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Abstract

Natural and planted grasslands play a very important role in agriculture as source of various ecosystem services, including
carbon sequestration and biodiversity, and are responsible for a large fraction of agricultural water use in rainfed and irrigated
fields. It is, therefore, relevant to precisely know their water use and vegetation requirements with consideration of relevant
climate, from extremely cold, dry, with long winter seasons, to tropical humid and hot climates, thus with a large variability
of vegetation. Semi-natural grasslands are basically used for grazing and mainly refer to highland pastures and meadows,
steppes, savannas, pampas, and mixed forest systems. The FAO method to compute crop (vegetation) evapotranspiration (ET,)
through the product of a crop coefficient (K.) by the reference evapotranspiration (ET,) is adopted. The selected papers were
those where actual ET, (ET, ,.) was derived from field observations and ET, was computed with the FAO56 definition, or
with another method that could be referred to the former. Field derived ET, ,., methods included soil water balance, Bowen
ratio and eddy covariance measurements, as well as remote sensing vegetation indices or surface energy balance models,
thus reviewed K, (ET, ,./ET,) values were obtained from field data. These K, refer to initial, mid-season and end season
(K¢ act inis Ke act mid> Kc act ena) When reported values were daily or monthly; otherwise, only average values (K . o) Were
collected. For cases relative to cold or freezing winters, data refer to the warm season only. For grasses cut for hay, K ,; ini»
K¢ act mia» and K ;. onq TefEr to a cut cycle. K, values rarely exceeded 1.25, thus indicating that field measurements reported
did respect the available energy for evaporation. Overall, K, ;4 for semi-natural grasslands in cold climates were lower
than those in hot climates except when available water was high, with K, ;4 for meadows and mountain pastures gener-
ally high. Steppes have K. . miq Values lower than savannas. Grasses commonly planted for hay and for landscape generally
showed high K., miq Values, while a larger variability was observed with grasses for grazing. The collected K. ,., values
were used to define standard K values for all grassland and grasses. Nevertheless, the tabulated K_ ,, are indicative values of
K. to be used for actual water management purposes and/or irrigation scheduling of planted grasslands. It is expected that a
better knowledge of the standard and/or indicative K values for a wide variety of grasslands and grasses will support better
management aimed to improve grass productivity and ecosystem services, including biodiversity and carbon sequestration.

Introduction

Grassland is a main biome in Earth, occurring in every coun-
try or region, and having a great variability in relation to
climate, landforms and elevation, environmental conditions,

54 Paula Paredes use and management. It includes rangelands, shrublands,
pparedes @isa.ulisboa.pt pastureland, and cropland sown with pasture. Regional
. . ) ) descriptions of gr.asslands of. various types are provided in
LEAF—Linking Landscape, Environment, Agriculture the FAO book edited by Suttie Reynolds Batello (2005). A

and Food Research Center, Associated Laboratory TERRA,

Instituto Superior de Agronomia, Universidade de Lisboa, recent classification and world mapping of grassland types,
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the Prairie, the Steppe, the Savannas, and the Rangelands.
The importance of grasslands is well recognized.

Grasslands account for 26% of the world’s global ice-
free land area (Lorenz and Lal 2018), corresponding to the
second greatest land use in the Earth (Lii et al. 2022), while
forest land accounts for about 30%, and cultivated land for
12%. However, other authors considered that “grassland is
the largest terrestrial biome on Earth” (Hobohm et al. 2021),
accounting for up to 40% of the terrestrial area (Petermann
and Buzhdygan 2021; Seo 2021). There are different con-
cepts of grassland, e.g., with Dixon et al. (2014) defining
grassland as a non-wetland type with at least 10% vegeta-
tion cover, dominated or co-dominated by graminoid and
forb growth forms, and where the trees form a single-layer
canopy with either less than 10% cover and 5 m height
(temperate) or less than 40% cover and 8 m height (tropi-
cal). However, these limitations let out several semi-natural
grasslands such as those of Mediterranean regions. Hobohm
et al. (2021) state that grasslands support the livelihoods
of 1 billion people with pastoralism (rising of livestock)
with 20 million km? of grassland used for livestock feed
production and for a variety of ecosystem services. Lii et al.
(2022) pointed out the case of China, which has the second
largest grassland area in the world, representing about 41%
of China’s national territorial area. Mongolia has a smaller
grassland area, but it corresponds to 83% of its land area
(Angerer et al. 2008). The overall importance of grassland
is therefore evidenced, which justifies the attention of many
researchers to improve their use for livestock feed production
and for ecosystem services.

The research studies relative to evapotranspiration (ET)
cover many planted and semi-natural grasslands, as well as
grasses, graminoids, and legumes used for planted grass-
lands and lawns. ET studies very often aim at assessing cli-
mate change impacts and future coping measures, or are
relative to hydrologic and water resources assessments, par-
ticularly when referring to semi-natural grasslands. Studies
focusing on management mostly refer to planted permanent
grasslands for hay and grazing, namely when irrigated, and
include water—grass—yield relationships. Research on grass-
land management focusing on ecosystem services is rare
but many studies intend to recognize specific ecosystem
services. It is well known that grasslands play an important
role in ecological environment protection and animal hus-
bandry development (Lii et al. 2022), but ecosystem services
commonly identified often have relations with water despite
these aspects are evaluated with a low value degree (Kang
et al. 2020; Liu et al. 2022a). High valued ecosystem ser-
vices refer to biodiversity, carbon sequestration, soil erosion
control, and soil fertility enhancement, mainly when grass
legumes are used. Runoff is retarded by the vegetation, thus
favoring soil infiltration, which is also larger because grass
cover impedes crust formation, therefore increasing water
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storage in the soil and improving water availability. Other
commonly reported services include purifying chemical fer-
tilizers and pesticides, and regulating groundwater, mainly
in lowlands, while contributing to climate regulation, and
extremes mitigation are also mentioned. Recreation, snow
sports, and landscape aesthetics are extremely important
ecosystems services in mountain areas of Europe and north-
ern America, contrarily to other regions. Depending on the
type and management of the grasslands, biodiversity and
carbon fixation are quite relevant services, often object of
research, namely in relation with the degradation of grass-
lands (Lal 2018; Hobohm et al. 2021).

According to Lal (2018), anthropogenic activities have
affected about 40% of earth’s surface, and almost 92% of
the natural grasslands and ecosystems, which have been con-
verted to human use as grazing and croplands. Bonanomi
et al. (2019) added that protecting forests at the expense of
semi-natural grasslands can lead to the open-habitat loss of
the Brazilian Cerrado biome. Hobohm et al. (2021) referred,
as causes for degradation of grasslands, the expansion of
urban areas, tree plantations, use of mineral fertilizers and
pesticides, suppression of natural fires, over- and under-
grazing, and intensification of use. Reforms of agri-environ-
mental policies have aimed at incorporating environmental
objectives into agriculture, such as biodiversity and carbon
(C) sequestration in grasslands. However, many threats
remain, “in both the now-fragmented areas of agriculturally
improved productive lowlands” and in the marginal areas
of Europe, where traditional systems are disappearing, and
lands are abandoned (Hopkins and Holz 2006). Climate
change, world population growth, and uncertainties over
energy and water call for more focused research.

Land use conversion has depleted the terrestrial eco-
system C stock with major loss of the vegetation and soil
C stock (Lal 2018; Lorenz and Lal 2018). Conversion to
a restorative land use and adoption of good management
practices may create a positive soil/ecosystem C budget that
can lead to improved C sequestration rates in pastures, per-
manent crops, and lawns, and resulting from the restoration
of soils prone to water erosion, also operated with grass-
lands. The adoption of best management practices—con-
tinuous ground cover, complex rotations, integrated nutrient
management and no soil disturbance—can protect the soil
organic carbon (SOC) stock and enhance ecosystem services
(Lal 2018). Bai and Cotrufo (2022) reported that grasslands
store near one-third of the global terrestrial C stocks, can
act as an important soil carbon sink, with plant diversity
increasing SOC storage.

Improved grazing management and biodiversity can pro-
vide C gains in global grasslands. Zhao et al. (2017) indi-
cated that temperature, grazing intensity, and water avail-
ability are the major factors influencing SOC in grasslands
of Inner Mongolia, China, while temperature and soil pH are
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more influencing in Mongolia, where grassland C sequestra-
tion is higher. Soussana et al. (2010) stated that soil carbon
sequestration is the mechanism responsible for most of the
greenhouse gas (GHG) mitigation potential in the agricul-
ture sector and that grassland C sequestration has a strong
potential to contribute for mitigating the GHG balance of
ruminant production systems. However, CH, and N,O emis-
sions from livestock sector needs to be reduced and current
SOC stocks preserved. More recently, Viglizzo et al. (2019)
stated that grasslands sequester more carbon than forests
because they are less sensitive to water stress and wildfires.
This resilience of grasslands helps to preserve sequestered
terrestrial C and prevent it from returning the atmosphere.
The UN Decade on Ecosystem Restoration does not encour-
age afforestation of remaining semi-natural grassland and
savannah ecosystems (Dudley et al. 2020) but proposes
adopting a set of properly planned ecological, cultural, and
social approaches for successful grassland and savannah
restoration.

Enhancing biodiversity implies a good identification
of grassland specialist species and of causes for favoring
alien species richness. Noda et al. (2022) report that mow-
ing is effective for the conservation of grassland specialists’
diversity, but it is required to pay attention to the invasion
of alien species from adjacent areas. Biodiversity in range-
lands is decreasing due to the intensification of their use for
production (Alkemade et al. 2013). Extensively managed
grasslands are recognized globally for their high biodiversity
and their social and cultural values (Bengtsson et al. 2019).
These authors propose that “ecosystem service and food
security research and policy should give higher priority to
understand how grasslands can be managed for fodder and
meat production alongside other ecosystem service”. Texeira
et al. (2015) reported that C gains are a key aspect of ecosys-
tem functioning. In the Pampa biome, more than 80% of the
species recorded by 1930 are still present, but the number
of exotics has seven-fold increased (Burkart et al. 2011). In
that case, the water availability was the main driving factor
of floristic heterogeneity.

The brief review above definitely shows the importance
of the grassland ecosystems at the world scale, as well as
the importance of management for grassland to achieve
improved production and ecosystem services, particularly
C sequestration and biodiversity, and to mitigate and adapt to
climate change. Grasslands management require knowledge
of evapotranspiration (ET) as a main component of the water
balance and as the driving force of plants transpiration and
growth. Thus, considering the good number of published ET
studies, it has been possible to perform a review aimed at
extending the tabulated values of FAO56 (Allen et al. 1998),
hence focusing on various types of grasslands, semi-natural
ecosystems, and grasses. The review focused on the crop
coefficient as defined by the FAO56 method (Allen et al.

1998), where vegetation (crop) ET (ET,) is computed as ET,
= K_ ET,, product of the reference ET (ET,), also known as
potential ET (PET, assumed equal to ET,), by the specific
(vegetation) crop coefficient (K,). Thus, the articles pub-
lished after 1998 were targeted. The FAO56 method (Allen
et al. 1998) was the most often used in the papers reviewed,
is the most common and easy method used for the generality
of agricultural crops in the field practice, and their K are
tabulated in FAOS56. For these reasons, and as an opportu-
nity to update and expand the Tables in FAO56, the FAO
method was selected for the current review.

Nevertheless, other approaches to compute ET, were
adopted in the reviewed studies, which also computed ET,
and actual (ET, , ), thus allowing to obtain K, = ET_ ./
ET,. Therefore, the current paper shows the tabulated values
of K., for irrigated and non-irrigated grasslands, mead-
ows, and pastures, for semi-natural vegetation consisting of
steppes, savannas and other ecosystems, and tabulated K_
values for grasses, with distinction of their use for animal
production or for landscape, presented in Sections “Semi-
natural and planted grasslands”, “Semi-natural grassland
ecosystems” and “Grasses for hay, grazing and landscape”,
respectively. The analysis of the tabulated K ., allowed to
derive standard transferable K, values for the considered
grassland ecosystems and grasses, which are presented in
Section “Standard crop coefficients”. Therefore, the current
review consists of a full update and extension of standard K
values proposed in the FAO56 guidelines for computing crop
evapotranspiration aimed at supporting improved field and
water management of grasslands, and more accurate water
balances and hydrologic studies, thus easing the considera-
tion of water balances in studies relative to ecosystem ser-
vices where water plays a role.

Materials and methods

The review aimed at collecting the available K__ , , for grass-
lands and was performed through the widest possible search
focused on papers reporting on actual K, obtained from field
measurements of grasses and grasslands actual evapotran-
spiration (ET, ,.)-

The search was performed in Science Direct and through
the on-line pages of various journals, as well as using the
bibliography lists of selected articles. Several languages
were considered: English, Spanish, Portuguese, French,
Italian, and German. In addition to the keywords evapotran-
spiration and crop coefficients, numerous other keywords
were used including grass, semi-natural grasslands, planted
grasslands, pastures, meadows, rangelands, steppe, savanna,
prairie, shrubland, pampas, chaparral, and pdramos. Only
full articles were reviewed.

@ Springer



Irrigation Science

The criteria used for the selection of the papers from
where single and basal K alues were collected consist
of the following:

cactv

(1) The papers should be of good/acceptable quality, with-
out preference of journals where published.

(2) The K, . values should have been derived from ade-
quate field research, exceptionally from solid review
papers.

(3) The field methods should be well described and read-
able by any interested reader, and should refer to con-
sistent methodologies that provide for computing the

ET, ,.. including when less common empirical field
methods were used.

(4) The grass reference ET, should be computed with full
daily data sets using the FAO Penman Monteith equa-
tion (FAO-PM-ET,). When a different equation was
used, including when data sets with missing variables
were available, either the ratio of the equation used to
the FAO-PM-ET, was commonly known, or informa-
tion was available from the authors; a conversion factor
of 1.15 was used when the ASCE-PM ET, equation
for alfalfa (Allen et al. 2006) or the Penman equation
(Doorenbos and Pruitt 1977) were adopted.

(5) Under the conditions referred before, the K ,., values
were provided by the authors in Tables, graphics or
in the text; for a few cases, when only ET, ,, and ET,
were provided, K ., (average) values were computed.
Otherwise, data could not be considered.

(6) Another important aspect was relative to the descrip-
tion of the studied grassland; when information was too
brief the paper was excluded; nevertheless, depending
upon the rarity of the crop’s information, data from
papers where that information was less good, namely
on botanical data, were used.

(7) In addition, the field and computation methods should
be sufficiently descriptive, in line with the recom-
mendations by Allen et al. (2011), to understand if the
reported methods provided for reliable ET, ., data.
Otherwise, the study was not considered.

Among research studies on grasslands ET, many did not
use the FAO56 method but, as for the generality of other
methods, required specific field procedures. Field research
methods included: the soil-water balance (SWB) based
on observations of the soil water content (SWC) using
soil sampling and various types of sensors; the field or
catchment hydrologic water balance (HWB); the Bowen
ratio energy balance (BREB); the eddy covariance system
(EC); weighing and drainage lysimeters (WL and DL);
mini or micro lysimeters (ML) to assess soil evaporation;
and diverse but consistent empirical methods such as test-
ing different K values against observed yields. Most field

@ Springer

methods are described and analyzed for accuracy by Allen
et al. (2011).

The methods used to compute and assess ET, ., in addi-
tion to the FAO56 method (Allen et al. 1998), included the
Penman method (Doorenbos and Pruitt 1977), the Penman-
Monteith combination equation (Montheith 1965; PM), the
Priestley-Taylor equation (Priestley and Taylor 1972; PT),
and the double source method of Shuttleworth and Wallace
(Shuttleworth and Wallace 1985; SW). The PM, the PT and
the SW equations require specific field methods different
from the SWB. Several studies were performed with sup-
port of properly calibrated models. The most used software
models comprise SIMDualKc (Rosa et al. 2012; Pereira
et al. 2020) and HYDRUS (éimﬁnek et al. 2016). In addi-
tion, remote sensing (RS) was largely used mainly in the
last decade. Both surface energy balance models such as
METRIC, SEBAL, and SEBS (Allen et al. 2007), and RS
vegetation indices such as NDVI (Glenn et al. 2011; Pocas
et al. 2020), were adopted. A list of symbols, acronyms and
abbreviations is included in Appendix B.

The tables for grasslands K ., were divided into three
main groups with each one divided again according to the
types of grasslands, and where the reviewed papers are
“grouped” following the ecosystems type and/or farm use:

1. Semi-natural and planted grasslands and meadows,
divided into semi-natural, non-irrigated and irrigated,

2. Semi-natural grassland ecosystems, comprising savan-
nas, steppes, and other semi-natural ecosystems such as
mixed forests and shrublands, and

3. Grasses for hay, for grazing and for landscape uses.

The tables provide information on the location of the
studied sites, the authors, and the main grasses and the
actual crop coefficients, and the conditions corresponding
to the determination of the presented actual K values for the
initial, mid-season and end season (K ;,;, K, miq and K. .4
respectively, Fig. 1), following the FAO56 definitions (Allen
et al. 1998). The information provided aims at easing the
transferability of K values, including when users consult
the original papers.

Information on climate, the methods used for determin-
ing ET, and ET, ., the management adopted, the growing
season and water supply are given in Appendix A, comple-
menting data in Tables 1, 2, and 3.

The selected papers designate grasses, shrubs, and trees
with the scientific or the common names. In this review
paper, the scientific names are used. To ease recognizing
the plants, a Table in Appendix C lists the scientific names
used and the corresponding common name when known.

The tabulated actual K values are not adjusted to climate
(Allen et al. 1998) because grasslands very often have a
small height, thus small variation of K_ with wind speed and
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Fig. 1 Typical K /K, curves for a grassland used for grazing or seed
(FAO56, Allen et al. 1998)

relative humidity. In addition, users generally know well that
the transferability of K, information is related to the type of
grassland and the environmental conditions and, therefore,
they are able to well transfer the tabulated values adopting
small empirical corrections to K, of 5-10%, which values
may slightly increase K in dry and windy conditions, and
lower K, in humid and calm environments as recommended
in FAO56 (Allen et al. 1998).

The dual K, approach proposed in FAO56 (Fig. 1a) was
used by a few authors who reported basal crop coefficients
(K.p) representing the transpiration (T,) component of ET,
ie., Ky = TJ/ET, (Allen et al. 1998; Pereira et al. 2020).
The actual K, values are tabulated together with the single
K. ,. but using a bold and italic format of the characters.
Since grasslands typically have a large density of plants well
shading the ground, it results in a small soil evaporation
(Paredes et al. 2018) and quite small differences to the single
K, thus concluding that information on single averaged K
is definitely sufficient for further assessment of water use
and water balance.

Seminatural and planted grasslands

This section refers to actual K, for the various types of grass-
lands that are used for animal feeding through grazing and
hay, or to produce grass seed. The generic grasslands name
is used. The first group of grasslands consist of the irrigated
and non-irrigated grasslands, the latter being the most com-
mon ones, that include numerous semi-natural grasslands,
which water supply is precipitation or, less often, high
groundwater tables.

Semi-natural and planted non-irrigated grasslands

Table 1 shows K_ ., for semi-natural grasslands, meadows,
and pastures in high elevation sites with identification of
the field study location, reference of selected articles, the
floristic composition, and conditions relative to the crop
when the K, were derived. Semi-natural grasslands
occur in various cold and temperate climate ecosystems,
as meadows in high elevation mountains of the Qilian
Mountains and the Tibetan Plateau, the Andean pdramos
of the Equator, or the Alpine pasture of the Aosta Valley
(Table 1).

The highland sites show large K, ., values, around 1.0,
for the summer, unfreeze period, similar to the high ele-
vation grasslands reported in Section “Semi-natural and
planted non-irrigated grasslands”. Those high values mean
that soil water was well available for satisfaction of the veg-
etation after the winter snow and ice melting. The period of
grass growth has both high water and energy availability,
however, with growth limited by the temperature. In high
mountain and plateau locations, the winter is long and freez-
ing, so reducing the mid-season and conditions for killing
frost exist causing that the end-season may be anticipated.
They are located far from farms and the rural population.
The high elevation grasslands are generally semi-natural,
whose reported grasses are rarely planted (not included in
the Tables for grasses in Section “Grasses for hay, grazing
and landscape”).

Table 2 reports K, for low mountain and lowland grass-
lands, where the crop season is longer, the winter is less cold
and grasslands are located not far from farms, thus where
human interventions have occurred, altering the flora by
planting more productive grasses, and using fertilizers and
pesticides, and adopting other management practices, like
cutting for hay, not usual in semi-natural grasslands. The
low mountain non-irrigated grasslands may be semi-natural,
but those in low land are very often planted. The abandon-
ment or mismanagement of the semi-natural grasslands also
cause alterations due to the progressive invasion of shrubs
and trees, which compete with grasses for water, nutrients,
and energy.

The reported values (Table 1) show that K, ;,; range
0.25 to 0.65, corresponding to the regrowth of grasses in
spring, that depends upon the soil water availability by then.
They are much lower than the K ., i¢» Which ranges from
0.85 to 1.20; there are, however, lower mid-season values
when water is much insufficient. K ., .,q Values may be
quite lower than K, ;4 when solar radiation progressively
decreases, then followed by the decrease and end of growth,
particularly for higher latitudes, and cold time installs. End
season values may be close to the mid-season when growth
stops abruptly due to sudden changes of temperature and
radiation in the Fall due to killing frost occurrence. This
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Table 1 Field derived actual crop coefficients (K, ,.) for semi-natural high mountain grasslands and meadows for grazing and hay, with identifi-

cation of the study sites, article reference, and main grasses

Identification

Reference

Main grasses

Actual crop coefficient derived from field observations

Conditions Kc act avg Kc act ini Kc act mid Kc act end
Alpine pasture at Tor- Corbari et al. (2017) Nardus stricta, Festuca 0.85 0.45
gnon, Aosta Valley, nigrescens, Arnica
Italy montana, Carex spp.
Mountain grasslands of ~ Gisolo et al. (2022) n/r 0.70
Aosta Alps, Italy
Alpine grasslands in Smith et al. (2012) Grasses from multiple Short season 0.95
Canton of Valais, sites at various eleva- Long season 0.88
Switzerland tions
Andean Zhurucay Carrillo-Rojas et al. Tussock grasses Wet period 0.93
paramo, Cajas Massif, (2019) Calamagrostis spp. Non-wet period 0.87
Southern Ecuador
High elevation Andean  Buytaert et al. (2006) n/r Natural vegetation, high  0.42
paramos, Machangara, slope
southern Ecuador Planted grass, gentle 0.92
slope
Humid alpine meadow,  Dai et al. (2021) Kobresia sp., and May—Sep 1.01 0.65 1.20 1.05
Haibei, Qinghai- Poaceae
Tibetan Plateau, China
Subalpine meadows, Gao et al. (2019) Elymus nutans, Foenicu- May—Oct 0.81 0.45 1.05 0.25
Heihe River basin, Qil- lum vulgare
ian Mountains, China
High mountain meadow, Yang et al. (2013) Kobresia capillifolia, Summer 0.86
Yeniugou, Qilian Carex moorcroftii
Mountains, China
Alpine meadow, Qilian  Yang et al. (2017) Kobresia capillifolia, Unfrozen 0.82 0.25 1.20 0.40
Mountains Heihe Carex moorcroftii Frozen 0.19
basin, China
Alpine meadow of the Chang et al. (2017) n/r 0.50 0.95 0.85
Tibetan Plateau, China
Humid meadow at Li and Wang (2015) Stipa aliena, Kobresia 0.55 0.30 0.85 0.40
Fenghuoshan, Qinghai- tibetica, Festuca spp.,
Tibetan Plateau, China Carex atrofusca
Alpine meadow, Qing- Liet al. (2013) Kobresia humilis, K. Growing season (May—  1.00 0.65 1.20 n/r
hai-Tibetan Plateau, pygmaea, K. tibetica, Sep)
China Stipa aliena Non-growing 0.34
Global ecosystem ET/ Liu et al. (2017) n/r World average of multi- 0.45 0.86 0.41

ET,, Global FluxNet

ple sites

Symbols, abbreviations and acronyms are given in Appendix B

condition is not likely to occur in less elevation grasslands
(Table 1).

The K, . miq tend to be higher where water is available,
either due to rainfall or, in altitude, due to snow and ice melt;
lower values refer to the grasslands in plateau steppes (e.g.,
Xilin, Zhao et al. 2010), where water availability is scarce.
For the cases where only an average K. ,., value is reported,
it may be observed that higher actual K ,,, correspond to
conditions similar to high K, - Overall, small values are
for grasslands in dry areas.
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Selected main characteristics of the grasslands descrip-
tion, namely the crop season period, water supply (precipi-
tation and/or groundwater (GW)) and the methods used for
determination of ET, and ET, ., are provided in Appendix
A, in Tables 12 and 13, in correspondence to the Tables 1
and 2. Analyzing the variability of K_ .., values, it was
found that those data are important to identify the type of
grasslands and the quality of field and lab research work
behind the reported K but do not help to explain their
variability.

C act®
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Table 2 Field derived actual crop coefficients (K. ,. and K, ,.) for non-irrigated grasslands and meadows in highland plateau and prairies

Identification Reference Main grasses Actual crop coefficient derived from field observations
Conditions Kc act avg Kc act ini Kc act mid Kc act end
GW fed Pasture Wu et al. (2016) Leymus chinensis Avg 2 sites: K, 0.30 0.70 0.40
in Horqin Sandy K, 0.50 0.75 0.60
Land, Inner Mon-
golia, China
Grasslands of Xilin, Zhao et al. (2010) Leymus chinensis Ungrazed-1979 0.24 0.40 0.31
Inner Mongolia, Stipa grandis Ungrazed 1999 023 038 033
China Moderate grazed 022 035 035
Heavy grazed 0.20 0.30 0.28
Grassland 0.45 0.86 0.41
Grassland at Zhang- Zheng et al. (2012)  n/r Grassland 0.15 0.89 0.65
gutai, Liaoning,
China
Chippewa prairie Baeumler et al. Alisma spp., Carex  Previous burn 0.75 0.90 0.40
grasslands, West- (2019) spp., Cirsium spp., Recent burn 0.71 0.80 0.35
Central Minnesota, Dichanthelium
USA spp.
Perennial pastures, =~ Howes et al. (2015) n/r Avg. 2 fields 0.72 0.90
Central Valley Rainy season 0.71
of California + Dry season 010
Carson Valley of Y ’
Nevada, USA
Gudmundsen Sand  Healey et al. (2011)  Elymus smithii, Growing season 0.54 0.90 0.55
Hills meadow, Bouteloua gracili,
Nebraska, USA Poa pratensis
Tallgrass prairie at ~ Krueger et al. (2021) Schizachyrium K, 0.17 0.86 0.17
Stillwater, Okla- scoparium, K 0.22 0.96 0.22
homa, USA Andropogon gerar- ¢
dii, Sorghastrum
nutans
Pastureland at Hills- Nachabe et al. n/r 0.40 0.70 0.50
borough County, (2005)
Central Florida,
USA
Pasture at Floral Sumner and Jacobs  Paspalum notatum 2 years mean 0.59 0.95 0.45
City, Central (2005)
Florida, USA
Grassland in North ~ Niaghi and Jia n/r 2 years mean 0.80
Dakota, USA (2017)
Meadow and grass- Hwang et al. (2020)  Phalaris arundi- Meadow, Reed canary grass 0.96 1.19
lands in northern nacea 0.98 1.32
New York State,
USA Reed canary grass 1.05 1.23
Intensively grazed Pronger et al. (2016) Lolium perenne, 1.05 1.05 1.05
pasture at Waikato, Trifolium repens
New Zealand
Wet grasslands in Kiptala et al. (2013) n/r Wet season 0.60
Upper Pangani Dry sesaon 0.20
River Basin,
Tanzania
Mountain semi- Pdcas et al. (2013) Cytisus spp., Erica Grazing 0.65

natural pastures
at Montalegre,
northern Portugal

spp., Festuca
rubra, Agrostis
spp., Nardus
stricta

@ Springer
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Table 2 (continued)

Identification Reference Main grasses Actual crop coefficient derived from field observations
Conditions Kc act avg Kc act ini Kc act mid Kc act end
Pasture at Ribeir- Fontes et al. (2004)  Lolium perenne Year average 1.02
inha, Terceira Trifolium repens Grazing and hay
Island, Azores,
Portugal
Grasslands at Dietrich et al. (2021) n/r HL, Wet year 1.09 0.90 1.10 1.00
Havellindisches Dry year 0.85
]ST;rC:eEXI/;Il]ldd)E{’r&lfitlan . SW, Wet year 095 075 095 080
(SW), eastern Dry year 0.81
Germany
Grassland at Rolles-  Groh et al. (2015) Lolium perenne, 1st cut 0.75 1.25 1.50
broich, Lower Cynosurus cris- 2nd cut 0.40 1.05 1.20
gz;‘rfa;’;‘uey’ fatus 3rd cut 050 125 140
4th cut 0.40 1.20 1.25
Grazing 0.50 1.00 1.00
Mountain pasture KuZniar et al. (2011) Lolium perenne, Grazing 0.75
sward in the West- Cynosurus cris-
ern Carpathians, tatus
Poland
Meadows in Poland ~ Kasperska- n/r High yield 1st cut 0.50 1.20 1.30
Wotowicz and 2nd cut 055 130 135
Eabedzki (2006) Median yield Ist cut 045 110 130
2nd cut 0.45 1.15 1.25
Pastures and mead-  Szejba (2011) n/r Pasture 0.70 0.89 n/r
ows in North-East Meadow Ist cut 096 122 124
Poland 2nd cut 080 116 120

Grass near Fenéka Anda et al. (2015)

pond, Hungary

Festuca spp.

0.90 1.10 n/r

Symbols, abbreviations and acronyms are given in Appendix B

Bold italics are to highligh that these values are K, which differ from the other values which are K

Irrigated grasslands

Irrigated grasslands are commonly located in lowland
areas or in low slope fields, generally of low altitude, and
are planted for grazing or for hay. The information on sites
and K, and K, ,., values are reported in Table 3, while
data further characterizing the irrigated grasslands are
shown in Appendix (Table 14).

When grasslands are cropped for hay, their K, values
refer to the observed cycles of grass cutting or to an aver-
age or representative cycle according to decision criteria of
authors. Each cycle is described by the common FAO K,
curve (Fig. 1) comprising four crop coefficient stages—ini-
tial, development, mid-season, and late season stages—as
presented in Fig. 2 for a case with four cycles. Thus, each
cycle is characterized by a K_;;, K, niq and K .q- The K i
corresponds to the K that follows the cut, while K . refers

@ Springer

to the K, when the cut is performed, the K .. Grass height
h and cover fraction f, may use the same subscripts as for K..

In rotary grazing, similarly, there are various cycles com-
prising a period when the livestock is grazing followed by
a period of grass development until animals start grazing
again. Only two K_ are necessary for fully describing these
cycles, the K, p;,, Wwhen the animals enter in the grass field,
and K., when they end grazing. For turf grass in any land-
scape grass is mowed to the height h, ,, when it attains the
height h,, . Researchers, however, do not yet adopt a stand-
ardized nomenclature, which may result in confusing. This
nomenclature is used in the Tables presented in this article.

Table 3 shows that, with a single exception, the reported
Ko act ave and the K o g for irrigated grasslands are
close to 1.0 with values ranging between 0.80 and 1.20.
These values are higher than for non-irrigated grasslands
(Tables 1 and 2) because there is more water available
due to irrigation and, likely, the grasses’ soils are often
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Table 3 Field derived actual single and basal crop coefficients (K, ., and K ,..) for irrigated grasslands, meadows, and pastures

Identification Reference Main grasses Management f, and Actual crop coefficient derived from field observations
h (m) —
Conditions Kc act avg Kc act ini Kc act mid Kc act end

Pasture in Gareh Pakparvar et al. Helianthemum Grazing Average 0.47 0.42 0.55 0.55
Bygone Plain, (2014) lippii, Artemisia Peak by Jan-Feb 1.00
South of Zagros, sieberi, Aegilops
Shiraz, Iran cerasa, Medicago

polymorpha

Dairy pastures in Abuzar et al. n/r Grazing Top 5% NDVI 0.85
Goulburn-Murray ~ (2017)

District, Victoria,
Australia

Irrigated pasture, Bethune and Wang  Trifolium repens, Grazing Annual average. 1.05 0.80 1.04 0.80
Murray-Darling (2004) Lolium perenne  £.=0.97
Basin, Australia Paspalum spp.

Irrigated grasses Greenwood et al. Lollium multiflo- £.=0.97 Ryegrass + white K, 0.70 1.20
at Kyabram, (2009) rum clover
northern Victoria, Trifolium repens, T. Tall fescue +w. 0.90 1.20
Australia resupinatum clover

T subterraneum Alfalfa 025 120
Festuca rundind-
cea, Medicago Persian clover + 0.80 1.10
sativa Italian ryegrass
Subterranean 1.00 1.15
clover + Italian
ryegrass

Irrigated pasture in  Qassim et al. Lolium perenne, Grazing Spring-summer 1.04
northern Victoria,  (2008) Trifolium spp., Winter 0.96
Australia Paspalum dila-

tatum

Pastures at New Alam et al. (2018)  Festuca arundi- Mowing 2 weeks after mow- 0.30 0.50
England Univer- nacea h;,,=0.05 ing
sity, New South 3 weeks after mow- 0.85
Wales, Australia ing

Grazing pastures,  KC et al. (2018) Lolium perenne Rotational grazing Height 5 cm 0.50
Christchurch, h =0.05-0.30 10 cm 0.60
New Zealand 20 em 0.80

30 cm 1.00

Meadows in Pogas et al. (2013)  Holcus lanatus, Hay and grazing 0.88
mountain areas, Plantago lan-
Montalegre, ceolata, Dactylis
Portugal glomerata,

Festuca spp.

Pastures at Terra Cancela et al. Lolium perenne, Grazing and cuts Ist cut cycle 0.55 1.05 0.55
Chﬁ., Galize, (2006) Trifolium repens for hay 2nd cut cycle 0.55 1.05 0.55
Spain 3rd cut cycle 055 080 055

Grazing 0.55 0.90

Irrigated grasses at  Sanches et al. Megathyrsus Tcut cycles Fall-Winter 1.09
Piracicaba, Sdo (2019) Maximus cv. 6 cycles Spring-Summ 0.99
Paulo, Brazil ‘Mombaga’

Idem, + Avena 5 cycles Fall-Winter 0.96
strigosa + Lol-
lium spp.
Cynodon dactylon 6 cycles Fall-Winter 0.93
7 cycles Spring-Summ 1.00
Idem, + Avena 5 cycles Fall-Winter 1.02

strigosa + Lol-
lium spp.

@ Springer
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Table 3 (continued)

Identification Reference Main grasses Management f, and Actual crop coefficient derived from field observations
h (m) "
Conditions Kc act avg Kc act ini Kc act mid Kc act end
‘Marandd’ pali- Souza et al. (2021)  Brachiaria bri- Grazing (S), year 0.62 0.95 n/r
sade-grass single zantha .
(S) and combined cv.“Marandu”, (C), Aut-Win 0.67 0.80 0.50
(C) in Piracicaba, Avena strigosa, (C), Spg-Sum 0.50 0.90 0.83
Brazil Lolium multifiorum
Pasture at Twitchell Snyder et al. (2008) Lollium spp., Grazing h,,, = Apr-Sep 0.98
Island, Sacra- Festuca arundi- 0.10-0.20
mento River, CA, nacea, Cynodon
USA dactylon
Pasture at Camp- Snyder et al. (2008) Festuca arundina- Mowing Apr—Sep 1.00
bell Tract, Davis, cea, Trifolium sp.  h,,=0.08-0.12
CA, USA
Bahiagrass at Citra, Jia et al. (2009) Paspalum notatum  Grazing 0.64 0.35 0.77 0.35
Central Florida,
USA
Permanent pastures  Allen et al. (2005a) n/r Grazing f,=1.0 K, 0.35 0.85 0.70

in Imperial Val-
ley, USA

Symbols, abbreviations and acronyms are given in Appendix B

Bold italics are to highligh that these values are K, which differ from the other values which are K

of better quality and management of nutrients are more
careful. An exception refers to a deficit irrigation site in
the arid Gareh Bigorn Plain, southern Iran (Pakparvar
et al. 2014). The reported ground cover fraction is always
high, i.e., f, = 1.0, which indicates that grasslands were
well managed. Most of the cases in Table 3 report average
information; only one case refers 3 cycles cutting for hay.

Two cases report K, . values, one with K, 5o miq lower
than K .o ini and Ky ot eng DECause the site is dry and
hot (Imperial Valley, California, Allen et al. 2005a), thus
affecting plant growth, so with higher values when weather
is mild. The other (in Victoria, Australia, Greenwood et al.
2009) reports experimental K ., results that correspond
to good plant growth, thus to high K

cbac

cb act*
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Fig.2 Typical K/K,, curves for a grassland cropped for hay with
multiple cutting cycles (FAO56, Allen et al. 1998)

@ Springer

Semi-natural grassland ecosystems
Semi-natural savanna and steppe type grasslands

Both savanna and steppe designations, herein, do not refer
to specific biomes but include a variety of other biome like
cerrado and catinga in Brazil, dehesa or montado in the
Iberian Peninsula, or to grasslands in open forests. Naturally,
the grasslands included under those designations vary much
with climate and, regionally, with the dominant species and
environment, particularly with soils. Various savanna-type
semi-natural grasslands are reported in Table 4. Despite
these grasslands are used for grazing after long time, the
grasses and shrubs are different from those in the planted
grasslands and of the domesticated grasses reported in Sec-
tion “Grasses for hay, grazing and landscape” hereafter.
Because savanna grasslands are not irrigated, both K, miq
and K ;¢ 5y show a seasonal effect related with the pre-
cipitation regime, with higher K, in the rainy seasons,
not when more solar energy is available, i.e., contrarily to
reported grasslands in the preceding section, savannas are
mostly water limited and less energy limited. The case of the
oak savanna (montado) of Evora (Pago et al. 2009), showing
very low K., due to severe drought, is a good example. A
unique example of effects of savanna conservation is pro-
vided by Descheemaeker et al. (2009, 2011), where grazed
and protected savanna show different K, niq Values, higher
in the latter case due to better growth of the vegetation.

In case of steppe (Table 5), there are similar behaviors,
as for the high plateau steppe in Inner Mongolia reported
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by Zhang et al. (2012), and for two Brazilian catinga
studies (Teixeira 2010; Carvalho et al. 2018), all refer-
ring higher K, values when it rains and the soil water
availability increases. There are various cases where K_
for protected or well managed steppe grasslands is much
higher than for commonly grazed steppes, e.g., Miao et al.
(2009) and Lu et al. (2011) relative to the high plateau of
Inner Mongolia. K, results for steppe, like for savanna,
indicate that related grasslands plant development is
mainly water limited and less energy limited. This fact is
important for management and relative to ecosystem ser-
vices; therefore, in agreement with K ,, results analyzed
in the previous section, it allows to consider that water
management of grasslands may have implication on vari-
ous services, mainly biodiversity and carbon sequestration,
since these services are better when plants grow favorably.

Semi-natural grasslands in cold and temperate
ecosystems

The pampa grasslands, at a low altitude, show K ¢ ave
near 0.85 without evident distinction between seasons,
likely due to a more favorable precipitation regime. Semi-
natural grasslands in low precipitation areas have a lower
Ko act mia OF K act ave than pampa sites and show the sea-
sonal influence of the rainfall regime. It is important to
note that main grasses in Table 6 are different from a site
to another.

Semi-natural grasslands in mixed forests
and shrublands

Grazing is common in open mixed forests where grasses are
often native if management did not favor the loss of semi-
natural grass vegetation in favor of alien species. Contra-
rily, in planted forests, it is common that the native/semi-
native understory vegetation has changed after introducing
the new tree species. It is, therefore, likely that grasslands
growing as understory of mixed forests area are considered
semi-natural.

Table 7 shows various sites where this condition could be
accepted but which research papers may have not provided
related full information. Data in Table 7 show that both dry
and humid climates, e.g., Roupsard et al. (2006) and Corbari
et al. (2017), have K_ ., varying seasonally in relation to
water availability. In general, K ., of mixed forests varies
in a small range, 0.45 to 0.60. Shrublands show higher K,
values than mixed forests, likely because shrub roots can
explore the soil to a large depth and solar energy available
to grass is less affected by shadow, so overall contributing
to a higher actual K.

Grasses for hay, grazing and landscape

This Section “Grasses for hay, grazing and landscape”
refers to domesticated grasses used in agricultural planted
grasslands and in landscape and sport fields, which are
described in Tables 8, 9 and 10. It may be noted that these
domesticated grasses were rarely reported among the main
grasses of semi-natural grasslands, in previous Tables 1,
2,3,4,5,6and 7.

Grasses for hay are mainly legume-grasses that grow
fast under favorable environmental conditions and that
respond well to cuts and allow numerous cut cycles dur-
ing a crop season as represented in Fig. 2. For most cases,
tabulated actual K_ ;,;, K, ;g and K, .4 values describe
the cut cycles; otherwise, only K was reported for
one grass.

Alfalfa is the most common grass for hay and the most
studied one, namely with four papers using the dual K,
approach (Table 8). Results are quite similar, with actual
Kb ini» Keb mia and Ky .nq of approximately 0.30, 1.15 and
1.10, respectively. The higher mid-season value, reported
by Hunsaker et al. (2002), shows the effect of a dry, hot,
and windy climate. The reported values, considering that
alfalfa grass covers well the soil (f.~1.0), result in K,
quite close to K ,.» thus, actual K, K, nig and K .4 of
0.40, 1.20 and 1.15, respectively. These values are coher-
ent when compared to the standard tabulated values in
FAOS56 (Allen et al. 1998) and consist of standard K.

Several grasses have K, ,., values similar to those of
alfalfa (Table 8). However, most of them show K_ ., val-
ues varying with the cuts due to seasonality effects, which
relate with climate dryness or wetness and windy condi-
tions, more important when the grass is high by the mid
and end stages, as proposed in the FAO56 equation for
correction with climate. This is typically the case for blue
panic cropped at Jeddah, Saudi Arabia (Ismail and El-
Nakhlawy 2018). To be also noted that end-season K,
maybe larger or equal then K. ,., at mid-season, despite it
is commonly a little smaller for most cases. The reported
value is only K. ,,, in case of palisade grass (Antoniel
et al. 2016), which corresponds to a less accurate field
measurement but quite useful to indicate that this grass
(Brachiaria brizantha) likely is a high-water demanding
crop. However, information in this Table 8 is more useful
when users compare various grasses.

Table 9 refers to the field derived actual single and dual
crop coefficients for grasses cropped for grazing and seed
production. Often, only one K /K, curve is required. How-
ever, a precise management requires that specific curves
(Fig. 2) are used in rotary grazing, when h;,, and h_, are
well defined, or when the time interval between cuts is
defined with the cumulative growth degree days (CGDD).

c act avg

@ Springer
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The latter is shown through an example with Bermuda
grass cv “Tifton 85 experimentally cropped in southern
Brazil (Paredes et al. 2018). This case also shows that for
small grazing time intervals there is no need to adopt graz-
ing cycles (Fig. 2), but this becomes of interest when such
intervals between successive grazing events are large and
differences between crop heights and K, are larger, e.g., if
CGDD=372 °C is adopted (Paredes et al. 2018).

It may be advisable to adopt different K, values for
groundwater-fed grass, where K, varies with the water
table depth (WTD), e.g., the Timothy and Italian ryegrass
cases referred by Mueller et al. (2005). Generally, K_ ,.; mid
varies in the range 0.80 to 1.00 but K, ini and K ;¢ eng Val-
ues have a larger range of variation, which is likely due to
management and to climate, mainly relative humidity of the
air and wind speed. Grasses cropped for seed have smaller
K. act end Since they are harvested following senescence and
maturation of the seeds.

The grasses used for landscape (Table 10) are those able
to live healthy and fully covering the ground while being fre-
quently or very frequently mowed to small (5-8 cm) or very
small heights (< 1.5 cm) as used respectively for lawns and
for golf courses. Generally, knowing a single K, is enough
for a good irrigation, commonly in the range 0.60-0.80 for
lawns and larger in case of golf greens because the require-
ments of quality are much larger for the latter.

The grass actual K values summarized in Tables 8, 9 and
10 concern grass fields with large f. (> 0.95), and they are
appropriate for computing ET for in hydrologic and water
resources studies.

Standard crop coefficients

From the analysis above and taking into consideration the
tabulated information (Tables 1, 2, 3, 4, 5, 6 and 7) and the
related papers, it is possible to propose a set of standard K
values for the referred grasslands. Nevertheless, the previ-
ously tabulated actual K, values may be used as indicative
values for management or planning, e.g., for use to estimate
ET in irrigation scheduling tools or models applied only
to similar grasslands, i.e., not generally transferable. Dif-
ferently, the standard K values, to be tabulated in FAO56
and shown in the Table 11, are transferable for a wider use
relative to the corresponding types of grasslands, i.e., in
irrigation scheduling tools and models and in hydrologic or
water resources studies and models. Particular attention must
be given to the climate, comparing conditions in the origi-
nal location, summarily indicated in the Tables, and in the
location where the transferred K, is to be used. The defined
standard K values for semi-natural and planted grasslands
and for grasses for animal feeding and landscape uses are
presented in Table 11.

@ Springer

The proper use of standard values of grasslands implies
that user knows that tabulated values refer to non-stressed
or mild-stressed vegetation. Tables 1, 2, 3,4, 5, 6 and 7
show that low K_ ,., values occur often, particularly for
semi-natural vegetation in dry climates, namely steppe and
savanna ecosystems, where actual K. may vary much. Thus,
when wishing to transfer a K, to a dry or a drought prone
area it is advisable to pay attention to the tabulated actual
K, (Tables 1, 2, 3, 4, 5, 6 and 7). The same happens with
the use of standard values of grasses (Tables 8, 9 and 10).
Their tabulated values are generally non-stressed or mild
stressed. It is our conviction that for both grasslands and
grasses transferability is adequate if users analyze carefully
all related Tables and, in addition to climate, also take into
consideration the dominant species.

Conclusions

The current review presents to users a large information on
crop coefficients for determining crop evapotranspiration
and, thus, to support new approaches for management tak-
ing into consideration both production for animal feeding
and ecosystem services. Moreover, the review has shown
that a large fraction of the grasslands is semi-natural and,
therefore, may help in fighting climate change if appropri-
ately managed for conservation.

The first group of grasslands focused those that are being
used for grazing or hay, planted or semi-natural, normally
using mixed grasses. The majority are non-irrigated and
include a good number of semi-natural mountain pastures
and meadows. Their growth conditions are linked to water
availability, thus showing a wide range of actual K, ,.;; and
K, avg values. Despite management is not referred to water
but rarely, this group of papers (section “Seminatural and
planted grasslands”) makes it somewhat evident that eco-
system services, such like biodiversity, C sequestration, and
runoff and erosion control call for more importance to be
given to water use in grasslands management.

The second group (Section “Semi-natural grassland eco-
systems”) refers to grasslands in various typical biome, cov-
ering a wide range of environments and ecosystems, from
hot and dry plains to freezing and humid mountainous areas.
These types of grasses helped to identify the need for con-
sideration of water in management of such varied types of
semi-natural grasslands and to associate water and grazing
management to avoid grassland deterioration and to provide
for biodiversity and C sequestration.

A variety of grasses for most of environments and grass-
land uses are described in Section “Grasses for hay, graz-
ing and landscape”. Since they are used as planted grasses,
related information is important for new plantations,
using both single and combined grasses. Moreover, that
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Irrigation Science

Table 11 Standard K_ values for semi-natural and planted grasslands and for grasses for agricultural and landscape uses

Typical grasslands and grasses for animal feeding, landscape and sport

Kc ini ¢ mid cend

Semi-natural high mountain meadows and grasslands for grazing and hay, freezing winter, short mid-season, killing frost

040 1.10 095

Semi-natural high mountain meadows and grasslands for grazing and hay, freezing winter, no killing frost 040 1.00 0.35
Non-irrigated grasslands and meadows in low elevation plateau and prairies for grazing or seed, cold winter but large 055 095 0.50
mid-season

Non-irrigated grasslands and meadows in low elevation plateau and prairies for hay, cold winter but large mid-season (K, 0.45 1.15 1.15

for typical cut cycles)

Irrigated grasslands, meadows, and pastures for grazing or seed, cold/mild winter and large mid-season 0.55 1.05 0.55

Irrigated grasslands, meadows, and pastures for hay, cold/mild winter and large mid-season (K for typical cut cycles) 0.55 1.05 1.05

Semi-natural savanna grasslands
Semi-natural steppe grasslands
Semi-natural meadows and pastures in high mountain
Semi-natural cold and temperate grassland ecosystems
Semi-natural mixed grasslands and forests/woodlands
Semi-natural shrublands
Grasses
Alfalfa for hay; typical cuts cycles
Alfalfa for seed
Grasses for grazing, high height of grazing cuts
Grasses for grazing, low height of grazing cuts
Grasses for grazing with large cut cycles
Grasses for seed production
Grasses for grazing with short cut cycles
Grasses for hay; typical cuts cycles
Landscape grasses, golf courses (cut h<0.01 m)
Landscape grasses, lawns (cut h<0.10 m)
Landscape grasses, urban

035 090 035
030 0.75 030
0.40 1.00 045
040 0.65 045
035 0.70 040
025 0.70 040

050 1.20 1.15
0.40 1.10 0.65
090 1.05 0.90
085 095 0.85
090 095 095
030 090 0.65
085 095 1.00
055 1.15 1.05
0.80 0.80 0.80
0.50 0.70  0.50
0.65 090 0.0

information is useful for irrigation management and schedul-
ing applied to irrigated grasslands. Related applied research
should be developed aiming at improved water productivity
and water saving since such information is rare.

K, values tabulated for that wide number of grasslands
and grasses may be useful for feeding all kind of herbivo-
rous, for landscape and for sport activities, always consid-
ering the need for saving water, i.e., to avoid excess water
application and, on the contrary, to avoid detrimental water
deficits that reduce both the productivity and the ecosys-
tem services. It is opportune to refer the need for continuing
research that may not only increase the transferable case
studies data but also may support improving the summarized
standard K, values (Section “Standard crop coefficients”)
for use in Hydrology and water resources. This review led
to conclude that research on grass productivity should also
consider issues for ecosystem services.

@ Springer

Research aimed at ecosystem services requires however
a better consideration of the role that water plays to improve
biodiversity, C sequestration, water infiltration, thus control-
ling runoff and erosion, improving water availability through
storage in the soil and in groundwater, thus contributing to
mitigate effects of climate extremes and climate change, par-
ticularly in case of semi-natural grasslands. More research
is required along these lines as well as relative to policy
making that could contribute to define related priorities and
the protection of semi-natural grasslands, as well supporting
the mitigation of impacts of global change.

Appendix A

See Tables 12, 13 and 14.
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Table 12 Characteristics of selected semi-natural high elevation grasslands.

Identification Reference Climate Methods for detemining ~ Season period Water supply
ET, and ET,_

Alpine pasture, Torgnon, Corbari et al. (2017) Freezing winter, mild FAO56-PM ET, May-Sep Rainfed
Aosta Valley, Italy summer EC, RS-VI, PM eq.

Mountain grasslands of  Gisolo et al. (2022) High mountain freezing FAO-PM-ET, Apr-Sep or Oct  Rainfed
Aosta Alps, Italy winter EC, METRIC, SWB-

CLIME-MG model

Alpine grasslands in Smith et al. (2012) High mountain freezing ~FAO-PM-ET, Apr—Sep Apr-Oct Mostly rainfed
Canton of Valais, Swit- winter K, from LAI
zerland

Andean Zhurucay Carrillo-Rojas et al. Alpine Equatorial FAO56-PM ET, Annual Rainfed
paramo, Cajas Massif, (2019) EC
Southern Equador

High elevation Andean Buytaert et al. (2006) Cold and rainy FAO56-PM ETo Annual Rainfed
paramos, Machangara, Basin water balance
southern Ecuador

Humid alpine meadow, Dai et al. (2021) Freezing winter FAO56-PM ET, Growing season  Rainfed
Haibei, Qinghai-Tibetan WL, FAO56
Plateau, China

Subalpine meadows, Gao et al. (2019) Semi-arid, very cold FAO56-PM ET, May-Oct Rainfed
Heihe River, Qilian winter EC
Mountains, China

High mountain meadow, Yang et al. (2013) Very cold winter with FAO56-PM ET, Jun-Sep Rainfed
Yeniugou, Qilian frozen soil Mini-Lys.
Mountains, China

Alpine meadow, Heihe Yang et al. (2017) Very cold winter with FAO56-PM ET, Annual Rainfed
basin, Qilian Moun- frozen soil WL, SWB-Trime
tains, China

Alpine meadow of the Chang et al. (2017) Very cold winter FAO56-PM ET, Apr/May Rainfed
Tibetan Plateau, China EC Sep/Oct

Humid meadow, Fenghu- Li and Wang (2015) Very cold winter FAO56-PM ET, May-Sep Rainfed
oshan, Qinghai-Tibetan EC
Plateau, China

Alpine meadow, Qinghai Li et al. (2013) Very cold winter FAO56-PM ET, May-Sep Rainfed
Tibetan Plateau, China EC

Global ecosystem ET/ Liu et al. (2017) Diverse climates FAO-PM-ET,, n/r n/r
ET, FluxNet Global eddy flux

@ Springer
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Table 13 Characteristics of selected non-irrigated grasslands in low elevation mountains and lowlands.

Identification Reference Climate Methods for detemi- Management Season period ~ Water
ning ET, and ET, ., f, and h(m) supply
Groundwater fed pasture in Wu et al. (2016) Very cold winter FAO56-PM ET, Grazing May—Oct GW fed
Horqin Sandy Land of Inner SWB-SIMDualKc
Mongolia, China
Grasslands of Xilin, Inner Zhao et al. (2010)  Very cold winter FAO56-PM ET, Grazing May-Sep Rainfed
Mongolia, China SWB-Theta-probes
Grassland and shrubland in Zheng et al. (2012) Monsoon, cold FAO56-PM ET, n/r May-Sep Rainfed
Zhanggutai , Liaoning, China winter SWB-CROPWAT,
RS
Chippewa prairie grasslands, ~ Baeumler et al. Cold winter ASCE-PM ET, Grazing Growing season Rainfed
West-Central Minnesota, (2019) METRIC model
USA
Perennial pastures, Central Howes et al. (2015) Temperate FAO56-PM ET, Grazing Annual GW fed
Valley of California + Car- Review and re-
son Valley Nevada, USA computing
Gudmundsen Sand Hills Healey et al. (2011) Cold winter ASCE-PM ET, Grazing and  Apr—Oct GW fed
meadow, Nebraska, USA BREBS, METRIC cutting
Tallgrass prairie at Stillwater,  Krueger et al. Temperate FAO56-PM ET, Grazing Annual Rainfed
Oklahoma, USA (2021) EC, SWB and grass  f.=0.88,
ET model h,,.=0.75
Pastureland at Hillsborough Nachabe et al. Subtropical humid  Class A Pan ET, Grazing Annual GW fed
County, Central Florida, (2005) SWB-capacit.
USA
Pasture in Floral City, central ~ Sumner and Jacobs Humid sub-tropical ASCE-PM ET, Rotational Annual Rainfed
Florida, USA (2005) EC grazing
Grassland in North Dakota, Niaghi and Jia Continental sub- ASCE-PM ET, Grazing and  Apr—Oct Rainfed
USA (2017) humid EC, SWB-Hydra hay
Meadow and grasslands in Hwang et al. (2020) Cold winter FAO-PM-ET,, Grazing Apr—Oct Rainfed
northern New York State, BREB, SEBS Apr—Oct
USA
Intensively grazed pasture, Pronger et al. Temperate FAO56-PM ET, Grazing Annual Rainfed
Waikato, New Zealand (2016) EC h=0.50-0.70
Wetlands in Upper Pangani Kiptala et al. (2013) Tropical semiarid, ~FAO24-Pan-ET, Grazing Annual Rainfed
River Basin, Tanzania, hot SEBAL and RS-
Modis
Mountain semi-natural pas- Pocas et al. (2013)  Cold winter, humid FAO56-PM ET Grazing Mar—Nov Rainfed
tures in Montalegre, northern EB, METRIC
Portugal
Pasture at Ribeirinha, Terceira Fontes et al. (2004) Temperate humid ~ FAO-PM-ET, Rotational Annual Rainfed
Island, Azores Basin WB-OPUS grazing
Wet Grasslands at Havellédn- Dietrich et al. Temperate, cold FAO56-PM ET, Grazing May—Sep Rainfed,
disches Luch (HL)and Spree-  (2021) winter EC (PO), WL (CO) GW fed
wald Wetland (SW), eastern
Germany
Grassland in Rollesbroich, Groh et al. (2015)  Cold winter, sub- FAO56-PM ET, Cuts in May, Apr—Nov Rainfed
LowRhine Valley, Germany. humid WL Jul, Aug,
Nov
Mountain pasture sward in the ~ KuzZniar et al. Cold humid winter FAO56-PM ET, n/r May-Oct Rainfed
Western Carpathians, Poland (2011) Reviewed data
Meadows in Poland Kasperska- Cold humid winter FAO56-PM ET, Grazing and  Apr—Sep n/r
Wotowicz and DL, SWB cutting
Labedzki (2006)
Pastures and meadow in North- Szejba (2011) Cold humid winter FAO56-PM ET, Grazing. hay, May-Sep Rainfed
East Poland Review grass K 3-cuts
Grass by the Fenéka pond Andaetal. (2015)  Cold humid winter FAO56-PM ET Grazing May—Oct Rainfed

edge, Kis-Balaton Lake,
Hungary

Modified DL

@ Springer
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Table 14 Field observed K, and K, for irrigated grasslands, meadows, and pastures

Identification Reference Climate Methods for deter-  Management Season period Irrigation method
mining ET, and f. and h (m)
ETC act
Pasture in Gareh Pakparvar et al. Continental, semi- FAO-PM-ET,, Grazing Annual Border
Bygone Plain, (2014) arid RS-SEBS h=0.32,{=0.67 DI
South of Zagros,
Shiraz, Iran
Dairy pastures in Abuzar et al. (2017) Temperate FAO56-PM ET, Grazing Annual Sprinkler, border
the Goulburn- RS-NDVI, SWB-
Murray District, FDR
Victoria, Australia
Irrigated pasture in ~ Bethune and Wang ~ Temperate Grass WL-ET, Grazing Annual Border irrigation
Murray-Darling (2004) SWB, SWAT f,=1.00
basin, Australia
Irrigated grasses Greenwood et al. Temperate FAO56-PM ET, f,=0.97 n/r Border Irrigation
at at Kyabram, (2009) SWB-neutron,
northern Victoria, dualK, model
Australia
Irrigated pasture in ~ Qassim et al. (2008) Temperate FAO56-PM ET, Grazing Annual Centre pivot
northern Victoria, BREB, PT+PMeq
Australia
Research pastures at  Alam et al. (2018)  Temperate FAO56-PM ET, Grazing, mowing Annual Irrigated
New England Uni- ET dome withRH  h,,=0.05
versity, NewSouth + T sensors
Wales, Australia
Grazing pastures, KC et al. (2018) Temperate FAO56-PM ET, Grazing Annual Center-pivot
Christchurch, New SWB-mini DL, h =0.05-0.30
Zealand Aquaflex sens.
Meadows in Pdcas et al. (2013)  Cold winter FAO56-PM ET, Hay and grazing Mar-Oct Contour ditches
mountain areas METRIC
of Montalegre,
Portugal
Pastures in Terra Cancela et al. Temperate FAO56-PM ET, Grazing, mowing Apr-Oct Sprinkler
Cha, Lugo, Gal- (2006) SWB ISAREG FI
ize, Spain
Irrigated grasses at ~ Sanches et al. Subtropical humid ~ FAO56-PM ET, 6 or 7 cycles Annual Sprinkler
Piracicaba, Sdo (2019) with hot summers Plot small WL 5 cycles h},,=0.30
Paulo, Brazil h,,=0.60
“Marandu” palisade Souza et al. (2021)  Subtropical humid ~ FAO56-PM-ET, Grazing Annual Sprinkler
grass, single and WL
combined, in
Piracicaba, Brazil
Irrigated pasture at ~ Snyder et al. (2008) Dry and hot sum- ASCE-PM ET, Grazing n/r Basin irrigation
Twitchell Island, mer Surf. renewal h.,=0.10-0.20
Sacramento river,
and
Campbell Tract, h,,=0.08-0.12 n/r Sprinkler
Davis, USA
Bahiagrass in Citra, Jia et al. (2009) Subtropical humid ~ ASCE-PM ET, Grazing Annual Linear-move
Central Florida, EC, SWB-Hydra
USA
Permanent pastures ~ Allen et al. (2005a)  Dry, hot summer FAO56-PM ET, Grazing, f.=1.0 Annual Border
at Imperial Valley, FAO56-K,, SWB
CA, USA

@ Springer
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Appendix B. List of symbols, abbreviations,
and acronyms

ET

ET

cact

Crop evapotranspiration under standard conditions
[mm d! or mm h'!]

Actual crop evapotranspiration, i.e., under non-
standard conditions [mm d™! or mm h™']

(grass) reference crop evapotranspiration [mm d-!
ormmh]

Alfalfa reference crop evapotranspiration [mm d!
ormmh™]

Fraction of soil surface covered by vegetation (as
observed from overhead) [-]

Crop height before cutting [m]

Crop height after mowing or cutting [m]

Crop height before mowing or grazing [m]
(standard) crop coefficient [-]

Actual crop coefficient (under non-standard condi-
tions) [-]

(standard) average crop coefficient [-]

Crop coefficient during the initial growth stage [-]
Crop coefficient during the mid-season growth
stage [-]

Crop coefficient at end of the late season growth
stage [-]

Crop coefficient before cutting [-]

Crop coefficient prior to grazing starts [-]

Crop coefficient at the end of grazing [-]

Standard basal crop coefficient [-]

Actual basal crop coefficient (under non-standard
conditions and/or observed) [-]

Basal crop coefficient during the initial growth
stage [-]

Basal crop coefficient during the mid-season
growth stage [-]

Basal crop coefficient at end of the late season
growth stage [-]

Water stress coefficient [-]

Potential evapotranspiration [mm d"! or mm h™']
Crop transpiration [mm d™! or mm h™!]

Abbreviations and acronyms

ASCE-PM-ET,  Alfalfa reference ET, calculated using an
extension of the FAO56 Penman-Mon-
teith equation

Avg. Average

BREB Bowen ratio energy balance

Capacit. Capacitance sensors

CGDD Cumulative growing degree day [°C]

@ Springer

DL
EC
ECV-SM

EVI
FAO
FAO56

FAO56-PM-ET,

FLUXNET

GHG
Grav.
GW

GW Lys.
HWB

J&H
LAI
Med
METRIC

ML
MODIS

NDVI
PM-eq.
PT
Reflect.
RS
SAFER

SAVI
SEB
SEBAL

SEBS
SF
SOC
Spg
Spr
SR
Sum.
SW

SWB
SWC
Tens.
Trime

Drainage lysimeters

Eddy covariance

European Space Agency and Climate
Change Initiative merged soil moisture
product

Enhanced Vegetation Index

Food and Agriculture Organization
Food and Agriculture Organization Irri-
gation and Drainage Paper 56 (1998)
Grass reference ET, computed with the
FAOS56 standardized Penman-Monteith
equation

Global network of micrometeorological
flux measurement sites

Greenhouse gas

Gravimetric method

Groundwater

Water table lysimeter

Field or catchment hydrologic water
balance

Jensen and Haise equation

leaf area index

Mediterranean

Energy Balance model for Mapping
EvapoTranspiration with Internalized
Calibration

Mini or micro lysimeters

Moderate Resolution Imaging
Spectroradiometer

Normalized Difference Vegetation Index
Penman-Monteith combination equation
Priestley-Taylor equation

Reflectometer

Remote sensing

Simple Algorithm for Evapotranspiration
Retrieving

Soil adjusted vegetation Index

Surface energy balance

Surface Energy Balance Algorithm for
Land model

Surface Energy Balance System model
Sap flow

Soil organic carbon

Spring

Sprinkler

Surface renewal

Summer

Double source method of Shuttleworth
and Wallace

Soil water balance

Soil water content

Tensiometers

Trime-EZ soil moisture sensors
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UN
VI
Win
WL

United Nations
Vegetation index

Winter

Weighing lysimeter

Appendix C. Scientific and common names
of the plants mentioned in the previous

Tables

Scientific name

Common name

Scientific
name

Common name

Acacia spp.

Acacia etbaica

Acacia senegal

Acacia victoria

Achnatherum
sibiricum

Aegilops
crassa

Aristida affinis
=A. pur-
purascens

Aristida laevis
Agrostis spp.

Agrostis
stolonifera

Alisma spp.

Andropogon
gerardii

Andropogon
lateralis

Arnica mon-
tana

Artemisia
frigida
Artemisia

ordosica
Artemisia
sieberi

Wattle,
mimosa,
thorntee

Clownhair
wattle

Gum Acacia,
Gum Arabic
Tree, or Gum
Senegal Tree

Gundabluie, or
bardi bush

Siberian
Needlegrass

Persian goat-
grass

Arrowfeather
threeawn

Aristida grass
Bentgrass

Bentgrass,
creeping bent

Water-plantain
Big blue stem

Beard grass,
bluestem
grass,
broomsedge

Wolf's bane,
leopard's
bane, moun-
tain tobacco,
m. arnica

Silky worm-
wood

Festuca rubra

Festuca spp.

Foeniculum
vulgare

Geoffroea spp.
Geranium spp.

Haloxylon
ammoden-
dron

Helianthemum
lippii

Holcus lanatus

Iriantus angus-
tifolium

Kobresia sp

Kobresia cap-
illifolia

Kobresia
humilis

Kobresia
pygmaea

Kobresia
tibetica

Leymus chin-
ensis

Leymus triti-
coides

Lolium multi-
florum

Creeping red
fescue

Fescue grass

Common fennel

Chanar, Chilean
Palo Verde
Cranesbills

Saxaul

Ragrouq

Yorkshire fog,
fog grass

Perennial sedge.

= Carex capil-
lifolia

= Carex alatau-
ensis

= Carex parvula

= Carex tibetiko-
bresia

Chinese ryegrass
Creeping wildry

Italian ryegrass

Scientific name Common name Scientific Common name
name

Artemisia Sagebrush Lolium per- Perennial

tridentata enne ryegrass, Eng-
lish ryegrass

Hordeum Barley-grass Lollium spp. Ryegrass
leporinum

Atriplex lenti-  Quail bush, big Lotus cornicu- Birdsfoot trefoil

formis

Avena barbata

Avena strigosa,
Avena fatua
Axonopus
affinis
Bassia dasy-
phylla
Bouteloua
gracilis
Brachiaria
brizantha
Bromopsis
inermis

Bromus spp.

Calamagrostis
brachytricha

Calamagrostis
Spp.

Carex atro-
fusca

Carex moor-
croftii

Carex semper-
virens

Carex spp.

Carissa edulis

Carya spp.
Celtis sp.

Cerastium spp.

saltbush

Slender wild
oat, bearded
oat

Black oats

Common
carpetgrass
Shaggy-Leaved

Bassia

Blue grama

Palisade grass
(‘Marandi’)

Smooth brome
Brome

Feather reed
grass, foxtail
grass, dia-
mond grass

Tussock
grasses

Dark brown
sedge or
scorched
alpine sedge

Evergreen
sedge

Sedge grass

Climbing num-
num, simple-
spined
num-num

Hickory
Hackberry

Mouse-ear
chickweed

latus
Medicago
polymorpha

Medicago
sativa

Medicago spp.

Megathyrsus
maximus

Nardus stricta

Ornithopus
compressus

Panicum anti-
dotale

Pascopyrum
smithii

Paspalum spp.

Paspalum
dilatatum

Paspalum
notatum

Paspalum pip-
tochaetium

Paspalum
vaginatum

Phalaris arun-
dinacea

Phleum prat-
ense

Pinus koraien-
Sis

Pinus pinaster

Pinus pinea

California bur-
clover, toothed
bur clover, or
toothed medick

Alfalfa

Medick, burclo-
ver

Guinea grass cv.
‘Mombaca’

Matgrass
Yellow bird's-foot

Blue panic, giant
panic-grass

Wheatgrass

Bahiagrass,
crowngrass or
dallis grass

Dallis grass

Bahiagrass

Paspalum, sea-
shore paspalum

Reed canary
grass

Timothy grass,
cat’s tail

Korean pine

Maritime pine,
cluster pine

Stone pine,
Roman pine,
parasol pine,
umbrella pine
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Scientific name Common name Scientific Common name
name
Chrysotham- ~ Chamisa, Pinus pon- Ponderosa pine
nus nauseo- rubber rab- derosa
SUS bitbrush,
and gray
rabbitbrush
Cirsium spp. Thistle Plantago Buckhorn plan-
lanceolata tain
Crotalaria Sunn hemp Poa angusti- Narrow-leaved
Jjuncea folia meadow grass
Cynodon dac- Bermudagrass  Poa pratensis ~ Kentucky blue-
tylon grass
Cynodon Hybrid Bermu- Poa spp. Meadow-grass,
dactylon x dagrass bluegrass,
C. transvaal- tussock and
ensis speargrass
Cynosurus Crested dogtail Polylepis spp.  Tabaquillo
cristatus grass
Cytisus spp. Broom Populus Euphrates poplar
euphratica
Dactylis glom-  Cat grass, Populus spp. Poplar Tree
erata cocksfoot
Deschampsia  Turfed hair Prosopis spp.  Mesquite
cespitosa grass
Dichanthelium Witch grass Quercus Portuguese oak
spp- faginea
Dodonea Sand olive Quercus ilex Holm
angustifolia
Elymus nutans Quercus rotun- Holm
difolia
Elymus smithii  Wildrye, Quercus spp.  Oak trees
wheatgrass,
squirreltail
Erica spp. Heaths Trifolium White clover
repens
Fagus sylvatica Beech Trifolium resu- Persian clover
pinatum
Festuca arun-  Tall fescue Trifolium sub-  Subterranean
dinacea grass terraneum clover
Festuca glauca Blue fescue Short bunchgrass
Festuca nigre-  Chewing’s
scens fescue
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