regionally, with the dominant species and environment, particularly with soils. Various savanna-type semi-natural grasslands are reported in Table 4. Despite these grasslands are used for grazing after long time, the grasses and shrubs are different from those in the planted grasslands and of the domesticated grasses reported in Section "Grasses for hay, grazing and landscape" hereafter. Because savanna grasslands are not irrigated, both K_{c act mid} and $K_{c \text{ act avg}}$ show a seasonal effect related with the precipitation regime, with higher K_{c act} in the rainy seasons, not when more solar energy is available, i.e., contrarily to reported grasslands in the preceding section, savannas are mostly water limited and less energy limited. The case of the oak savanna (montado) of Évora (Paço et al. 2009), showing very low K_{c act} due to severe drought, is a good example. A unique example of effects of savanna conservation is provided by Descheemaeker et al. (2009, 2011), where grazed and protected savanna show different $K_{c act mid}$ values, higher in the latter case due to better growth of the vegetation.

In case of steppe (Table 5), there are similar behaviors, as for the high plateau steppe in Inner Mongolia reported

Identification and location	Reference	Dominant species	Climate	Methods for estimating ET_0 and	Actual crop coefficient derived from field observations	ed from field o	bservations		
				${ m ET}_{ m c}$ act	Conditions	$\mathbf{K}_{\mathrm{c}\ \mathrm{act}\ \mathrm{avg}}$	$K_{c \; act \; ini}$	$\mathbf{K}_{\mathbf{c} \text{ act mid}}$	$K_{c \; act \; end}$
<i>Cerrado</i> grassland at Águas de S. Bárbara, S. Paulo, Brazil	Silva et al. (2018)	п/r	Tropical subhumid, dry winter	FAO56-ET ₀ RS-SEBAL and SAFER + NDVI	After large rains After dry periods After large rains After dry periods	1.21 1.06 0.88 0.59			
Semiarid savanna in highlands of Tigray, Ethiopia at (1) May Ba'ati (forest), (2) Kunale	Descheema-eker et al. (2009)	Closure: 0 years 5 years 10 years 20 years 25 years			Degraded grazing Restored land			0.28 0.67 0.78 0.96 1.04	
(3) Adewro	Descheema-eker et al. (2011)	Forest: Acacia etbaica, Carissa edulis, Dodo- naea rotundifolia Grasses: nfr	Semiarid tropical, rain in summer	FAO56-ET _o BUDGET model SWC-grav.	 Church forest Old protected land Grazing land (2) Recent prot. Land Old protected land Grazing land (3) Recent prot. Land Grazing 	۵۵		1.07 1.04 0.62 0.73 0.73 0.74 0.74	
Woodland savanna in North Abaker et al. (2018) Kordofan state, Sudan	Abaker et al. (2018)	Acacia senegal and n/r grasses (short time K _{c mid})	Semiarid tropical,	J-H ET。 WATBAL model SWC-grav.	El Demokeya: grass Acacia +grass El Hemaira: grass Acacia 15 y,+grass	0.20 0.30 0.25 0.35		0.70 1.00 0.80 1.30	
Mediterranean oak savanna (dehesa) at Caceres, Spain	Campos et al. (2013)	Quercus spp.	Med., mild winter, dry hot summer	FAO56-ET ₀ SWB, EC, RS-NDVI	Winter Summer	0.90 0.35			
Mediterranean oak savanna (dehesa) at Sierra de Cardeña y Montoro, Spain	Carpintero et al. (2020)	Quercus ilex, Q. faginea, Ass. Hordeum lepori- num	Med., mild winter, dry hot summer	FAO56-ET _o EC, SWB with K _{cb} from SAVI and f _c	Trees and grasses		0.15	0.80	0.15
Mediterranean oak savana (montado), (very heavily grazed) Évora, Portugal	Paço et al. (2009)	Q. rotundifolia, Avena barbata, Vulpia bromoides, Ornithopus compressus	Med., mild winter, dry hot summer	FAO56-PM ET _o SF, EC	\mathbf{K}_{cb} \mathbf{K}_{c}			0.21 0.34	
Fragmented fields with semi-natural grass at Cascine, Florence, Italy	Pieri et al. (2019)	n/r	sub-humid Med.	J&H ET _o MODIS-NDVI, SWB-capacit.	Annual		09.0	1.20	0.60
Siberian plain grassland, Tyumen, Tyumen Oblast, Russia	Fleischer et al. (2015)	Deschampsia cespitosa, Bromopsis inermis, Poa angustifolia	Transition from cold forest to pre-taiga	Penman ET _o EC	Summer	0.54			

Irrigation Science

Table 5 Field derived	Table 5 Field derived actual crop coefficients ($K_{c,act}$) for semi-natural steppe grasslands	c_{act}) for semi-natural stej	ppe grasslands						
Identification and	Reference	Dominant species	Climate	Methods for estimat-	Actual crop coefficient derived from field observation	derived from	n field obser	rvation	
location				$mg EI_0$ and $EI_c act$	Conditions	$K_{c \; act \; avg}$	$K_{c \; act \; ini}$	$K_{c \; act \; mid}$	${ m K}_{ m c}$ act end
Sagebrush steppe at Monticello, SE Utah	Jarchow et al. (2022)	Elymus smithii Artemi- sia tridentata	Cold winter, mild summer	Classe A pan DL, RS-NDVI	Summer	0.40			
Desert steppe at Sunitezuo, Inner Mongolia, China	Zhang et al. (2012)	<i>Poa</i> spp. and dwarf shrub <i>Stipa kle-</i> <i>menzii</i>	Arid, cold winter, warm summer	FAO56-ET _o EC	High peak K _c Low peak K _c	0.15 0.17		0.75 0.58	
Desert steppe at Xilin- hot, Inner Mongolia, China	Hou et al. (2010a)	Leymus chinensis, Stipa grandis, Artemisia frigida	Semiarid, dry very cold winter	FAO56-ET _o SWB	Average of 4 loca- tions, 2 year		0.30-0.45	0.85–1.00	0.30-0.45 0.85-1.00 0.50-0.70
Disturbed and undis- turbed steppe at	Lu et al. (2011)	Stipa krylovii, Artemi- sia frigida	Semiarid, freezing winter, warm sum-	FAO56-ET _o EC	Undisturbed steppe	0.64			
Duolun, Xilinhot, and Ordos, Inner Mongolia, China		Stipa grandis, Leymus chinensis S. grandis, A. frigida	mer		Disturbed steppe Grazed steppe	0.36 0.44			
Duolon (D) and	Miao et al. (2009)	(D): S. krvlovii. A.	Arid. freezing winter.	FAO56-ET.	D: well managed		0.38	0.81	0.30
Xilinhot (X) steppes, Inner Mongolia, China		 (X): L. chinensis (X): L. chinen- sis, S. grandis, Achnatherum sibiricum 	warm summer	EC, SWB-SWC reflect.	X: fenced steppe X: degraded		0.27 0.30	0.40	0.30
Oasis-desert transi- tion at Badain Jaran Desert and Zhangye Oasis, Middle Heihe river, China	Zhao and Zhao (2014)	Haloxylon ammoden- dron, Suaeda glauca, Bassia dasyphylla	Arid, dry winters and hot summer	FAO56-ET _o PM comb. eq.	Shrubs and grasses for dunes' control, spring-summer growth season		0.15	0.35	0.15
Steppe pastureland and Gobi Desert in	Batsuk et al. (2021)	Native vegetation in Gobi Desert	Cold and dry	FAO56-ET _o	Desert steppe	0.15-0.28			
western Mongolia		Grazed native vegeta- tion		Soil cover and LAI with wide testing	Semi-arid steppe	0.25-0.80 0.10	0.10	0.95	0.10
<i>Caatinga</i> grassland, Petrolina, Brazil	Carvalho et al. (2018)	n/r	Tropical, hot semi- arid	FAO56-ET _o Energy balance	Rainy season Dry season	0.58 0.21			
Caatinga, São Francisco River,	Teixeira (2010)	n/r	Tropical, hot semi-	FAO56-ET _o	Rainy season	0.50			
Petrolina, Brazil			arid	RS, EB, EC, PMeq	Dry season	0.20			
Symbols, abbreviations	Symbols, abbreviations and acronyms are given in Appendix B	in Appendix B							

by Zhang et al. (2012), and for two Brazilian catinga studies (Teixeira 2010; Carvalho et al. 2018), all referring higher K_{c act} values when it rains and the soil water availability increases. There are various cases where K_{c act} for protected or well managed steppe grasslands is much higher than for commonly grazed steppes, e.g., Miao et al. (2009) and Lu et al. (2011) relative to the high plateau of Inner Mongolia. K_{c act} results for steppe, like for savanna, indicate that related grasslands plant development is mainly water limited and less energy limited. This fact is important for management and relative to ecosystem services; therefore, in agreement with K_{c act} results analyzed in the previous section, it allows to consider that water management of grasslands may have implication on various services, mainly biodiversity and carbon sequestration, since these services are better when plants grow favorably.

Semi-natural grasslands in cold and temperate ecosystems

The *pampa* grasslands, at a low altitude, show $K_{c \text{ act avg}}$ near 0.85 without evident distinction between seasons, likely due to a more favorable precipitation regime. Seminatural grasslands in low precipitation areas have a lower $K_{c \text{ act mid}}$ or $K_{c \text{ act avg}}$ than *pampa* sites and show the seasonal influence of the rainfall regime. It is important to note that main grasses in Table 6 are different from a site to another.

Semi-natural grasslands in mixed forests and shrublands

Grazing is common in open mixed forests where grasses are often native if management did not favor the loss of seminatural grass vegetation in favor of alien species. Contrarily, in planted forests, it is common that the native/seminative understory vegetation has changed after introducing the new tree species. It is, therefore, likely that grasslands growing as understory of mixed forests area are considered semi-natural.

Table 7 shows various sites where this condition could be accepted but which research papers may have not provided related full information. Data in Table 7 show that both dry and humid climates, e.g., Roupsard et al. (2006) and Corbari et al. (2017), have $K_{c act}$ varying seasonally in relation to water availability. In general, $K_{c act}$ of mixed forests varies in a small range, 0.45 to 0.60. Shrublands show higher $K_{c act}$ values than mixed forests, likely because shrub roots can explore the soil to a large depth and solar energy available to grass is less affected by shadow, so overall contributing to a higher actual K_c .

Grasses for hay, grazing and landscape

This Section "Grasses for hay, grazing and landscape" refers to domesticated grasses used in agricultural planted grasslands and in landscape and sport fields, which are described in Tables 8, 9 and 10. It may be noted that these domesticated grasses were rarely reported among the main grasses of semi-natural grasslands, in previous Tables 1, 2, 3, 4, 5, 6 and 7.

Grasses for hay are mainly legume-grasses that grow fast under favorable environmental conditions and that respond well to cuts and allow numerous cut cycles during a crop season as represented in Fig. 2. For most cases, tabulated actual $K_{c ini}$, $K_{c mid}$ and $K_{c end}$ values describe the cut cycles; otherwise, only $K_{c act avg}$ was reported for one grass.

Alfalfa is the most common grass for hay and the most studied one, namely with four papers using the dual K_c approach (Table 8). Results are quite similar, with actual $K_{cb ini}$, $K_{cb mid}$ and $K_{cb end}$ of approximately 0.30, 1.15 and 1.10, respectively. The higher mid-season value, reported by Hunsaker et al. (2002), shows the effect of a dry, hot, and windy climate. The reported values, considering that alfalfa grass covers well the soil ($f_c \sim 1.0$), result in K_c and $K_{cb act}$, thus, actual K_c mid and K_c end of 0.40, 1.20 and 1.15, respectively. These values are coherent when compared to the standard tabulated values in FAO56 (Allen et al. 1998) and consist of standard K_c .

Several grasses have K_{cb act} values similar to those of alfalfa (Table 8). However, most of them show K_{c act} values varying with the cuts due to seasonality effects, which relate with climate dryness or wetness and windy conditions, more important when the grass is high by the mid and end stages, as proposed in the FAO56 equation for correction with climate. This is typically the case for blue panic cropped at Jeddah, Saudi Arabia (Ismail and El-Nakhlawy 2018). To be also noted that end-season $K_{c act}$ maybe larger or equal then K_{c act} at mid-season, despite it is commonly a little smaller for most cases. The reported value is only K_{c avg} in case of palisade grass (Antoniel et al. 2016), which corresponds to a less accurate field measurement but quite useful to indicate that this grass (Brachiaria brizantha) likely is a high-water demanding crop. However, information in this Table 8 is more useful when users compare various grasses.

Table 9 refers to the field derived actual single and dual crop coefficients for grasses cropped for grazing and seed production. Often, only one K_c/K_{cb} curve is required. However, a precise management requires that specific curves (Fig. 2) are used in rotary grazing, when h_{low} and h_{cut} are well defined, or when the time interval between cuts is defined with the cumulative growth degree days (CGDD).

Table 6 Field derived actu	al crop coefficients (K_c) i	Table 6 Field derived actual crop coefficients (K_c) for semi-natural grasslands in temperate climates	n temperate climates						
Name	Reference	Dominant species	Climate	Methods for estimating	Actual crop coefficient derived from field observation	ient deriv	ed from f	eld obser	vation
				EI_0 and EI_c act	Conditions	$K_{c \; act \; avg}$	${ m K}_{ m c \ act \ ini}$	$K_{c \; act \; mid}$	$K_{c \; act \; end}$
Grassland in Amplero plateau, Abbruzzo, Italy	Chiesi et al. (2018)	Poa spp., Trifolium spp. Medicago spp., Gera- nium spp. Cerastium spp.	Alpine-Med. humid	FAO56-PM ET _o Field tested K _c values	Growing season		0.70	1.00	0.70
Grazing pasture in Riggs Creek, Murray-Darling, Australia	Wu et al. (2021)	n/r	Semi-humid temperate	FAO56-PM ET _o EC, PMeq.	Summer Winter	0.25 0.22			
Arid Andean pasture, Mendoza, Argentina	Contreras et al. (2011) n/r	n/r	Temperate, dry	FAO56-PM ET _o RS-EVI		0.44			
Native pasture, Gareh Bygone Plain, South of Zagros, Shiraz, Iran	Pakparvar et al. (2014) Helianthemun lippii, Artemisia sieberi, Aegilops cerasa, M icago polymorpha	Helianthemun lippii, Artemisia sieberi, Aegilops cerasa, Med- icago polymorpha	Continental, dry and hot summer	FAO56-PM ET _o SEBS energy balance	Deficit irrigated Rainfed		0.42 0.38	0.55 0.45	0.55 0.45
Grassland with salty GW, Yang et al. (2012) Hetao Plane, Inner Mongolia, China	Yang et al. (2012)	n/r	Very cold winter, very dry summer	FAO56-PM ET _o SEBAL, regional SWB	Low WTD High WTD	0.47 0.55			
Pampa grasslands at Entre Nosetto et al. (2012) Ríos, Central Argentina	Nosetto et al. (2012)	<i>Stipa</i> spp, <i>Bromus</i> spp, <i>Paspalum</i> spp, <i>Pip-</i> tochaetium spp	Temperate sub-humid	FAO56-PM ET _o RS-NDVI, SWB-grav. HYDRUS-1D	Pampa grasslands 0.59	0.59	0.45	0.70	0.50
Pampa pastureland in Rio Grande do Sul, Brazil, at: Santa Maria	Rubert et al. (2018)	Andropogon lateralis, Axonopus affinis, Paspalum notatum, Aeristida laevis	Temperate humid, hot summer	FAO56-PM ET _o Flux towers energy bal- ance	Fall-Winter Spring-Summer	0.82 0.82			
Pedras Altas		A affinis, A laevis, P. notatum, Eriantus angustifolium			Fall-Winter Spring-Summer	0.82 0.98			
Symbols, abbreviations and acronyms are given in Appendix B	d acronyms are given in /	Appendix B							

Table 6 Field derived actual crop coefficients (K,) for semi-natural grasslands in temperate climates

Table 7 Field derived ac	tual crop coefficients (K_c	Table 7 Field derived actual crop coefficients ($K_{c act}$) for semi-natural grasslands in mixed forests and shrublands	ands in mixed forests and s	shrublands					
Name	Reference	Dominant species	Climate	Methods for estimating ET _o	Crop coefficient derived from field observations	n field obser	rvations		
				and Elcact	Conditions	$K_{c act avg}$	$K_{c \; act \; ini}$	$K_{c \; act \; mid}$	$K_{c \; act \; end}$
Chestnut Ridge, Oak Ridge, Tennessee, USA	Corbari et al. (2017)	Quercus spp.	Temperate climate	FAO56-PM ET _o Fluxnet	Winter Summer	0.10			
Duke Forest, Durham,		Quercus spp., Carya spp.	Temperate climate	FAO56-PM ET ₀	Winter	0.10			
North Carolina, USA		trees		FLUXNET	Summer	0.45			
Black Hills, Oak Ridge		Evergreen trees, Pinus	Temperate climate	FA056-PM ET_{o}	Winter	0.05			
Lab., Tennessee, USA		ponderosa		EC	Summer	0.19			
Tropical palm canopy,	Roupsard et al. (2006)	Cocos nucifera ($f_c=0.75, h$	Tropical climate	$FAO56-PM ET_{o}$	Cool season	0.79			
Espiritu Santo, Vanuatu, South Pacific		= 16 m) with understory Paspalum sp., Mimosa		EC and SF	Warm season	0.59			
		sp.			Summer	0.19			
High water-table shrubs,	Steinwand et al. (2001)	Atriplex lentiformis, Chry-	Dry, cold winter and hot	FAO56-PM ET	K_{cb}				
Great Basin, Owens Val-		sothamnus nauseosus	summer	Transpiration from stoma-	Atriplex sp.		0.10	0.40	0.10
ley, east siefta inevada, HSA		Sarcobatus vermiculatus		tal conductance and LAI modelling	Chrysothamnus sp.		0.10	0.80	0.15
				D	Sarcobatus sp. (Mar-Oct)		0.10	0.70	0.10
Mixed forest, Changbais-	Park et al. (2017)	Pinus koraiensis	Cold winter, mild rainy	FAO56-PM ET ₀	n/r		0.20	0.80	0.20
han, South Korea			summer	MODIS-NDVI, ECV-SM					
Mongolica pines at Keerqin	Zheng et al. (2012)	Pinus silvestris, var. 'mon-	Monsoon, cold winter, hot	$FAO56-PM ET_{o}$	Mongolian pine		0.50	0.62	0.55
Sandy Land, Liaoning, China		golica'	summer	CROPWAT model	Shrubland Grassland		0.15 0.12	0.89 0.82	0.65 0.63
Trees in hyper-arid sites,	Hou et al. (2010b)	Populus euphratica	Hyper-arid, cold winter,	FA056-PM ET_{o}	Growing season (May-		0.40	0.55	0.23
Ejina, Inner Mongolia, China			hot summer	BREB, SWC-TDR	Sep)				
Shrubland + poplar in	Lu et al. (2011)	Artemisia ordosica	Arid, cold winter, hot	$FAO56-PM ET_{o}$	Shrubland	0.64			
Ordos, Inner Mongolia, China		Populus sp.	summer	EC	Poplar	0.77			
<i>Pinus</i> and <i>Fagus</i> forests in low and high lands, Italy	Chiesi et al. (2018)	Pinus pinaster and Pinus pinea	Med. subhumid	FAO56-PM ET _o	San Rossore: by the Arno River and Tyrhenian		0.60	0.70	0.60
		Fagus sylvatica	Mountain	Field tested K_c values	Collelongo, Abruzzo		0.20	0.70	0.20
Native trees in Gareh	Pakparvar et al. (2014)	Ziziphus numularia	Continental dry and hot	FAO56-PM ET ₀	Trees, dense		0.80	06.0	06.0
Bygone Plain, Shiraz, Iran		Acacia victoria	summer	SEBS energy balance	Trees, sparse		0.35	0.45	0.45
Native dry forests, Entre Ríos, Central Argentina	Nosetto et al. (2012)	Dry forests: Prosopis spp., Geoffroea spp., Celtis spp. Acacia spp.	Temperate sub-humid	FAO56-PM ET _o NDV1-MODIS, SWB- Hydrus	Native forests with grass	0.82	0.65	0.85	0.75
Worldwide Global ecosys- tem ET/ET _o	Liu et al. (2017)	Mixed forest	Various climates	FAO56-PM ET _o Global FLUXNET	Mixed forests		0.23	0.39	0.14
Symbols, abbreviations : Bold italics are to highli	Symbols, abbreviations and acronyms are given in Appendix B Bold italics are to highligh that these values are K _{cb} which diffe	Symbols, abbreviations and acronyms are given in Appendix B Bold italics are to highligh that these values are K _{cb} which differ from the other values which are K _c	ner values which are K_c						

 $\underline{\textcircled{O}}$ Springer

The latter is shown through an example with Bermuda grass cv "Tifton 85" experimentally cropped in southern Brazil (Paredes et al. 2018). This case also shows that for small grazing time intervals there is no need to adopt grazing cycles (Fig. 2), but this becomes of interest when such intervals between successive grazing events are large and differences between crop heights and K_c are larger, e.g., if CGDD=372 °C is adopted (Paredes et al. 2018).

It may be advisable to adopt different K_c values for groundwater-fed grass, where $K_{c act}$ varies with the water table depth (WTD), e.g., the Timothy and Italian ryegrass cases referred by Mueller et al. (2005). Generally, $K_{c act mid}$ varies in the range 0.80 to 1.00 but $K_{c act ini}$ and $K_{c act end}$ values have a larger range of variation, which is likely due to management and to climate, mainly relative humidity of the air and wind speed. Grasses cropped for seed have smaller $K_{c act end}$ since they are harvested following senescence and maturation of the seeds.

The grasses used for landscape (Table 10) are those able to live healthy and fully covering the ground while being frequently or very frequently mowed to small (5–8 cm) or very small heights (< 1.5 cm) as used respectively for lawns and for golf courses. Generally, knowing a single $K_{c avg}$ is enough for a good irrigation, commonly in the range 0.60–0.80 for lawns and larger in case of golf greens because the requirements of quality are much larger for the latter.

The grass actual K_c values summarized in Tables 8, 9 and 10 concern grass fields with large f_c (> 0.95), and they are appropriate for computing ET for in hydrologic and water resources studies.

Standard crop coefficients

From the analysis above and taking into consideration the tabulated information (Tables 1, 2, 3, 4, 5, 6 and 7) and the related papers, it is possible to propose a set of standard K_c values for the referred grasslands. Nevertheless, the previously tabulated actual K_c values may be used as indicative values for management or planning, e.g., for use to estimate ET in irrigation scheduling tools or models applied only to similar grasslands, i.e., not generally transferable. Differently, the standard K_c values, to be tabulated in FAO56 and shown in the Table 11, are transferable for a wider use relative to the corresponding types of grasslands, i.e., in irrigation scheduling tools and models and in hydrologic or water resources studies and models. Particular attention must be given to the climate, comparing conditions in the original location, summarily indicated in the Tables, and in the location where the transferred K_c is to be used. The defined standard K_c values for semi-natural and planted grasslands and for grasses for animal feeding and landscape uses are presented in Table 11.

The proper use of standard values of grasslands implies that user knows that tabulated values refer to non-stressed or mild-stressed vegetation. Tables 1, 2, 3, 4, 5, 6 and 7 show that low $K_{c act}$ values occur often, particularly for semi-natural vegetation in dry climates, namely steppe and savanna ecosystems, where actual K_c may vary much. Thus, when wishing to transfer a K_c to a dry or a drought prone area it is advisable to pay attention to the tabulated actual K_c (Tables 1, 2, 3, 4, 5, 6 and 7). The same happens with the use of standard values of grasses (Tables 8, 9 and 10). Their tabulated values are generally non-stressed or mild stressed. It is our conviction that for both grasslands and grasses transferability is adequate if users analyze carefully all related Tables and, in addition to climate, also take into consideration the dominant species.

Conclusions

The current review presents to users a large information on crop coefficients for determining crop evapotranspiration and, thus, to support new approaches for management taking into consideration both production for animal feeding and ecosystem services. Moreover, the review has shown that a large fraction of the grasslands is semi-natural and, therefore, may help in fighting climate change if appropriately managed for conservation.

The first group of grasslands focused those that are being used for grazing or hay, planted or semi-natural, normally using mixed grasses. The majority are non-irrigated and include a good number of semi-natural mountain pastures and meadows. Their growth conditions are linked to water availability, thus showing a wide range of actual $K_{c mid}$ and $K_{c avg}$ values. Despite management is not referred to water but rarely, this group of papers (section "Seminatural and planted grasslands") makes it somewhat evident that ecosystem services, such like biodiversity, C sequestration, and runoff and erosion control call for more importance to be given to water use in grasslands management.

The second group (Section "Semi-natural grassland ecosystems") refers to grasslands in various typical biome, covering a wide range of environments and ecosystems, from hot and dry plains to freezing and humid mountainous areas. These types of grasses helped to identify the need for consideration of water in management of such varied types of semi-natural grasslands and to associate water and grazing management to avoid grassland deterioration and to provide for biodiversity and C sequestration.

A variety of grasses for most of environments and grassland uses are described in Section "Grasses for hay, grazing and landscape". Since they are used as planted grasses, related information is important for new plantations, using both single and combined grasses. Moreover, that

Table 8 Field derived a	Table 8 Field derived actual single and dual crop coefficients ($K_{c,act}$ and $K_{cb,act}$) for grasses used for hay or grazing with multiple cut cycles	oefficients ($K_{c act}$ and $K_{cb a}$	ct) for grasses used for hay	or grazing with multiple	cut cycles				
Grass crop	Reference	Location (climate)	Method to estimate ET_{o} and $\mathrm{ET}_{\mathrm{c}\mathrm{act}}$	Nr. of cut cycles, other uses and season dura-	Conditions relative to the reported K_c/K_{cb} +	$K_{c act}$ or $K_{c b act}$ for single or multiple cuts, grazing, and seed production	o _{act} for s g, and se	ingle or r eed produ	nultiple Iction
				tion + Height (h, m) and f_c	irrigation method	K _{c act avg} K	K _{c act ini} I	$K_{c \; act \; mid}$	$\mathbf{K}_{\mathrm{c}\ \mathrm{act}\ \mathrm{end}}$
Alfalfa, <i>Medicago</i> sativa	Cavero et al. (2017)	Zaragoza, Spain (mild wint, hot sum)	FAO56-PM ET _o Testing K _c -yield SWC-grav.	6 cycles Mar-Sep h=0.07, h=0.7	Sprinkler	0	0.40	1.22	1.17
	Hunsaker et al. (2002)	Phoenix, Arizona, USA (arid, hot)	1 ET _o tron SWC	For the form h_{mi} and h_{mi} and h_{cut} and $h_{$	K _{cb} Flooding	Ö	0.30	1.22	1.05
	Liu et al. (2022b)	Suzhou, Gansu Prov- ince, China (very cold winter)	FAO56-PM ET _o SWC-TDR, model SIMDualKc	3 cycles Apr-Sep h _{mi} =0.10, h _{cut} =0.75	K _{cb} Flooding	0.	0.30	1.15	1.10
	Allen et al. (2005a)	Imperial Valley, CA, USA (arid, hot)	FAO56-PM ET _o FAO56-dual K _c , SWB	8 cycles Feb-Oct	K _{cb} Border	0.	0.30	1.15	1.10
				Seed	K_{cb}	0.	0.30 (0.80	0.70
	Hu et al. (2020)	Wuwei, Gansu, NW China (very cold winter)	FAO56-PM ET _o DL, model SIMDualKc	3 or 4 cycles May–Sep f _{c =} 0.97	K_{cb} Border	0.	0.30	1.15	1.10
Bermuda grass, Cyno-	Sanches et al. (2019)	Piracicaba, São Paulo,	FAO56-PM ET_{o}	11 cycles	Avg K _c Fall	0.86 0.	0.71 0	0.89	0.95
don dactylon		Brazil (subtropical)	WL	h_{low} =0.10	Winter	1.00 0.	0.85 1	1.08	0.95
					Spring	0.93 0.	0.79 (0.96	0.94
					Summer	1.08 0.	0.94	1.16	1.14
					Sprinkler	Ċ		¢	5
Berseem clover, <i>Trifo-</i> lium alexandrinum	Tyagı et al. (2003)	Karnal, India (tropical subhumid)	FAO56-PM ET _o WL	5 cycles, Oct–Apr LAI=0.35 to 3.6	Average cuts Flooding	0	0.76	1.10	1.23
	Kaushika et al. (2019)	Roorkee and Karnal, India (tropical sub- humid)	Hargreaves ET _o WL	4 cycles—Roorkee 5 cycles—Karnal	Avg. cuts Roorkee Karnal Border	00	0.30 1 0.30	1.20 1.15	$1.15 \\ 1.10$
Blue Panic, <i>Panicum</i> antidotale	Ismail and El-Nakhlawy (2018)	Ismail and El-Nakhlawy Hada Al-Sham, Jeddah, (2018) S Arabia (arid. hot)	FAO56-PM ET _o DL., SWB-9rav.	11 cycles Jan–Dec	1st cut 8th cut	0.0	0.50 1	1.00	0.70 1.20
			o	$h_{max} = 1.05 - 1.40$	11th cut Flooding	0		1.30	0.75

Irrigation Science

Table 8 (continued)									
Grass crop	Reference	Location (climate)	Method to estimate ET_{o} and $\mathrm{ET}_{\mathrm{c}\mathrm{act}}$	Nr. of cut cycles, other uses and season dura-	Conditions relative to the reported K_c/K_{cb} +	K _{c act} or k cuts, graz	K _{cb act} for ting, and	$K_{\rm cact}$ or $K_{\rm cbact}$ for single or multiple cuts, grazing, and seed production	nultiple
				tion + Height (h, m) and f_c	irrigation method	$K_{c \ act \ avg}$	$K_{c \; act \; ini}$	$\mathbf{K}_{\mathrm{c}\ \mathrm{act}\ \mathrm{mid}}$	$\mathbf{K}_{\mathrm{c}\ \mathrm{act\ end}}$
Guinea grass cv. 'Mom-	Sanches et al. (2019)	Piracicaba, São Paulo,	FAO56-PM ET _o	10 cycles	Avg cuts in Fall	1.09	0.98	1.18	1.16
baça', Megathyrsus maximus		Brazil (Subtropical humid)	WL	$h_{low}=0.30$	Winter	1.09	06.0	1.20	1.16
		×			Spring	0.95	0.80	1.08	1.09
					Summer	1.12	0.82	1.34	1.14
					Sprinkler				
	Mota et al. (2020)	Janaúba, Minas Gerais, Brazil (subtropical)	FAO56-PM ET _o DL	4 cycles Summer + 3 cycles Fall 3 cycles Win-Spg $h_{cut}=0.45$ -0.90	Avg Summer Avg Fall Avg Win-Spg Sprinkler		0.79 0.74 0.62	1.20 1.21 1.06	1.20 1.21 1.06
	Bueno et al. (2009)	Uberlândia, Minas Gerais, Brazil (tropical)	Grass lysimeter	3 cycles grazing cuts $h_{imi}=0.20$	Average cuts Sprinkler		0.75	0.83	1.04
Palisade grass (cv. 'Marandú'), Brachi- aria brizantha	Souza et al. (2021)	Piracicaba, São Paulo, Brazil (subtropical)	FAO56-PM ET _o DL	11 cycles Feb–Dec $h_{ini}=0.15, f_c=0.95$	Spring–Summer Fall-Winter Sprinkler		0.50 0.67	0.90 0.85	0.90 0.80
	Antoniel et al. (2016)	Maringá, Paraná, Brazil (Subtropical humid)	FAO56-PM ET ₀ Field tested K _c values	4 cycles	1st cut 3rd cut 3rd cut 4 th cut <i>Sprinkler</i>	0.90 1.33 1.24 1.02			
Sudan grass, Sorghum sudanense	Allen et al. (2005a)	Imperial Valley, South CA, USA (arid, hot)	FAO56-PM ET _o FAO56-K _{cb} , SWB	Cuts for hay	K_{cb} Border		0.30	01.1	1.05
	Al-Solaimani et al. (2017)	Hada Al-Sham, Jeddah, Saudi Arabia (arid, hot)	FAO56-PM ET _o SWB-grav.	3 cycles May–Feb h _{cut} =1.20	Average cuts Border		0.50	0.85	
Symbols, abbreviations Bold italics are to highli	Symbols, abbreviations and acronyms are given in Appendix B Bold italics are to highligh that these values are K_{cb} which diffe	Symbols, abbreviations and acronyms are given in Appendix B Bold italics are to highligh that these values are K _{cb} which differ from the other values which are K _c	er values which are K_c						

Grass crop	Reference	Location (climate)	Method to estimate ET _o and ET _{c act}	Nr. cut cycles, other uses and season duration <i>height</i>	Conditions relative to observed K_c/K_{cb} + <i>irrigation</i>		$K_{c act}$ or $K_{cb act}$ for single or m grazing, and seed production	$K_{\rm c\ act}$ or $K_{\rm c\ act}$ for single or multiple cuts, grazing, and seed production	le cuts,
				$(n, m), f_c$	method	$K_{c \; act \; avg}$	$K_{c \; act \; ini}$	$K_{c \; act \; mid}$	$K_{c \; act \; end}$
Bahiagrass, <i>Paspalum</i> notatum	Sumner and Jacobs (2005)	Floral City, West Florida, USA (subtropical humid)	ASCE-PM ET _o EC	Rotational grazing	Full year <i>Rainfed</i>		0.59	0.95	0.45
	Jia et al. (2009)	Citra, Gainsville, Florida, USA (subtropical humid)	ASCE-PM ET _r EC, SWB-Hydra, PT eq.	Grazing $h_{low}=0.12$	Full year Linear move		0.40	0.86	0.52
Bermuda grass, Cynodon dactylon	Allen et al. (2005a)	Imperial Valley, CA, USA (arid, hot)	FAO56-PM ET _o FAO56-dual K _c , SWB	Grazing Seed	K _{cb} K _{cb} Border		0.50 0.15	0.95 0.85	0.80 0.60
	Paredes et al. (2018) (Tifton 85)	Santa Maria, Rio Grande do Sul, Southern Brazil (subtropical humid)	FAO56-PM ET _o SWB-TDR, model SIM- DualKc	Grazing cuts when $h_{mi}=0.15$, $f_{c}h_{mi}=0.8$ CGDD=124°C $h_{cut}=0.19$, $f_{c}a_{cut}=0.9$ CGDD=248°C $h_{cut}=0.23$, $f_{c}a_{cut}=0.9$ CGDD=372°C $h_{cut}=0.30$, $f_{c}a_{cut}=0.9$	CGDD=124 °C CGDD=248 °C CGDD=372 °C Sprinkler	K _{c avg} 0.96 1.00	K _{cb ini} 0.83 0.85 0.87	K _{cb mid} 0.86 0.91 0.96	K _{cb end} 0.87 0.93 0.97
Birdsfoot trefoil, <i>Lotus</i> corniculatus	Garcia-Diaz and Steiner (1999)	Corvallis, Oregon, USA (cold winter)	FAO24 Pan ET _o SWB-neutron	Seed	Summer season (83 to 100 days) Sprinkler	1.05			
Chinese ryegrass, Leymus chinensis	Wu et al. (2016)	Agula, Horqin Sandy Land, Inner Mongolia, China (freezing winter)	FAO56-PM ET。 SWB-neutron, model SIM- DualKc	Grazing May-Oct $h_{max}=0.50$ $f_{c max}=0.92$	K _{cb} K _c GW fed		0.30 0.39	0.70 0.77	0.40 0.58
Creeping wildrye, <i>Leymus</i> triticoides	Benes et al. (2012)	Five Points, Fresno, CA, USA (mild wint, hot sum)	CIMIS-PM-ET _o DL, SR	Grazing $h = 0.15 \cdot 0.30$	Annual Summer Flooding	0.92 1.11			
Hairy vetch, Vicia villosa	Bodner et al. (2007)	Hollabrunn, eastern Austria (temperate)	FAO56-PM ET _o DualKc method	Grazing or cover crop $f_{c=0.93}$	K _{cb} Rainfed			0.90	
Italian ryegrass, <i>Lolium</i> multiflorum	Attarod et al. (2009)	Fuchu, Tokio, Japan (temper- ate)	FAO56-PM ET _o BREB	n/r	January to May n.r.	0.87			
	Mueller et al. (2005)	Paulinenaue, NW Berlin, Germany (temperate)	FAO56-PM ET _o GW Lys.	2 or 3 cut/y Apr-Sep	WTD=0.5-0.7 m WTD=0.7-1.0 m <i>GW fed</i>	0.99 0.87			
Paspalum, seashore paspalum, <i>Paspalum</i> vaginatum	Benes et al. (2012)	Five Points, Fresno, CA, USA (mild win, hot sum)	CIMIS-PM-ET _o DL	Grazing $h = 0.15-0.30$	Annual Summer Flooding	0.85 1.00			
Red clover, Trifolium pratense	Mueller et al. (2005)	Paulinenaue, Berlin, Ger- many (temperate)	FAO56-PM ET _o GW Lys.	2 or 3 cut/y Apr-Sep	WTD=0.4–0.7 m WTD=0.7–1.1 m <i>GW fed</i>	$1.13 \\ 0.86$			

Table 9 (continued)									
Grass crop	Reference	Location (climate)	Method to estimate ET_{o} and $\mathrm{ET}_{\mathrm{c}}_{\mathrm{act}}$	Nr. cut cycles, other uses and season duration <i>height</i>	Conditions relative to observed $K_c/K_{cb} + irrigation$	$K_{\rm c\ act}$ or $K_{\rm c\ act}$ for single or multiple cuts, grazing, and seed production	et for sing	e or multipl action	e cuts,
				$(n, m), J_c$	method	K _{c act avg} K	$\mathbf{K}_{\mathrm{c}\ \mathrm{act}\ \mathrm{ini}}$	${\rm K}_{\rm c \ act \ mid}$	${ m K}_{ m c\ act\ end}$
Rye grass, <i>Lollium</i> spp.	Allen et al. (2005a)	Imperial Valley, CA, USA (arid, hot)	FAO56-PM ET _o FAO56-K _{eb} , SWB	Grazing	K _{cb} Border		0.85	1.00	0.90
	Graham et al. (2016)	Canterbury Plains, N Zea- land (Temperate)	FAO56-PM ET _o PT eq.	Seed and grazing $h_{low}=0.15$	Seed Grazing <i>Border</i>	а а	n/r n/r	0.93 0.93	0.35 n/r
Sedge grass, Carex spp.	Allen et al. (2005b)	Montpelier, Idaho, USA (subhumid cold)	ASCE-PM ET _r Lys. + METRIC	Grazing	July-October Rainfed	n 0.69	n/r	0.80	0.50
Sunn hemp, <i>Crotalaria</i> <i>juncea</i>	Takagi et al. (2009)	Tottori, Japan (temperate)	FAO56-PM ET _o BREB	Grazing h _{mux} =1.05	Sprinkler	0	0.89	1.13	1.10
Tall fescue, Festuca arun- dinacea	Pinnix and Miller (2019)	Lake Wheeler, Raleigh, NC, USA (temperate)	ASCE-PM ET _o Small WL	Grazing $h_{low}=0.10$	Summer Sprinkler	0.80			
	Alam et al. (2019)	Armidale, Australia (temper- ate)	FAO56-PM ET _o Evap. chamber	Grazing LAI _{mux} =4.	Surface	0	0.30	0.80	
Tall wheatgrass, <i>Thinopyrum</i> Benes et al. (2012) ponticum	Benes et al. (2012)	Five Points, Fresno, CA, USA (mild wint, hot sum)	CIMIS-PM-ET _o DL, SR	Grazing h = 0.15 to 0.30 $f_{c=0.98}$	Annual Summer Flooding	0.98 1.08			
Timothy, Phleum pratense	Mueller et al. (2005)	Paulinenaue, NW Berlin, Germany (temperate)	FAO56-PM ET _o GW Lys.	2 or 3 cut/year Apr–Sep	WTD=0.5-0.8 mWTD=0.8- 1.1 m <i>GW fed</i>	0.86 0.78			

Symbols, abbreviations and acronyms are given in Appendix B Bold italics are to highligh that these values are $K_{\rm cb}$ which differ from the other values which are $K_{\rm c}$

Grass crop	Reference	Location (climate)	Method to estimate ET _o and	Uses, season duration, height (h) and f _c	Conditions relative to the reported K_c + <i>irriga</i> -	$K_{\rm cact}$ or $K_{\rm cbact}$ for mowing for landscape, sport and gulf courses	r mowing gulf course	for land- ss
			ET _{c act}		tion method	$K_{c \ act \ avg} K_{c \ act \ ini}$	$K_{c \; act \; mid}$	$K_{c \; act \; end}$
Bahiagrass, <i>Paspalum</i> notatum	Migliaccio and Shoe- maker (2014)	Snapper Creek, S. Flor- ida, USA (subtropical humid)	FAO56-PM ET _o EC, PT eq.	Urban Full year	Rainfed	0.67	0.83	0.62
	Wherley et al. (2015)	Citra, Florida, USA (subtropical humid)	ASCE-PM ET _o WL	Lawn, mowed to $h = 0.088$	Rainfed	0.75		
Bentgrass, Agrostis stolonifera	Bandenay et al. (2021)	Castellón, Valencia Spain (mild wint, hot sum)	FAO56-PM ET _o DL, SWB-capacit.	Golf green, Mar–Nov f _c =1.0	Current With hydrogel+OM Diffusers	1.06 1.18		
Bermuda grass, <i>Cynodon</i> Bañuelos et al. (2011) <i>dactylon</i>	Bañuelos et al. (2011)	Karsen, Arizona, USA (arid, hot)	FAO56-PM ET _o SWB-TDR	Golf $h = 0.016$, $f_c = 0.97$	Summer Sprinkler	0.80		
Bermuda grass, <i>Cynodon</i> Wherley et al. (2015) <i>dactylon</i> × <i>C</i> . <i>trans-</i>	Wherley et al. (2015)	Citra, Florida, USA (subtropical)	ASCE-PM ET _o WL	Lawn h _{low} =0.05	Sprinkler	0.67		
vaalensis	Pinnix and Miller (2019)	Lake Wheeler, Raleigh, NC, USA (temperate)	ASCE-PM ET _o Small WL	Landscape h _{low} =0.05	Summer Sprinkler	0.56		
Blue fescue, <i>Festuca</i> glauca	Yuan et al. (2011)	Changping, Beijing, China (cold wint, hot sum)	FAO56-PM ET _o Mini WL	Landscape	May-Oct Sprinkler		0.80	0.14
Feather reed grass, Calamagrostis brachytricha	Yuan et al. (2011)	Changping, Beijing (cold FAO56-PM ET _o wint, hot sum) Mini WL	FAO56-PM ET _o Mini WL	Landscape	May-Oct Sprinkler		1.05	0.48
Paspalum, seashore paspalum, <i>Paspalum</i> vaginatum	Bañuelos et al. (2011)	Karsen, Arizona, USA (arid, hot)	FAO56-PM ET _o SWB-TDR	Landscape, gulf $h =$ 0.016, $f_c = 0.90$	Sprinkler	0.80		
St. Augustinegrass, Stenotaphrum secun-	Fontanier et al. (2017)	College Station, TX, USA (temperate)	FAO56-PM ET _o SWB-TDR	landscape $f_c = 1.0$	Season Sprinkler	0.80		
datum	Wherley et al. (2015)	Citra, Florida, USA (subtropical humid)	ASCE-PM ET _o WL	Lawn, mowed to h _{low} =0.088	Sprinkler	0.63		
Zoysiagrass, Zoysia japonica	Wherley et al. (2015)	Citra, Florida, USA (subtropical humid)	ASCE-PM ET _o WL	Lawn, mowed to h _{low} =0.051	Sprinkler	0.69		

Table 11 Standard K _c values for semi-natural and planted grass	lands and for grasses for agricultural and landscape uses
--	---

Typical grasslands and grasses for animal feeding, landscape and sport	K _{c ini}	K _{c mid}	K _{c end}
Semi-natural high mountain meadows and grasslands for grazing and hay, freezing winter, short mid-season, killing frost	0.40	1.10	0.95
Semi-natural high mountain meadows and grasslands for grazing and hay, freezing winter, no killing frost	0.40	1.00	0.35
Non-irrigated grasslands and meadows in low elevation plateau and prairies for grazing or seed, cold winter but large mid-season	0.55	0.95	0.50
Non-irrigated grasslands and meadows in low elevation plateau and prairies for hay, cold winter but large mid-season (K_c for typical cut cycles)	0.45	1.15	1.15
Irrigated grasslands, meadows, and pastures for grazing or seed, cold/mild winter and large mid-season	0.55	1.05	0.55
Irrigated grasslands, meadows, and pastures for hay, cold/mild winter and large mid-season (Kc for typical cut cycles)	0.55	1.05	1.05
Semi-natural savanna grasslands	0.35	0.90	0.35
Semi-natural steppe grasslands	0.30	0.75	0.30
Semi-natural meadows and pastures in high mountain	0.40	1.00	0.45
Semi-natural cold and temperate grassland ecosystems	0.40	0.65	0.45
Semi-natural mixed grasslands and forests/woodlands	0.35	0.70	0.40
Semi-natural shrublands	0.25	0.70	0.40
Grasses			
Alfalfa for hay; typical cuts cycles	0.50	1.20	1.15
Alfalfa for seed	0.40	1.10	0.65
Grasses for grazing, high height of grazing cuts	0.90	1.05	0.90
Grasses for grazing, low height of grazing cuts	0.85	0.95	0.85
Grasses for grazing with large cut cycles	0.90	0.95	0.95
Grasses for seed production	0.30	0.90	0.65
Grasses for grazing with short cut cycles	0.85	0.95	1.00
Grasses for hay; typical cuts cycles	0.55	1.15	1.05
Landscape grasses, golf courses (cut h<0.01 m)	0.80	0.80	0.80
Landscape grasses, lawns (cut h<0.10 m)	0.50	0.70	0.50
Landscape grasses, urban	0.65	0.90	0.50

information is useful for irrigation management and scheduling applied to irrigated grasslands. Related applied research should be developed aiming at improved water productivity and water saving since such information is rare.

 K_c values tabulated for that wide number of grasslands and grasses may be useful for feeding all kind of herbivorous, for landscape and for sport activities, always considering the need for saving water, i.e., to avoid excess water application and, on the contrary, to avoid detrimental water deficits that reduce both the productivity and the ecosystem services. It is opportune to refer the need for continuing research that may not only increase the transferable case studies data but also may support improving the summarized standard K_c values (Section "Standard crop coefficients") for use in Hydrology and water resources. This review led to conclude that research on grass productivity should also consider issues for ecosystem services. Research aimed at ecosystem services requires however a better consideration of the role that water plays to improve biodiversity, C sequestration, water infiltration, thus controlling runoff and erosion, improving water availability through storage in the soil and in groundwater, thus contributing to mitigate effects of climate extremes and climate change, particularly in case of semi-natural grasslands. More research is required along these lines as well as relative to policy making that could contribute to define related priorities and the protection of semi-natural grasslands, as well supporting the mitigation of impacts of global change.

Appendix A

See Tables 12, 13 and 14.

Identification	Reference	Climate	Methods for detemining ET_o and $ET_{c act}$	Season period	Water supply
Alpine pasture, Torgnon, Aosta Valley, Italy	Corbari et al. (2017)	Freezing winter, mild summer	FAO56-PM ET _o EC, RS-VI, PM eq.	May–Sep	Rainfed
Mountain grasslands of Aosta Alps, Italy	Gisolo et al. (2022)	High mountain freezing winter	FAO-PM-ET _o EC, METRIC, SWB- CLIME-MG model	Apr–Sep or Oct	Rainfed
Alpine grasslands in Canton of Valais, Swit- zerland	Smith et al. (2012)	High mountain freezing winter	FAO-PM-ET _o K _c from LAI	Apr–Sep Apr–Oct	Mostly rainfed
Andean Zhurucay páramo, Cajas Massif, Southern Equador	Carrillo-Rojas et al. (2019)	Alpine Equatorial	FAO56-PM ET _o EC	Annual	Rainfed
High elevation Andean páramos, Machangara, southern Ecuador	Buytaert et al. (2006)	Cold and rainy	FAO56-PM ETo Basin water balance	Annual	Rainfed
Humid alpine meadow, Haibei, Qinghai-Tibetan Plateau, China	Dai et al. (2021)	Freezing winter	FAO56-PM ET _o WL, FAO56	Growing season	Rainfed
Subalpine meadows, Heihe River, Qilian Mountains, China	Gao et al. (2019)	Semi-arid, very cold winter	FAO56-PM ET _o EC	May-Oct	Rainfed
High mountain meadow, Yeniugou, Qilian Mountains, China	Yang et al. (2013)	Very cold winter with frozen soil	FAO56-PM ET _o Mini-Lys.	Jun-Sep	Rainfed
Alpine meadow, Heihe basin, Qilian Moun- tains, China	Yang et al. (2017)	Very cold winter with frozen soil	FAO56-PM ET _o WL, SWB-Trime	Annual	Rainfed
Alpine meadow of the Tibetan Plateau, China	Chang et al. (2017)	Very cold winter	FAO56-PM ET _o EC	Apr/May Sep/Oct	Rainfed
Humid meadow, Fenghu- oshan, Qinghai-Tibetan Plateau, China	Li and Wang (2015)	Very cold winter	FAO56-PM ET _o EC	May–Sep	Rainfed
Alpine meadow, Qinghai Tibetan Plateau, China	Li et al. (2013)	Very cold winter	FAO56-PM ET _o EC	May-Sep	Rainfed
Global ecosystem ET/ ET _o FluxNet	Liu et al. (2017)	Diverse climates	FAO-PM-ET _o , Global eddy flux	n/r	n/r

Table 12 Characteristics of selected semi-natural high elevation grasslands.

Irrigation Science

Table 13 Characteristics of selected non-irrigated grasslands in low elevation mountains and lowlands.

Identification	Reference	Climate	Methods for detemining ET_{o} and $\text{ET}_{c \text{ act}}$	Management f_c and $h(m)$	Season period	Water supply
Groundwater fed pasture in Horqin Sandy Land of Inner Mongolia, China	Wu et al. (2016)	Very cold winter	FAO56-PM ET _o SWB-SIMDualKc	Grazing	May-Oct	GW fed
Grasslands of Xilin, Inner Mongolia, China	Zhao et al. (2010)	Very cold winter	FAO56-PM ET _o SWB-Theta-probes	Grazing	May-Sep	Rainfed
Grassland and shrubland in Zhanggutai, Liaoning, China	Zheng et al. (2012)	Monsoon, cold winter	FAO56-PM ET _o SWB-CROPWAT, RS	n/r	May–Sep	Rainfed
Chippewa prairie grasslands, West-Central Minnesota, USA	Baeumler et al. (2019)	Cold winter	ASCE-PM ET _r METRIC model	Grazing	Growing season	Rainfed
Perennial pastures, Central Valley of California + Car- son Valley Nevada, USA	Howes et al. (2015)	Temperate	FAO56-PM ET _o Review and re- computing	Grazing	Annual	GW fed
Gudmundsen Sand Hills meadow, Nebraska, USA	Healey et al. (2011)	Cold winter	ASCE-PM ET _r BREBS, METRIC	Grazing and cutting	Apr-Oct	GW fed
Tallgrass prairie at Stillwater, Oklahoma, USA	Krueger et al. (2021)	Temperate	FAO56-PM ET _o EC, SWB and grass ET model	Grazing f _c =0.88, h _{max} =0.75	Annual	Rainfed
Pastureland at Hillsborough County, Central Florida, USA	Nachabe et al. (2005)	Subtropical humid	Class A Pan ET _o SWB-capacit.	Grazing	Annual	GW fed
Pasture in Floral City, central Florida, USA	Sumner and Jacobs (2005)	Humid sub-tropical	ASCE-PM ET _o EC	Rotational grazing	Annual	Rainfed
Grassland in North Dakota, USA	Niaghi and Jia (2017)	Continental sub- humid	ASCE-PM ET _o EC, SWB–Hydra	Grazing and hay	Apr-Oct	Rainfed
Meadow and grasslands in northern New York State, USA	Hwang et al. (2020)	Cold winter	FAO-PM-ET _o , BREB, SEBS	Grazing Apr–Oct	Apr-Oct	Rainfed
Intensively grazed pasture, Waikato, New Zealand	Pronger et al. (2016)	Temperate	FAO56-PM ET _o EC	Grazing $h = 0.50 - 0.70$	Annual	Rainfed
Wetlands in Upper Pangani River Basin, Tanzania,	Kiptala et al. (2013)	Tropical semiarid, hot	FAO24-Pan-ET _o SEBAL and RS- Modis	Grazing	Annual	Rainfed
Mountain semi-natural pas- tures in Montalegre, northern Portugal	Pôças et al. (2013)	Cold winter, humid	FAO56-PM ET _o EB, METRIC	Grazing	Mar–Nov	Rainfed
Pasture at Ribeirinha, Terceira Island, Azores	Fontes et al. (2004)	Temperate humid	FAO-PM-ET _o Basin WB-OPUS	Rotational grazing	Annual	Rainfed
Wet Grasslands at Havellän- disches Luch (HL)and Spree- wald Wetland (SW), eastern Germany	Dietrich et al. (2021)	Temperate, cold winter	FAO56-PM ET _o EC (PO), WL (CO)	Grazing	May–Sep	Rainfed, GW fed
Grassland in Rollesbroich, LowRhine Valley, Germany.	Groh et al. (2015)	Cold winter, sub- humid	FAO56-PM ET _o WL	Cuts in May, Jul, Aug, Nov	Apr-Nov	Rainfed
Mountain pasture sward in the Western Carpathians, Poland	Kuźniar et al. (2011)	Cold humid winter	FAO56-PM ET _o Reviewed data	n/r	May-Oct	Rainfed
Meadows in Poland	Kasperska- Wołowicz and Łabędzki (2006)	Cold humid winter	FAO56-PM ET _o DL, SWB	Grazing and cutting	Apr–Sep	n/r
Pastures and meadow in North- East Poland	Szejba (2011)	Cold humid winter	FAO56-PM ET _o Review grass K _c	Grazing. hay, 3-cuts	May–Sep	Rainfed
Grass by the Fenéka pond edge, Kis-Balaton Lake, Hungary	Anda et al. (2015)	Cold humid winter	FAO56-PM ET _o Modified DL	Grazing	May-Oct	Rainfed

Irrigation Science

Identification	Reference	Climate	Methods for determining ET_{o} and $ET_{c act}$	Management f_c and h (m)	Season period	Irrigation method
Pasture in Gareh Bygone Plain, South of Zagros, Shiraz, Iran	Pakparvar et al. (2014)	Continental, semi- arid	FAO-PM-ET _o , RS-SEBS	Grazing $h = 0.32$, $f_c = 0.67$	Annual	Border DI
Dairy pastures in the Goulburn- Murray District, Victoria, Australia	Abuzar et al. (2017)	Temperate	FAO56-PM ET _o RS-NDVI, SWB- FDR	Grazing	Annual	Sprinkler, border
Irrigated pasture in Murray-Darling basin, Australia	Bethune and Wang (2004)	Temperate	Grass WL-ET _o SWB, SWAT	Grazing $f_c = 1.00$	Annual	Border irrigation
Irrigated grasses at at Kyabram, northern Victoria, Australia	Greenwood et al. (2009)	Temperate	FAO56-PM ET _o SWB-neutron, dualK _c model	$f_c = 0.97$	n/r	Border Irrigation
Irrigated pasture in northern Victoria, Australia	Qassim et al. (2008)	Temperate	FAO56-PM ET _o BREB, PT+PMeq	Grazing	Annual	Centre pivot
Research pastures at New England Uni- versity, NewSouth Wales, Australia	Alam et al. (2018)	Temperate	FAO56-PM ET _o ET dome with RH + T sensors	Grazing, mowing h _{low} =0.05	Annual	Irrigated
Grazing pastures, Christchurch, New Zealand	KC et al. (2018)	Temperate	FAO56-PM ET _o SWB-mini DL, Aquaflex sens.	Grazing $h = 0.05$ -0.30	Annual	Center-pivot
Meadows in mountain areas of Montalegre, Portugal	Pôças et al. (2013)	Cold winter	FAO56-PM ET _o METRIC	Hay and grazing	Mar-Oct	Contour ditches
Pastures in Terra Chá, Lugo, Gal- ize, Spain	Cancela et al. (2006)	Temperate	FAO56-PM ET _o SWB ISAREG	Grazing, mowing	Apr-Oct	Sprinkler FI
Irrigated grasses at Piracicaba, São Paulo, Brazil	Sanches et al. (2019)	Subtropical humid with hot summers	FAO56-PM ET _o Plot small WL	6 or 7 cycles 5 cycles	Annual h _{low=} 0.30 h _{cut} =0.60	Sprinkler
"Marandu" palisade grass, single and combined, in Piracicaba, Brazil	Souza et al. (2021)	Subtropical humid	FAO56-PM-ET _o WL	Grazing	Annual	Sprinkler
Irrigated pasture at Twitchell Island, Sacramento river, and	Snyder et al. (2008)	Dry and hot sum- mer	ASCE-PM ET _o Surf. renewal	Grazing h _{cut} =0.10-0.20	n/r	Basin irrigation
Campbell Tract, Davis, USA				h _{cut} =0.08-0.12	n/r	Sprinkler
Bahiagrass in Citra, Central Florida, USA	Jia et al. (2009)	Subtropical humid	ASCE-PM ET _o EC, SWB-Hydra	Grazing	Annual	Linear-move
Permanent pastures at Imperial Valley, CA, USA	Allen et al. (2005a)	Dry, hot summer	FAO56-PM ET _o FAO56-K _{cb} , SWB	Grazing, f _c =1.0	Annual	Border

Table 14 Field observed K_c and K_{cb} for irrigated grasslands, meadows, and pastures

Appendix B. List of symbols, abbreviations, and acronyms

DL

ET _c		apotranspiration under standard conditions	EV
ET	-	or mm h ⁻¹]	EV FA
ET _{c act}		crop evapotranspiration, i.e., under non- l conditions [mm d^{-1} or mm h^{-1}]	FA
ET		reference crop evapotranspiration [mm d^{-1}	171
	or mm h		FA
ET _r		reference crop evapotranspiration [mm d ⁻¹	
21r	or mm h		
f _c		n of soil surface covered by vegetation (as	FL
c		d from overhead) [-]	
h _{cut}	Crop he	ight before cutting [m]	GF
h _{low}	Crop he	ight after mowing or cutting [m]	Gr
h _{max}	Crop he	ight before mowing or grazing [m]	GV
K _c		d) crop coefficient [-]	GV
K _{c act}		crop coefficient (under non-standard condi-	HV
*7	tions) [-		T O-
K _{c avg}		d) average crop coefficient [-]	J&
K _{c ini}	-	efficient during the initial growth stage [-]	LA Me
K _{c mid}	stage [-]	befficient during the mid-season growth	M
K _{c end}		befficient at end of the late season growth	
T _c end	stage [-]	-	
K _{c cut}		efficient before cutting [-]	MI
K _{c high}		efficient prior to grazing starts [-]	M
K _{c low}	-	efficient at the end of grazing [-]	
K _{cb}	-	d basal crop coefficient [-]	NI
K _{cb act}	Actual b	basal crop coefficient (under non-standard	PN
	conditio	ons and/or observed) [-]	PT
K _{cb ini}	Basal c	rop coefficient during the initial growth	Re
	stage [-]		RS
K _{cb mid}		rop coefficient during the mid-season	SA
17	growth s	•	SA
K _{cb end}		rop coefficient at end of the late season	SA
K	growth s	tress coefficient [-]	SE
K _s PET		I evapotranspiration $[mm d^{-1} \text{ or } mm h^{-1}]$	5L
T _c		mspiration [mm d-1 or mm h-1]	SE
±c	Crop ua	mophenion [mm d or mm n]	SF
Abbrev	viations a	and acronyms	SC
			Sp
			Sp
ASCE-F	PM-ET _r	Alfalfa reference ET _r calculated using an	SR
		extension of the FAO56 Penman-Mon-	Su
		teith equation	SW
Avg.		Average	
DDED		Derror notic encurry holenes	CI

Bowen ratio energy balance

Cumulative growing degree day [°C]

Capacitance sensors

DL	Drainage lysimeters
EC	Eddy covariance
ECV-SM	European Space Agency and Climate
	Change Initiative merged soil moisture
	product
EVI	Enhanced Vegetation Index
FAO	Food and Agriculture Organization
FAO56	Food and Agriculture Organization Irri-
	gation and Drainage Paper 56 (1998)
FAO56-PM-ET _o	Grass reference ET_0 computed with the
	FAO56 standardized Penman-Monteith
	equation
FLUXNET	Global network of micrometeorological
1 LOM(L1	flux measurement sites
GHG	Greenhouse gas
Grav.	Gravimetric method
GW	Groundwater
GW Lys.	
•	Water table lysimeter
HWB	Field or catchment hydrologic water
τοτ	balance
J&H	Jensen and Haise equation
LAI	leaf area index
Med	Mediterranean
METRIC	Energy Balance model for Mapping
	EvapoTranspiration with Internalized
	Calibration
ML	Mini or micro lysimeters
MODIS	Moderate Resolution Imaging
	Spectroradiometer
NDVI	Normalized Difference Vegetation Index
PM-eq.	Penman-Monteith combination equation
PT	Priestley-Taylor equation
Reflect.	Reflectometer
RS	Remote sensing
SAFER	Simple Algorithm for Evapotranspiration
	Retrieving
SAVI	Soil adjusted vegetation Index
SEB	Surface energy balance
SEBAL	Surface Energy Balance Algorithm for
	Land model
SEBS	Surface Energy Balance System model
SF	Sap flow
SOC	Soil organic carbon
Spg	Spring
Spr	Sprinkler
SR	Surface renewal
Sum.	Summer
SW	Double source method of Shuttleworth
5.11	and Wallace
SWB	Soil water balance
SWB	Soil water content
Tens.	Tensiometers
Trime	Trime-EZ soil moisture sensors
	TIME-EZ SON MOISTURE SENSOIS

Drainage lysimeters

BREB

Capacit.

CGDD

UN	United Nations
VI	Vegetation index
Win	Winter
WL	Weighing lysimeter

Appendix C. Scientific and common names of the plants mentioned in the previous Tables

Scientific name	Common name	Scientific name	Common name
Acacia spp.	Wattle, mimosa, thorntee	Festuca rubra	Creeping red fescue
Acacia etbaica	Clownhair wattle	Festuca spp.	Fescue grass
Acacia senegal	Gum Acacia, Gum Arabic Tree, or Gum Senegal Tree	Foeniculum vulgare	Common fennel
Acacia victoria	Gundabluie, or bardi bush	Geoffroea spp.	Chanar, Chilean Palo Verde
Achnatherum sibiricum	Siberian Needlegrass	Geranium spp.	Cranesbills
Aegilops crassa	Persian goat- grass	Haloxylon ammoden- dron	Saxaul
Aristida affinis = A. pur- purascens	Arrowfeather threeawn	Helianthemum lippii	Raqrouq
Aristida laevis	Aristida grass	Holcus lanatus	Yorkshire fog, fog grass
Agrostis spp.	Bentgrass	Iriantus angus- tifolium	
Agrostis stolonifera	Bentgrass, creeping bent	<i>Kobresia</i> sp	Perennial sedge.
Alisma spp.	Water-plantain	Kobresia cap- illifolia	= Carex capil- lifolia
Andropogon gerardii	Big blue stem	Kobresia humilis	= Carex alatau- ensis
Andropogon lateralis	Beard grass, bluestem grass, broomsedge	Kobresia pygmaea	= Carex parvula
Arnica mon- tana	Wolf's bane, leopard's bane, moun- tain tobacco, m. arnica	Kobresia tibetica	= Carex tibetiko- bresia
Artemisia frigida	Silky worm- wood	Leymus chin- ensis	Chinese ryegrass
Artemisia ordosica		Leymus triti- coides	Creeping wildry
Artemisia sieberi		Lolium multi- florum	Italian ryegrass

Scientific name	Common name	Scientific name	Common name
Artemisia tridentata	Sagebrush	Lolium per- enne	Perennial ryegrass, Eng- lish ryegrass
Hordeum leporinum	Barley-grass	Lollium spp.	Ryegrass
Atriplex lenti- formis	Quail bush, big saltbush	Lotus cornicu- latus	Birdsfoot trefoil
Avena barbata	Slender wild oat, bearded oat	Medicago polymorpha	California bur- clover, toothed bur clover, or toothed medick
Avena strigosa, Avena fatua	Black oats	Medicago sativa	Alfalfa
Axonopus affinis	Common carpetgrass	Medicago spp.	Medick, burclo- ver
Bassia dasy- phylla	Shaggy-Leaved Bassia	Megathyrsus maximus	Guinea grass cv. 'Mombaça'
Bouteloua gracilis	Blue grama	Nardus stricta	Matgrass
Brachiaria brizantha	Palisade grass ('Marandú')	Ornithopus compressus	Yellow bird's-foo
Bromopsis inermis	Smooth brome	Panicum anti- dotale	Blue panic, giant panic-grass
Bromus spp.	Brome	Pascopyrum smithii	Wheatgrass
Calamagrostis brachytricha	Feather reed grass, foxtail grass, dia- mond grass	Paspalum spp.	Bahiagrass, crowngrass or dallis grass
Calamagrostis spp.	Tussock grasses	Paspalum dilatatum	Dallis grass
Carex atro- fusca	Dark brown sedge or scorched alpine sedge	Paspalum notatum	Bahiagrass
Carex moor- croftii		Paspalum pip- tochaetium	
Carex semper- virens	Evergreen sedge	Paspalum vaginatum	Paspalum, sea- shore paspalum
Carex spp.	Sedge grass	Phalaris arun- dinacea	Reed canary grass
Carissa edulis	Climbing num- num, simple- spined num-num	Phleum prat- ense	Timothy grass, cat's tail
Carya spp.	Hickory	Pinus koraien- sis	Korean pine
Celtis sp.	Hackberry	Pinus pinaster	Maritime pine, cluster pine
Cerastium spp.	Mouse-ear chickweed	Pinus pinea	Stone pine, Roman pine, parasol pine, umbrella pine

Scientific name	Common name	Scientific name	Common name
Chrysotham- nus nauseo- sus	Chamisa, rubber rab- bitbrush, and gray rabbitbrush	Pinus pon- derosa	Ponderosa pine
Cirsium spp.	Thistle	Plantago lanceolata	Buckhorn plan- tain
Crotalaria juncea	Sunn hemp	Poa angusti- folia	Narrow-leaved meadow grass
Cynodon dac- tylon	Bermudagrass	Poa pratensis	Kentucky blue- grass
Cynodon dactylon × C. transvaal- ensis	Hybrid Bermu- dagrass	Poa spp.	Meadow-grass, bluegrass, tussock and speargrass
Cynosurus cristatus	Crested dogtail grass	Polylepis spp.	Tabaquillo
<i>Cytisus</i> spp.	Broom	Populus euphratica	Euphrates poplar
Dactylis glom- erata	Cat grass, cocksfoot	Populus spp.	Poplar Tree
Deschampsia cespitosa	Turfed hair grass	Prosopis spp.	Mesquite
Dichanthelium spp.	Witch grass	Quercus faginea	Portuguese oak
Dodonea angustifolia	Sand olive	Quercus ilex	Holm
Elymus nutans		Quercus rotun- difolia	Holm
Elymus smithii	Wildrye, wheatgrass, squirreltail	Quercus spp.	Oak trees
<i>Erica</i> spp.	Heaths	Trifolium repens	White clover
Fagus sylvatica	Beech	Trifolium resu- pinatum	Persian clover
Festuca arun- dinacea	Tall fescue grass	Trifolium sub- terraneum	Subterranean clover
Festuca glauca	Blue fescue		Short bunchgrass
Festuca nigre- scens	Chewing's fescue		2

Acknowledgments The support of the FCT—Fundação para a Ciência e a Tecnologia, I.P., under the project UIDB/04129/2020 of LEAF-Linking Landscape, Environment, Agriculture and Food, Research Unit, and to P. Paredes (DL 57/2016/CP1382/CT0022) are acknowledged, as well as the FAO LoA FAO-ISA-RP- 355071.

Author contributions LSP and PP designed and contributed to the search and selection of the reviewed articles, LSP, DES and PP performed the writing and DES revised the botanical, floristic issues and tabulation. SM, LSP and PP performed the revision of the manuscript. All authors agreed on the submitted version of the manuscript

Funding Open access funding provided by FCT|FCCN (b-on).

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abaker WE, Berninger F, Starr M (2018) Changes in soil hydraulic
properties, soil moisture and water balance in Acacia senegal
plantations of varying age in Sudan. J Arid Environ 150:42-53

- Abuzar M, Whitfield D, McAllister A (2017) Farm level assessment of irrigation performance for dairy pastures in the Goulburn-Murray District of Australia by combining satellite-based measures with weather and water delivery information. ISPRS Int J Geo Inf 6:239
- Alam MS, Lamb DW, Rahma MM (2018) A refined method for rapidly determining the relationship between canopy NDVI and the pasture evapotranspiration coefficient. Comput Electron Agric 147:12–17
- Alam MS, Lamb DW, Rahman MM (2019) In-situ partitioning of evaporation and transpiration components using a portable evapotranspiration dome—a case study in Tall Fescue (*Festuca* arundinacea). Agric Water Manag 213:352–357
- Alkemade R, Reid RS, van den Berg M, de Leeuw J, Jeukena M (2013) Assessing the impacts of livestock production on biodiversity in rangeland ecosystems. PNAS 110:52. https://doi. org/10.1073/pnas1011013108
- Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrig Drain Pap 56. FAO, Rome, p 300
- Allen RG, Clemmens AJ, Burt CM, Solomon K, O'Halloran T (2005) Prediction accuracy for project-wide evapotranspiration using crop coefficients and reference evapotranspiration. J Irrig Drain Eng 13(1):24–36. https://doi.org/10.1061/(ASCE) 0733-9437(2005)131:1(24)
- Allen RG, Tasumi M, Morse A, Trezza R (2005) A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrig Drain Syst 19:251–268
- Allen RG, Pruitt WO, Wright JL, Howell TA, Ventura F, Snyder R, Itenfisu D, Steduto P, Berengena J, Baselga J, Smith M, Pereira LS, Raes D, Perrier A, Alves I, Walter I, Elliott R (2006) A recommendation on standardized surface resistance for hourly calculation of reference ET_o by the FAO56 Penman-Monteith method. Agric Water Manag 81:1–22
- Allen RG, Tasumi M, Morse A, Trezza R, Wright JL, Bastiaanssen W, Kramber W, Lorite I, Robison CW (2007) Satellitebased energy balance for Mapping evapotranspiration with

internalized calibration (METRIC)—applications. J Irrig Drain Eng 133(4):395–406

- Allen RG, Pereira LS, Howell TA, Jensen ME (2011) Evapotranspiration information reporting: I factors governing measurement accuracy. Agric Water Manag 98(6):899–920
- Al-Solaimani SG, Alghabari F, Ihsan MZ, Fahad S (2017) Water deficit irrigation and nitrogen response of Sudan grass under arid land drip irrigation conditions. Irrig Drain 66:365–376
- Anda A, Soosa G, Silva JAT, Kozma-Bognara V (2015) Regional evapotranspiration from a wetland in Central Europe, in a 16-year period without human intervention. Agric Forest Meteorol 205:60–72
- Angerer J, Han G, Fujisaki I, Havstad K (2008) Climate change and ecosystems of asia with emphasis on Inner Mongolia and Mongolia. Rangelands 30:46–51. https://doi.org/10.2111/1551-501X(2008)30[46:CCAEOA]2.0.CO;2
- Antoniel LS, Prado G, Tinos AC, Beltrame GA, Almeida JVC, Cuco GP (2016) Pasture production under different irrigation depths. Rev Bras Eng Agr Amb 20(6):539–544. https://doi.org/10. 1590/1807-1929/agriambiv20n6p539-544
- Attarod P, Aoki M, Bayramzadeh V (2009) Measurements of the actual evapotranspiration and crop coefficients of summer and winter seasons crops in Japan. Plant Soil Environ 55(3):121–127
- Baeumler NW, Kjaersgaard J, Gupta SC (2019) Evapotranspiration from corn, soybean, and prairie grasses using the METRIC model. Agron J 111:1–11
- Bai Y, Cotrufo MF (2022) Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science 77(6606):603–608
- Bandenay GL, Renau-Pruñonosa A, Morell I, Esteller MV (2021) Effects of different amendments (organic matter and hydrogel) on the actual evapotranspiration and crop coefficient of turf grass under field conditions. Irrig Drain 70:293–305
- Bañuelos JB, Walworth JL, Brown PW, Kopec DM (2011) Deficit irrigation of seashore paspalum and bermudagrass. Agron J 103:1567–1577
- Batsukh K, Zlotnik VA, Suyker A, Nasta P (2021) Prediction of biomespecific potential evapotranspiration in Mongolia under a scarcity of weather data. Water 13:2470
- Benes SE, Adhikari DD, Grattan SR, Snyder RL (2012) Evapotranspiration potential of forages irrigated with saline-sodic drainage water. Agric Water Manag 105:1–7
- Bengtsson J, Bullock JM, Egoh B, Everson C, Everson T, O'Connor T, O'Farrell PJ, Smith HG, Lindborg R (2019) Grasslands more important for ecosystem services than you might think. Ecosphere 10(2):e02582. https://doi.org/10.1002/ecs2.2582
- Bethune M, Wang QJ (2004) A lysimeter study of the water balance of border-check irrigated perennial pasture. Aust J Exp Agric 44(2):151–162
- Bodner G, Loiskandl W, Kaul H-P (2007) Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agric Water Manag 93:85–98
- Bonanomi J, Tortato FR, Santos R, Penha JM, Bueno AS, Peres CA (2019) Protecting forests at the expense of native grasslands: Land-use policy encourages open-habitat loss in the Brazilian Cerrado biome. Perspect Ecol Conserv 17:26–31
- Bueno MR, Teodoro REF, Alvarenga CB, Gonçalves MV (2009) Determinação do coeficiente de cultura para o capim Tanzânia. Biosci J (Uberlândia) 25(5):29–35
- Burkart SE, León RJC, Conde MC, Perelman SB (2011) Plant species diversity in remnant grasslands on arable soils in the cropping Pampa. Plant Ecol 212:1009–1024

- Buytaert W, Iñiguez V, Celleri R, De Bièvre B, Wyseure G, Deckers J (2006) Analysis of the water balance of small páramo catchments in South Ecuador. In: Krecek J, Haigh M (eds) Environmental role of wetlands in headwaters. NATO Science Series, vol 63. Springer, Dordrecht
- Campos I, Villodre J, Carrara A, Calera A (2013) Remote sensingbased soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions. J Hydrol 494:1–9
- Cancela JJ, Cuesta TS, Neira XX, Pereira LS (2006) Modelling for improved irrigation water management in a temperate region of Northern Spain. Biosyst Eng 94(1):151–163
- Carpintero E, Mateos L, Andreu A, González-Dugo MP (2020) Effect of the differences in spectral response of Mediterranean tree canopies on the estimation of evapotranspiration using vegetation index-based crop coefficients. Agric Water Manag 238:106201
- Carrillo-Rojas G, Silva B, Rollenbeck R, Célleri R, Bendix J (2019) The breathing of the Andean highlands: net ecosystem exchange and evapotranspiration over the páramo of southern Ecuador. Agric Forest Meteorol 265:30–47
- Carvalho HFS, Moura MSB, Silva TGF, Rodrigues CTA (2018) Controlling factors of 'Caatinga' and sugarcane evapotranspiration in the sub-middle São Francisco Valley. Rev Bras Eng Agr Amb 22(4):225–230
- Cavero J, Faci JM, Medina ET, Martínez-Cob A (2017) Alfalfa forage production under solid-set sprinkler irrigation in a semiarid climate. Agric Water Manag 191:184–192
- Chang Y, Wang J, Qin D, Ding Y, Zhao Q, Liu F, Zhang S (2017) Methodological comparison of alpine meadow evapotranspiration on the Tibetan Plateau, China. PLoS ONE 12(12):e0189059. https://doi.org/10.1371/journalpone0189059
- Chiesi M, Battista P, Fibbi L, Gardin L, Pieri M, Rapi B, Romani M, Maselli F (2018) A semiempirical method to estimate actual evapotranspiration in Mediterranean environments. Adv Meteorol. https://doi.org/10.1155/2018/9792609. (ID 9792609)
- Contreras S, Jobbágy EG, Villagra PE, Nosetto MD, Puigdefábregas J (2011) Remote sensing estimates of supplementary water consumption by arid ecosystems of central Argentina. J Hydrol 397:10–22
- Corbari C, Ravazzani G, Galvagno M, Cremonese E, Mancini M (2017) Assessing crop coefficients for natural vegetated areas using satellite data and eddy covariance stations. Sensors 17:2664
- Dai L, Fu R, Guo X, Ke X, Du Y, Zhang F, Li Y, Qian D, Zhou H, Cao G (2021) Evaluation of actual evapotranspiration measured by large-scale weighing lysimeters in a humid alpine meadow, northeastern Qinghai-Tibetan Plateau. Hydrol Proces 35:e14051
- Descheemaeker K, Raes D, Nyssen J, Poesen J, Haile M, Deckers J (2009) Changes in water flows and water productivity upon vegetation regeneration on degraded hillslopes in northern Ethiopia: a water balance modelling exercise. Rangel J 31:237–249
- Descheemaeker K, Raes D, Allen R, Nyssen J, Poesen J, Muys B, Haile M, Deckers J (2011) Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands. J Arid Environ 75:353–359
- Dietrich O, Behrendt A, Wegehenkel M (2021) The water balance of wet grassland sites with shallow water table conditions in the North-Eastern German lowlands in extreme dry and wet years. Water 13:2259. https://doi.org/10.3390/w13162259
- Dixon AP, Faber-Langendoen D, Josse C, Morrison J, Loucks CJ (2014) Distribution mapping of world grassland types. J Biogeogr 41:2003–2019. https://doi.org/10.1111/jbi12381
- Doorenbos J, Pruitt WO (1977) Crop Water Requirements. FAO Irrig Drain Paper No 24 (rev) FAO, Rome

- Dudley N, Eufemia L, Fleckenstein M, Periago ME, Petersen I, Timmers JF (2020) Grasslands and savannahs in the UN decade on ecosystem restoration. Restor Ecol 28:1313–1317
- Fleischer E, Bölter J, Klemm O (2015) Summer evapotranspiration in western Siberia: a comparison between eddy covariance and Penman method formulations. Hydrol Process 29:4498–4513
- Fontanier C, Wherley B, White R, Aitkenhead-Peterson J, Chalmers D (2017) Historical ETo-based irrigation scheduling for St Augustinegrass lawns in the South-Central United States. Irrig Sci 35:347–356
- Fontes JC, Pereira LS, Smith RE (2004) Runoff and erosion in volcanic soils of Azores Simulation with OPUS. Catena 56:199–212
- Gao Y, Zhao C, Ashiq MW, Wang Q, Rong Z, Liu J, Mao Y, Guo Z, Wang W (2019) Actual evapotranspiration of subalpine meadows in the Qilian Mountains, Northwest China. J Arid Land 11(3):371–384
- Garcia-Diaz CA, Steiner JJ (1999) Birdsfoot trefoil seed production: I crop-water requirements and response to irrigation. Crop Sci 39:775–783
- Gisolo D, Previati M, Bevilacqua I, Canone D, Boetti M, Dematteis N, Balocco J, Ferrari S, Gentile A, N'sassila M, Heery B, Vereecken H, Ferraris S (2022) A calibration free radiation driven model for estimating actual evapotranspiration of mountain grasslands (CLIME-MG). J Hydrol 610:127948
- Glenn EP, Neale CMU, Hunsaker DJ, Nagler PL (2011) Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol Process 25:4050–4062
- Graham SL, Kochendorfer J, McMillan AMS, Duncan MJ, Srinivasan MS, Hertzog G (2016) Effects of agricultural management on measurements, prediction, and partitioning of evapotranspiration in irrigated grasslands. Agric Water Manag 177:340–347
- Greenwood KL, Lawson AR, Kelly KB (2009) The water balance of irrigated forages in northern Victoria, Australia. Agric Water Manag 96:847–858
- Groh J, Pütz T, Vanderborght J, Vereecken H (2015) Estimation of evapotranspiration and crop coefficient of an intensively managed grassland ecosystem with lysimeter measurements. 16 Gumpensteiner Lysimetertagung, Höhere Bundeslehr- und Forschungsanstalt Raumberg-Gumpenstein. p107–112
- Healey NC, Irmak A, Arkebauer TJ, Billesbach DP, Lenters JD, Hubbard KG, Allen RG, Kjaersgaard J (2011) Remote sensing and in situ-based estimates of evapotranspiration for subirrigated meadow, dry valley, and upland dune ecosystems in the semiarid sand hills of Nebraska, USA. Irrig Drain Syst 25:151–178
- Hobohm C, Janišová M, Vahle HC (2021) Development and future of grassland ecosystems: do we need a paradigm shift? In: Hobohm C (ed) Perspectives for biodiversity and ecosystems environmental challenges and solutions. Springer, Cham, pp 329–359. https://doi.org/10.1007/978-3-030-57710-0_14
- Hopkins A, Holz B (2006) Grassland for agriculture and nature conservation: production, quality and multifunctionality. Agron Res 4:3–20
- Hou Q, Wang Y, Yang Z, Shi G (2010) Dynamic simulation and definition of crop coefficient for typical steppe in Inner Mongolia China Chinese. J Plant Ecol 34(12):1414–1423
- Hou LG, Xiao HL, Si JH, Xiao SC, Zhou MX, Yang YG (2010) Evapotranspiration and crop coefficient of Populus euphratica Oliv forest during the growing season in the extreme arid region northwest China. Agric Water Manag 97:351–356
- Howes DJ, Fox P, Hutton PH (2015) Evapotranspiration from natural vegetation in the Central Valley of California: monthly grass reference-based vegetation coefficients and the dual crop coefficient approach. J Hydrol Eng 20:04015004

- Hu Y, Kang S, Ding R, Du T, Tong L, Li S (2020) The dynamic yield response factor of alfalfa improves the accuracy of dual crop coefficient approach under water and salt stress. Water 12:1224. https://doi.org/10.3390/w12051224
- Hunsaker DJ, Pinter PJ, Cai H (2002) Alfalfa basal crop coefficients for FAO–56 procedures in the desert regions of the southwestern US. Trans ASAE 45:1799
- Hwang K, Chandler DG, Shaw SB (2020) Patch scale evapotranspiration of wetland plant species by ground-based infrared thermometry. Agric For Meteorol 287:107948
- Ismail SM, El-Nakhlawy FS (2018) Measuring crop water requirement and crop coefficient for blue panic crop under arid conditions using draining lysimeters. Irrig Drain 67:454–460
- Jarchow CJ, Waugh WJ, Nagler PL (2022) Calibration of an evapotranspiration algorithm in a semiarid sagebrush steppe using a 3-ha lysimeter and Landsat normalized difference vegetation index data. Ecohydrol 15:e2413. https://doi.org/10.1002/eco. 2413
- Jia X, Dukes MD, Jacobs JM (2009) Bahiagrass crop coefficients from eddy correlation measurements in central Florida. Irrig Sci 28:5–15
- Kang B, Shao Q, Xu H, Jiang F, Wei X, Shao X (2020) Research on grassland ecosystem service value in China under climate change based on meta-analysis: a case study of Qinghai province. Int J Clim Chang Str Manag 12(5):617–637. https://doi. org/10.1108/IJCCSM-06-2020-0073
- Kasperska-Wołowicz W, Łabędzki L (2006) Climatic and agricultural water balance for grasslands in Poland using the Penman-Monteith method. Ann Warsaw Agricult Univ—SGGW. Land Reclam 37:93–100
- Kaushika GS, Arora H, Hari Prasad KS (2019) Analysis of climate change effects on crop water availability for paddy, wheat and berseem. Agric Water Manag 225:105734
- Kc B, Mohssen M, Chau HW, Curtis A, Cuenca R, Bright J, Srinivasan M, Hu W, Cameron K (2018) Impact of rotational grazing systems on the pasture crop coefficient for irrigation scheduling. Irrig Drain 67:441–453
- Kiptala JK, Mohamed Y, Mul ML, Van der Zaag P (2013) Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa. Water Resour Res 49:8495–8510
- Krueger ES, Ochsner TE, Levi MR, Basara JB, Snitker GJ, Wyatt BM (2021) Grassland productivity estimates informed by soil moisture measurements: statistical and mechanistic approaches. Agron J 113:3498–3517
- Kuźniar A, Twardy S, Kowalczyk A, Kostuch M (2011) An assessment of the water requirements of a mountain pasture sward in the Polish Western Carpathians. J Water Land Dev 15:193– 208. https://doi.org/10.2478/v10025-012-0017-9
- Lal R (2018) Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Glob Chang Biol 24:3285–3301. https://doi.org/10.1111/gcb14054
- Li F, Wang B (2015) A study of fitting a swamp meadow ecosystem evapotranspiration to a model based on the Penman-Monteith equation. J Chem. https://doi.org/10.1155/2015/315708. (Article ID 315708)
- Li J, Jiang S, Wang B, Jiang W-W, Tang Y-H, Du M-Y, Gu S (2013) Evapotranspiration and its energy exchange in alpine meadow ecosystem on the Qinghai-Tibetan Plateau. J Integ Agric 12(8):1396–1401
- Liu C, Sun G, McNulty SG, Noormets A, Fang Y (2017) Environmental controls on seasonal ecosystem evapotranspiration potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrol Earth Syst Sci 21:311–322

- Liu H, Hou L, Kang N, Nan Z, Huang J (2022) A meta-regression analysis of the economic value of grassland ecosystem services in China. Ecol Indic 138:108793. https://doi.org/10.1016/jecol ind2022108793
- Liu M, Wu X, Yang H (2022) Evapotranspiration characteristics and soil water balance of alfalfa grasslands under regulated deficit irrigation in the inland arid area of Midwestern China. Agric Water Manag 260:107316
- Lorenz K, Lal R (2018) Carbon sequestration in grassland soils. Carbon sequestration in agricultural ecosystems. Springer, Cham, pp 175–209. https://doi.org/10.1007/978-3-319-92318-5_4
- Lu N, Chen S, Wilske B, Sun G, Chen J (2011) Evapotranspiration and soil water relationships in a range of disturbed and undisturbed ecosystems in the semi-arid Inner Mongolia, China. J Plant Ecol 4(1–2):49–60
- Lü L, Zhao Y, Chu L, Wang Y, Zhou Q (2022) Grassland coverage change and its humanity effect factors quantitative assessment in Zhejiang province, China, 1980–2018. Sci Rep 12:18288. https:// doi.org/10.1038/s41598-022-23210-z
- Miao H, Chen S, Chen J, Zhang W, Zhang P, Wei L, Han X, Lin G (2009) Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. Agric For Meteorol 149:1810–1819
- Migliaccio KW, Shoemaker WB (2014) Estimation of urban subtropical bahiagrass (*Paspalum notatum*) evapotranspiration using crop coefficients and the eddy covariance method. Hydrol Process 28:4487–4495
- Monteith JL (1965) Evaporation and environment. The State and Movement of Water in Living Organisms, 19th Symp of Soc Exp Biol. Cambridge University Press, Cambridge, pp 205–234
- Mota VJG, Carvalho AJ, Oliveira FG, Gomes VM, Monção FP, Mota Filho VJG (2020) Determinação do coeficiente de cultura do capim-Mombaça manejado em diferentes estações do ano no semiárido mineiro. Irriga Botucatu 25:170–183. https://doi.org/ 10.15809/irriga2020v25n1p170-183
- Mueller L, Behrendt A, Schalitz G, Schindler U (2005) Above ground biomass and water use efficiency of crops at shallow water tables in a temperate climate. Agric Water Manag 75:117–136
- Nachabe M, Shah N, Ross M, Vomacka J (2005) Evapotranspiration of two vegetation covers in a shallow water table environment. Soil Sci Soc Am J 69:492–499
- Niaghi AR, Jia X (2017) Determination of grass evapotranspiration rates and crop coefficients using eddy covariance method in eastern North Dakota. World Environmental and Water Resources Congress, ASCE, Virginia, pp 468–383
- Noda A, Yamanouchi T, Kobayashi K, Nishihiro J (2022) Temporal continuity and adjacent land use exert different effects on richness of grassland specialists and alien plants in semi-natural grassland. Appl Veg Sci 25:e12682
- Nosetto MD, Jobbagy EG, Brizuela AB, Jackson RB (2012) The hydrologic consequences of land cover change in central Argentina. Agric Ecosyst Environ 154:2–11
- Paço TA, David TS, Henriques MO, Pereira JS, Valente F, Banza J, Pereira FL, Pinto C, David JS (2009) Evapotranspiration from a Mediterranean evergreen oak savannah: the role of trees and pasture. J Hydrol 369:98–106
- Pakparvar M, Cornelis W, Pereira LS, Gabriels D, Hafeez M, Hosseinimarandi H, Edraki M, Kowsar SA (2014) Remote sensing estimation of actual evapotranspiration and crop coefficients for a multiple land use arid landscape of southern Iran with limited available data. J Hydroinform 16:1441–1460
- Paredes P, Rodrigues G, Petry M, Severo P, Carlesso R, Pereira LS (2018) Evapotranspiration partition and crop coefficients of Tifton 85 bermudagrass as affected by the frequency of cuttings. Application of the FAO56 Dual Kc Model. Water 10:558. https:// doi.org/10.3390/w10050558

- Park J, Baik J, Choi M (2017) Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia. Catena 156:305–314
- Pereira LS, Paredes P, Jovanovic N (2020) Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach. Agric Water Manag 241:106357
- Petermann JS, Buzhdygan OY (2021) Grassland biodiversity. Curr Biol 31:R1195–R1201. https://doi.org/10.1016/jcub202106060
- Pieri M, Chiesi M, Battista P, Fibbi L, Gardin L, Rapi B, Romani M, Sabatini F, Angeli L, Cantini C, Giovannelli A, Maselli F (2019) Estimation of actual evapotranspiration in fragmented Mediterranean areas by the spatio-temporal fusion of NDVI data. IEEE J Selec Top Appl Earth Observ Remote Sens 12(12):5109–5117
- Pinnix GD, Miller GL (2019) Crop coefficients for tall fescue and hybrid bermudagrass in the transition zone. Crop Forage Turfgrass Manag 5:190013. https://doi.org/10.2134/cftm2019.02. 0013
- Pôças I, Cunha M, Pereira LS, Allen RG (2013) Using remote sensing energy balance and evapotranspiration to characterize montane landscape vegetation with focus on grass and pasture lands. Int J Appl Earth Observ Geoinfo 21:159–172
- Pôças I, Calera A, Campos I, Cunha M (2020) Remote sensing for estimating and mapping single and basal crop coefficients: a review on spectral vegetation indices approaches. Agric Water Manag 233:106081
- Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2):81–92
- Pronger J, Campbell DI, Clearwater MJ, Rutledge S, Wall AM, Schipper LA (2016) Low spatial and inter-annual variability of evaporation from a year-round intensively grazed temperate pasture system. Agric Ecosyst Environ 232:46–58
- Qassim A, Dunin F, Bethune M (2008) Water balance of centre pivot irrigated pasture in northern Victoria, Australia. Agric Water Manag 95:566–574
- Rosa RD, Paredes P, Rodrigues GC, Alves I, Fernando RM, Pereira LS, Allen RG (2012) Implementing the dual crop coefficient approach in interactive software 1: background and computational strategy. Agric Water Manag 103:8–24
- Roupsard O, Bonnefond J-M, Irvine M, Berbigier P, Nouvellon Y, Dauzat J, Taga S, Hamel O, Jourdan C, Saint-André L, Mialet-Serra I, Labouisse J-P, Epron D, Joffre R, Braconnier S, Rouzière A, Navarro M, Bouillet J-P (2006) Partitioning energy and evapo-transpiration above and below a tropical palm canopy. Agric For Meteorol 139:252–268
- Rubert GC, Roberti DR, Pereira LS, Quadros FLF, Campos Velho HF, Moraes OLL (2018) Evapotranspiration of the Brazilian Pampa biome: Seasonality and influential factors. Water 10:1864. https://doi.org/10.3390/w10121864
- Sanches AC, Souza DP, Ferreira de Jesus FL, Mendonça FC, Gomes EP (2019) Crop coefficients of tropical forage crops, single cropped and overseeded with black oat and ryegrass. Sci Agric 76(6):448–458
- Seo SN (2021) Sublime grasslands: a story of the pampas, prairie, steppe, and savannas where animals graze. Climate change and economics palgrave macmillan. Springer, Cham, pp 95–112. https://doi.org/10.1007/978-3-030-66680-4_6
- Shuttleworth WJ, Wallace JS (1985) Evaporation from sparse crops-an energy combination theory. Q J Roy Meteor Soc 111:839–855
- Silva COF, Manzione RL, Albuquerque Filho JL (2018) Large-scale spatial modeling of crop coefficient and biomass production in agroecosystems in southeast Brazil. Horticulturae 4:44. https:// doi.org/10.3390/horticulturae4040044

- Šimůnek J, van Genuchten MTh, Šejna M (2016) Recent developments and applications of the HYDRUS computer software packages. Vadose Zone J 15(7):vzj2016040033
- Smith PC, Calanca P, Fuhrer J (2012) A simple scheme for modeling irrigation water requirements at the regional scale applied to an alpine river catchment. Water 4:869–886. https://doi.org/10. 3390/w4040869
- Snyder RL, Spano D, Duce P, Paw UKT, Rivera M (2008) Surface renewal estimation of pasture evapotranspiration. J Irrig Drain Eng 134(6):716–721
- Soussana JF, Tallec T, Blanfort V (2010) Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 4:334–350. https://doi.org/ 10.1017/S1751731109990784
- Souza DP, Sanches AC, Mendonça FC, Pezzopane JRM, Amorim DM, Ferreira de Jesus FL (2021) Crop coefficient estimated by degree-days for 'Marandu' palisadegrass and mixed forage Crop coefficient & degree-days. Rev Fac Ciencias Agrarias-UNCuyo 53(2):71–81
- Steinwand AL, Harrington RF, Groeneveld DP (2001) Transpiration coefficients for three Great Basin shrubs. J Arid Environ 49:555–567
- Sumner DM, Jacobs JM (2005) Utility of Penman-Monteith, Priestley-Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration. J Hydrol 308:81–104
- Suttie JM, Reynolds SG, Batello C (eds) (2005) Grasslands of the World. FAO Plant Production and Protection Series No 34. FAO, Rome
- Szejba D (2011) Evapotranspiration of Grasslands and Pastures in North-Eastern Part of Poland. In: Irmak A (ed) Evapotranspiration: remote sensing and modelling. InTech, Rizeka, pp 179–196
- Takagi K, Kimura R, Şaylan L (2009) Variability of surface characteristics and energy flux patterns of sunn hemp (*Crotalaria juncea* L) under well-watered conditions. Theor Appl Climatol 96:261–273
- Teixeira AHC (2010) Determining regional actual evapotranspiration of irrigated crops and natural vegetation in the São Francisco River Basin (Brazil) using remote sensing and Penman-Monteith equation. Remote Sens 2:1287–1319
- Texeira M, Oyarzabal M, Pineiro G, Baeza S, Paruelo JM (2015) Land cover and precipitation controls over long-term trends in carbon gains in the grassland biome of South America. Ecosphere 6(10):196. https://doi.org/10.1890/ES15-000851
- Tyagi NK, Sharma DK, Luthra SK (2003) Determination of evapotranspiration for maize and berseem clover. Irrig Sci 21:173–181
- Viglizzo EF, Ricard MF, Taboada MA, Vázquez-Amábile G (2019) Reassessing the role of grazing lands in carbon-balance estimations: meta-analysis and review. Sci Total Environ 661:531–542

- Wherley B, Dukes MD, Cathey S, Miller G, Sinclair T (2015) Consumptive water use and crop coefficients for warm-season turfgrass species in the Southeastern United States. Agric Water Manag 156:10–18
- Wu Y, Liu T, Paredes P, Duan L, Wang H, Wang T, Pereira LS (2016) Ecohydrology of groundwater-dependent grasslands of the semiarid Horqin sandy land of inner Mongolia focusing on evapotranspiration partition. Ecohydrol 9:1052–1067
- Wu H, Zhu W, Huang B (2021) Seasonal variation of evapotranspiration, Priestley-Taylor coefficient and crop coefficient in diverse landscapes. Geogr Sustain 2(3):224–233
- Yang Y, Shang S, Jiang L (2012) Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agr For Meteorol 164:112–122
- Yang Y, Chen R, Han C, Qing W (2013) Measurement and estimation of the summertime daily evapotranspiration on alpine meadow in the Qilian Mountains, northwest China. Environ Earth Sci 68:2253–2261
- Yang Y, Chen R, Song Y, Han C, Liu J, Liu Z (2017) Actual daily evapotranspiration and crop coefficients for an alpine meadow in the Qilian Mountains, northwest China. Hydrol Res 484:1131–1142
- Yuan X, Gu M, Teng W, Yang X, Wu J (2011) Growth of *Calamagros*tis brachytricha Steud and Festuca glauca Lam and estimated water savings under evapotranspiration-based deficit irrigation. J Hort Sci Biotechnol 86:583–588
- Zhang F, Zhou G, Wang Y, Yang F, Nilsson C (2012) Evapotranspiration and crop coefficient for a temperate desert steppe ecosystem using eddy covariance in Inner Mongolia, China. Hydrol Process 26:379–386
- Zhao L, Zhao W (2014) Evapotranspiration of an oasis-desert transition zone in the middle stream of Heihe River Northwest China. J Arid Land 6(5):529–539. https://doi.org/10.1007/ s40333-014-0061-1
- Zhao Y, Peth S, Horn R, Krümmelbein J, Ketzer B, Gao Y, Doerner J, Bernhofer C, Peng X (2010) Modeling grazing effects on coupled water and heat fluxes in Inner Mongolia. Grassl Soil Tillage Res 109:75–86
- Zhao Y, Ding Y, Hou X, Li FY, Han W, Yun X (2017) Effects of temperature and grazing on soil organic carbon storage in grasslands along the Eurasian steppe eastern transect. PLoS One 12(10):e0186980
- Zheng X, Zhu JJ, Yan QL, Song LN (2012) Effects of land use changes on the groundwater table and the decline of *Pinus sylvestris* var *mongolica* plantations in southern Horqin Sandy, Land Northeast China. Agric Water Manag 109:94–106

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.