42 research outputs found

    Human impact erodes chimpanzee behavioral diversity

    Get PDF
    Chimpanzees possess a large number of behavioral and cultural traits among non-human species. The ‘disturbance hypothesis’ predicts that human impact depletes resources and disrupts social learning processes necessary for behavioral and cultural transmission. We used an unprecedented data set of 144 chimpanzee communities, with information on 31 behaviors, to show that chimpanzees inhabiting areas with high human impact have a mean probability of occurrence reduced by 88%, across all behaviors, compared to low impact areas. This behavioral diversity loss was evident irrespective of the grouping or categorization of behaviors. Therefore, human impact may not only be associated with the loss of populations and genetic diversity, but also affects how animals behave. Our results support the view that ‘culturally significant units’ should be integrated into wildlife conservation.Additional co-authors: Mattia Bessone, Gregory Brazzola, Rebecca Chancellor, Heather Cohen, Charlotte Coupland, Emmanuel Danquah, Tobias Deschner, Orume Diotoh, Dervla Dowd, Andrew Dunn, Villard Ebot Egbe, Henk Eshuis, Rumen Fernandez, Yisa Ginath, Annemarie Goedmakers, Anne-CĂ©line Granjon, Josephine Head, Daniela Hedwig, Veerle Hermans, Inaoyom Imong, Sorrel Jones, Jessica Junker, Parag Kadam, Mbangi Kambere, Mohamed Kambi, Ivonne Kienast, Deo Kujirakwinja, Kevin Langergraber, Juan Lapuente, Bradley Larson, Kevin Lee, Vera Leinert, Manuel Llana, Giovanna Maretti, Sergio Marrocoli, Tanyi Julius Mbi, Amelia C. Meier, David Morgan, Felix Mulindahabi, Mizuki Murai, Emily Neil, Protais Niyigaba, Lucy Jayne Ormsby, Liliana Pacheco, Alex Piel, Jodie Preece, Sebastien Regnaut, Aaron Rundus, Crickette Sanz, Joost van Schijndel, Volker Sommer, Fiona Stewart, Nikki Tagg, Elleni Vendras, Virginie Vergnes, Adam Welsh, Erin G. Wessling, Jacob Willie, Roman M. Wittig, Kyle Yurkiw, Klaus Zuberbuehler, Ammie K. Kala

    Automatic Individual Identification of Patterned Solitary Species Based on Unlabeled Video Data

    Full text link
    The manual processing and analysis of videos from camera traps is time-consuming and includes several steps, ranging from the filtering of falsely triggered footage to identifying and re-identifying individuals. In this study, we developed a pipeline to automatically analyze videos from camera traps to identify individuals without requiring manual interaction. This pipeline applies to animal species with uniquely identifiable fur patterns and solitary behavior, such as leopards (Panthera pardus). We assumed that the same individual was seen throughout one triggered video sequence. With this assumption, multiple images could be assigned to an individual for the initial database filling without pre-labeling. The pipeline was based on well-established components from computer vision and deep learning, particularly convolutional neural networks (CNNs) and scale-invariant feature transform (SIFT) features. We augmented this basis by implementing additional components to substitute otherwise required human interactions. Based on the similarity between frames from the video material, clusters were formed that represented individuals bypassing the open set problem of the unknown total population. The pipeline was tested on a dataset of leopard videos collected by the Pan African Programme: The Cultured Chimpanzee (PanAf) and achieved a success rate of over 83% for correct matches between previously unknown individuals. The proposed pipeline can become a valuable tool for future conservation projects based on camera trap data, reducing the work of manual analysis for individual identification, when labeled data is unavailable

    PanAf20K : a large video dataset for wild ape detection and behaviour recognition

    Get PDF
    The work that allowed for the collection of the dataset was funded by the Max Planck Society, Max Planck Society Innovation Fund, and Heinz L. Krekeler. This work was supported by the UKRI CDT in Interactive AI under grant EP/S022937/1.We present the PanAf20K dataset, the largest and most diverse open-access annotated video dataset of great apes in their natural environment. It comprises more than 7 million frames across ∌20,000 camera trap videos of chimpanzees and gorillas collected at 18 field sites in tropical Africa as part of the Pan African Programme: The Cultured Chimpanzee. The footage is accompanied by a rich set of annotations and benchmarks making it suitable for training and testing a variety of challenging and ecologically important computer vision tasks including ape detection and behaviour recognition. Furthering AI analysis of camera trap information is critical given the International Union for Conservation of Nature now lists all species in the great ape family as either Endangered or Critically Endangered. We hope the dataset can form a solid basis for engagement of the AI community to improve performance, efficiency, and result interpretation in order to support assessments of great ape presence, abundance, distribution, and behaviour and thereby aid conservation efforts. The dataset and code are available from the project website: PanAf20KPeer reviewe

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Author Correction: Environmental variability supports chimpanzee behavioural diversity

    Get PDF
    The original version of the Supplementary Information associated with this Article included an incorrect Supplementary Data 1 file, in which three columns (L, M and P) had slightly different variable names from those written in the code. The HTML has been updated to include a corrected version of Supplementary Data 1; the correct version of Supplementary Data 1 can be found as Supplementary Information associated with this Correction.Additional co-authors: Mattia Bessone, Gregory Brazzola, Valentine Ebua Buh, Rebecca Chancellor, Heather Cohen, Charlotte Coupland, Bryan Curran, Emmanuel Danquah, Tobias Deschner, Dervla Dowd, Manasseh Eno-Nku, J. Michael Fay, Annemarie Goedmakers, Anne-CĂ©line Granjon, Josephine Head, Daniela Hedwig, Veerle Hermans, Sorrel Jones, Jessica Junker, Parag Kadam, Mohamed Kambi, Ivonne Kienast, Deo Kujirakwinja, Kevin E. Langergraber, Juan Lapuente, Bradley Larson, Kevin C. Lee, Vera Leinert, Manuel Llana, Sergio Marrocoli, Amelia C. Meier, David Morgan, Emily Neil, Sonia Nicholl, Emmanuelle Normand, Lucy Jayne Ormsby, Liliana Pacheco, Alex Piel, Jodie Preece, Martha M. Robbins, Aaron Rundus, Crickette Sanz, Volker Sommer, Fiona Stewart, Nikki Tagg, Claudio Tennie, Virginie Vergnes, Adam Welsh, Erin G. Wessling, Jacob Willie, Roman M. Wittig, Yisa Ginath Yuh, Klaus ZuberbĂŒhler & Hjalmar S. KĂŒh

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Chimpanzee accumulative stone throwing

    Get PDF
    The study of the archaeological remains of fossil hominins must rely on reconstructions to elucidate the behaviour that may have resulted in particular stone tools and their accumulation. Comparatively, stone tool use among living primates has illuminated behaviours that are also amenable to archaeological examination, permitting direct observations of the behaviour leading to artefacts and their assemblages to be incorporated. Here, we describe newly discovered stone tool-use behaviour and stone accumulation sites in wild chimpanzees reminiscent of human cairns. In addition to data from 17 mid- to long-term chimpanzee research sites, we sampled a further 34 Pan troglodytes communities. We found four populations in West Africa where chimpanzees habitually bang and throw rocks against trees, or toss them into tree cavities, resulting in conspicuous stone accumulations at these sites. This represents the first record of repeated observations of individual chimpanzees exhibiting stone tool use for a purpose other than extractive foraging at what appear to be targeted trees. The ritualized behavioural display and collection of artefacts at particular locations observed in chimpanzee accumulative stone throwing may have implications for the inferences that can be drawn from archaeological stone assemblages and the origins of ritual sites

    Population dynamics and genetic connectivity in recent chimpanzee history

    Get PDF
    The European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 864203) (to T.M.-B.). BFU2017-86471-P (MINECO/FEDER, UE) (to T.M.-B.). “Unidad de Excelencia María de Maeztu”, funded by the AEI (CEX2018-000792-M) (to T.M.-B.). Howard Hughes International Early Career (to T.M.-B.). NIH 1R01HG010898-01A1 (to T.M.-B.). Secretaria d’Universitats i Recerca and CERCA Program del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) (to T.M.-B.). UCL’s Wellcome Trust ISSF3 award 204841/Z/16/Z (to A.M.A. and J.M.S.). Generalitat de Catalunya (2017 SGR-1040) (to M. Llorente). Wellcome Trust Investigator Award 202802/Z/16/Z (to D.A.H.). The Pan African Program: The Cultured Chimpanzee (PanAf) is generously funded by the Max Planck Society, the Max Planck Society Innovation Fund, and the Heinz L. Krekeler Foundation.Knowledge on the population history of endangered species is critical for conservation, but whole-genome data on chimpanzees (Pan troglodytes) is geographically sparse. Here, we produced the first non-invasive geolocalized catalog of genomic diversity by capturing chromosome 21 from 828 non-invasive samples collected at 48 sampling sites across Africa. The four recognized subspecies show clear genetic differentiation correlating with known barriers, while previously undescribed genetic exchange suggests that these have been permeable on a local scale. We obtained a detailed reconstruction of population stratification and fine-scale patterns of isolation, migration, and connectivity, including a comprehensive picture of admixture with bonobos (Pan paniscus). Unlike humans, chimpanzees did not experience extended episodes of long-distance migrations, which might have limited cultural transmission. Finally, based on local rare variation, we implement a fine-grained geolocalization approach demonstrating improved precision in determining the origin of confiscated chimpanzees.Publisher PDFPeer reviewe

    Recent genetic connectivity and clinal variation in chimpanzees.

    Get PDF
    Funder: Max-Planck-Gesellschaft (Max Planck Society); doi: https://doi.org/10.13039/501100004189Funder: Max Planck Society Innovation Fund Heinz L. Krekeler FoundationMuch like humans, chimpanzees occupy diverse habitats and exhibit extensive behavioural variability. However, chimpanzees are recognized as a discontinuous species, with four subspecies separated by historical geographic barriers. Nevertheless, their range-wide degree of genetic connectivity remains poorly resolved, mainly due to sampling limitations. By analyzing a geographically comprehensive sample set amplified at microsatellite markers that inform recent population history, we found that isolation by distance explains most of the range-wide genetic structure of chimpanzees. Furthermore, we did not identify spatial discontinuities corresponding with the recognized subspecies, suggesting that some of the subspecies-delineating geographic barriers were recently permeable to gene flow. Substantial range-wide genetic connectivity is consistent with the hypothesis that behavioural flexibility is a salient driver of chimpanzee responses to changing environmental conditions. Finally, our observation of strong local differentiation associated with recent anthropogenic pressures portends future loss of critical genetic diversity if habitat fragmentation and population isolation continue unabated
    corecore