

Hoffmann, C. et al. (2017) Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest. Nature, 548(7665), pp. 82-86.

There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.

http://eprints.gla.ac.uk/145915/

Deposited on: 22 August 2017

Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk

Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

Authors: Constanze Hoffmann^{1,†}, Fee Zimmermann^{1,2,†}, Roman Biek³, Hjalmar Kuehl⁴, Kathrin Nowak¹, Roger Mundry⁴, Anthony Agbor⁴, Samuel Angedakin⁴, Mimi Arandjelovic⁴, Anja Blankenburg¹, Gregory Brazolla⁴, Katherine Corogenes⁴, Emmanuel Arandjelović, Anja Blankenburg, Gregory Brazolla, Katherine Corogenes, Emmanuel Couacy-Hymann⁵, Tobias Deschner⁴, Paula Dieguez⁴, Karsten Dierks⁴, Ariane Düx¹, Susann Dupke², Henk Eshuis⁴, Pierre Formenty⁶, Yisa Ginath Yuh⁴, Annemarie Goedmakers⁷, Jan F. Gogarten^{1,4,8}, Anne-Céline Granjon⁴, Scott McGraw⁹, Roland Grunow², John Hart¹⁰, Sorrel Jones⁴, Jessica Junker⁴, John Kiang¹¹, Kevin Langergraber¹², Juan Lapuente⁴, Kevin Lee⁴, Siv Aina Leendertz¹, Floraine Léguillon¹, Vera Leinert¹³, Therese Löhrich^{1,4}, Sergio Marrocoli⁴, Kerstin Mätz-Rensing¹⁴, Amelia Meier⁴, Kevin Merkel¹, Sonja Metzger¹, Mizuki Murai⁴, Svenja Niedorf¹, Hélène De Nys^{1,4}, Andreas Sachse¹, Joost van Schijndel⁴, Ulla Thiesen¹, Els Ton⁷, Doris Wu^{1,4}, Lothar H. Wieler¹⁵, Christophe Boesch⁴, Silke R. Klee², Roman M. Wittig⁴, Sébastien Calvignac-Spencer¹, Fabian H. Leendertz^{1,*}

[†]Equal contributions

*Corresponding author. E-mail: LeendertzF@rki.de

Affiliations:

¹Robert Koch Institute, P3: "Epidemiology of Highly Pathogenic Microorganisms", Seestraße 10-11, 13353 Berlin, Germany.

- ²Robert Koch Institute, ZBS 2: Centre for Biological Threats and Special Pathogens, Highly Pathogenic Microorganisms, Seestraße 10-11, 13353 Berlin, Germany.

³Institute of Biodiversity, Animal Health and Comparative Medicine, Boyd Orr Centre

for Population and Ecosystem Health, College of Medical, Veterinary and Life Sciences,

- University of Glasgow, Glasgow, United Kingdom.

⁴Max Planck Institute for Evolutionary Anthropology (MPI EVAN), Deutscher Platz 6, 04103 Leipzig, Germany.

- ⁵LANADA/LCVB, Bingerville, 206, Côte d'Ivoire.
- ⁶World Health Organization, 1211 Geneva 27, Switzerland.
- ⁷Chimbo Foundation, Amstel 49, 1011 PW Amsterdam, Netherlands.

⁸McGill University, Department of Biology, 855 Sherbrooke Street West Montreal, QC,

Canada, H3A 2T7.

40 41 42	⁹ The Ohio State University, Department of Anthropology, 4034 Smith Laboratory, 174 W. 18th Avenue, Columbus, OH, USA.
42 43 44 45	¹⁰ Lukuru Foundation, 1235 Avenue des Poids Lourds / Quartier de Kingabois, Kinshasa, DRC.
46	¹¹ Limbe Wildlife Centre, Limbe, Cameroon.
47 48	¹² Arizona State University, PO Box 872402, Tempe, AZ 85287-2402 USA.
49 50	¹³ Wild Chimpanzee Foundation (WCF), Deutscher Platz 6, 04103 Leipzig, Germany.
51 52	¹⁴ German Primate Center, Kellnerweg 4, 37077 Göttingen, Germany.
53 54 55	¹⁵ Robert Koch Institute, Seestraße 10-11, 13353 Berlin, Germany.
56	
57	Anthrax is a globally significant animal disease and zoonosis. Despite this, current
58	knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks
59	are most commonly reported ¹⁻³ . We reveal the dynamics of an anthrax causing
60	agent, Bacillus cereus biovar anthracis, in a tropical rainforest with severe
61	consequences for local wildlife communities. Using data and samples collected over
62	three decades we find that rainforest anthrax is a persistent and widespread cause
63	of death for a broad range of mammalian hosts. We predict that this pathogen will
64	accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan
65	troglodytes verus) populations. Our findings illuminate the epidemiology of a cryptic
66	pathogen and have important implications for conservation.
67	

Anthrax is a disease of wildlife, livestock and humans predominantly affecting low and
 middle-income countries^{2,4,5}. Although widely distributed, including some temperate
 regions, anthrax is most commonly associated with arid ecosystems, particularly African

71	savannas ^{1,3,6-11} . In these systems, major outbreaks typically cause high mortality in a few
72	wild and domestic ungulate species at a time and usually exhibit strong seasonal and
73	inter-annual variation ^{2,3,5,11,12} . For example, in Krüger National Park, South Africa, die-
74	offs in kudus (Tragelaphus strepsiceros) and impalas (Aepyceros melampus) occur in the
75	dry season with a ten year periodicity coinciding with rainfall cycles ¹¹ . In Etosha
76	National Park, Namibia, mortality in elephants (Loxodonta Africana) peaks at the start of
77	the wet season, while plains ungulates (Equus quagga, Conochaetes taurineus,
78	Antidorcas marsupialis) are most affected at the end of the wet season ^{3,13} . Such varying
79	dynamics underline the importance of investigating the pathogen in close relation with its
80	ecosystem, but so far anthrax research in Africa has been biased towards well-studied
81	savanna regions.
82	In 2001, lethal anthrax-like cases in wild chimpanzees were reported in a rainforest
83	habitat: Taï National Park (TNP), Côte d'Ivoire (Fig. S1) ¹⁴ . The causative agent was a
84	bacterium combining the chromosomal background of Bacillus cereus with the virulence
85	plasmids of <i>B. anthracis</i> (<i>Bacillus cereus</i> biovar <i>anthracis; Bcbva</i>) ¹⁵ . Pathology and
86	histopathology of Bcbva cases were clearly suggestive of anthrax and in small animal
87	models <i>Bcbva</i> was as virulent as <i>B. anthracis</i> ¹⁴⁻¹⁶ . <i>Bcbva</i> cases have since been described
88	in animals in Cameroon (CM), Central African Republic (CAR) and the Democratic
89	Republic of Congo ^{17,18} , suggesting a broad sub-Saharan distribution (Fig. 1). However,
90	the epidemiology of anthrax-like disease caused by Bcbva (hereafter anthrax), and to
91	what extent it matches that of classical anthrax, remain poorly understood.
92	We address this knowledge gap by testing a unique set of samples collected in TNP over
93	26 years. We started collecting bones in 1989 resulting in bones from 75 individual

94	mammals (Table S7, Supplementary information S4). From 1996 on, we investigated 204
95	fresh carcasses (Table S2, Supplementary information S2). Since bone and carcass
96	discovery was linked to the collection of chimpanzee behavioral data, we expected
97	detection of Bcbva to be biased towards chimpanzees and other easily detectable medium
98	to large-bodied mammals. We therefore tested whether carrion flies, which are relatively
99	unbiased samplers of mammalian DNA ¹⁹ , might also collect <i>Bcbva</i> or its genetic material
100	while feeding and ovipositing on carcasses. Starting in 2008, we applied different
101	horizontal and vertical sampling schemes to collect 1,634 flies (Table S1 and S4,
102	Supplementary information S3). We retrieved <i>Bcbva</i> isolates from all three sample types
103	(bones, carcasses, flies). These allowed us to generate 178 whole genome sequences
104	spanning from 1996 to 2014 (Table S8). To clarify the distribution of <i>Bcbva</i> on a larger
105	scale, we sampled 1089 flies and 136 bones from 16 other sites in 11 sub-Saharan
106	countries from 2012 to 2014 (Fig. 1, Table S1).
107	In TNP we detected <i>Bcbva</i> DNA in 81 carcasses (40%; Fig. 2A, Extended Data Fig. S1,
108	Extended Data Fig. S2, Table S2), 26 bones (35%, Table S7) and 80 flies (5%; Fig. 2B,
109	Extended Data Fig. S3, Table S4). We could perform histopathological examinations on
110	15 positive carcasses and in all cases pathology was consistent with a lethal anthrax
111	infection (Table S2). Overall, 38% of observed local wildlife mortality was associated
112	with Bcbva (Tables S2 and S4), meeting the highest levels of mortality reported for
113	classical anthrax outbreaks in savanna ecosystems ^{12,20} . We observed no obvious seasonal
114	variation in Bcbva carcass incidence, suggesting ongoing anthrax activity in the area
115	(Generalized Linear Mixed Model (GLMM), χ2=6.3, df=10, P=0.789, Supplementary
116	information S8a). However, Bcbva detection in flies peaked from December to March,

117	coinciding with the only distinct dry period in the park (GLMM, $\chi 2=6.9$, df=2, P=0.032,
118	Extended Data Fig. S4, Supplementary information S8b). This suggests climatic
119	conditions may influence <i>Bcbva</i> ecology in TNP, similar to observations from <i>B</i> .
120	anthracis in savannas ¹ , though seasonal mortality appears less pronounced.
121	Bcbva differed dramatically from B. anthracis in terms of host range. Ungulates
122	constitute the vast majority (> 99 %) of anthrax cases in savanna $ecosystems^{11,12,20}$. In
123	contrast, and in line with the more diverse fauna found in rainforests, we observed Bcbva
124	fatalities in a broader range of species in TNP, including chimpanzees (31/55), six
125	monkey species (21/81), duikers (26/40), mongooses (2/2) and porcupines (1/26 other
126	mammals) (Table S2). To further explore the host range of <i>Bcbva</i> , we analyzed the gut
127	content of all mammal and <i>Bcbva</i> positive flies (n=28, Table S1) using amplicon deep
128	sequencing. We detected sequences from most of the aforementioned species, and from
129	species belonging to 11 further mammalian genera, including carnivores, rodents and bats
130	(Table S5, Supplementary information S3e). This suggests that <i>Bcbva</i> may affect an even
131	broader range of mammals than inferred from carcass monitoring alone. Further, meal
132	compositions of mammal positive <i>Bcbva</i> positive flies (n=28) and mammal positive
133	Bcbva negative flies (n=29) did not differ significantly (GLMMs, Supplementary
134	information S8c), which may support the notion that there is no substantial difference in
135	Bcbva susceptibility among species.
136	To gain further insight into the ecology of Bcbva, we investigated 178 genomes derived
137	from isolates obtained from necropsy samples, bones and flies, collected between 1996
138	and 2014 (Table S8). Considering 126 chromosomal sequences originating from separate

139 hosts (mammals and flies) we detected 298 single nucleotide polymorphisms (SNP).

140	Plasmids contained negligible amounts of variation (Supplementary information S7a).
141	The maximum distance observed between isolates was 69 SNPs (median: 26 SNPs); the
142	most distant isolates originated in flies caught in two consecutive years only 6 km apart.
143	In comparison, a maximum distance of only 20 SNPs was observed in <i>B. anthracis</i>
144	isolates derived from cattle samples collected in the French Alps between 1997 and
145	2009^{21} . The high genetic diversity observed in TNP is consistent with extensive <i>Bcbva</i>
146	activity in the area and suggests that this pathogen did not emerge recently (Fig.3,
147	Extended Data Fig. S5). In addition, considerably more divergence was seen compared to
148	isolates from other countries ^{$17,18$} , supporting the notion that <i>Bcbva</i> has been circulating in
149	sub-Saharan Africa for an even much longer period than what we determined in TNP
150	(Extended Data Fig. S6, Supplementary information S7). To assess within-host diversity
151	we sequenced the genomes of two to six independent isolates for a subset of carcasses
152	and flies (Table S9). Two strains differing by 42 chromosomal SNPs were isolated from a
153	single fly, likely reflecting multiple carcass meals ¹⁹ , which further highlights the
154	commonness of Bcbva in TNP. Otherwise, the maximum distance observed within one
155	host was two chromosomal SNPs (mean: 0.35 SNPs). Within-host heterogeneity thus
156	seems negligible compared to the overall diversity observed for Bcbva suggesting strains
157	differing by more than two SNPs originate from separate carcasses.
158	Bcbva positive carcasses were broadly distributed throughout the TNP research area,
159	without the kind of geographic clustering described for anthrax in savanna
160	$ecosystems^{12,22}$ (Fig. 2A). We determined <i>Bcbva</i> prevalence within and outside the
161	research area using a subset of 908 flies caught systematically according a grid system

within 19 days (Extended Data Fig. S7). We detected *Bcbva* positive flies in 16/83 traps

163 (Additional Data Table S1). Prevalence was higher in the research area (8/21 traps Bcbva positive) than in the surrounding forest belt (8/62 traps Bcbva positive) (Fisher's Exact 164 Test, P = 0.02). Long-term research activity within the TNP research area has had a 165 protective effect on wildlife and led to an increased density of mammals²³, which might 166 explain higher *Bcbva* activity. Genome data revealed multiple contemporaneous 167 168 transmission chains caused by co-circulating strains (2 to 48 SNPs distance, median: 25 SNPs) in different areas of the park over the short time period of the fly snapshot 169 (Extended Data Fig. S8). For low genomic distances (\leq 35 SNPs), genomic and 170 geographic distances of all TNP isolates were positively correlated ($R^2 = 0.72$), providing 171 further indication of spatially restricted transmission (Extended Data Fig. S9), which 172 might reflect carcass-mediated spread of Bcbva. Since wildlife cases included exclusively 173 arboreal monkeys (Table S2), we explored the vertical distribution of Bcbva by catching 174 flies simultaneously on the ground and up to 30m into the canopy. We detected *Bcbva* in 175 12 of 103 canopy flies (11.7%) and retrieved isolates from five of these (Table S4, 176 Additional Data Table S1). While on the ground carcass deposition sites are likely to be 177 the source of *Bcbva* infections, flies may contribute to *Bcbva* transmission in the upper 178 strata of the rainforest²⁴. 179

Fly samples indicated a large proportion of undetected anthrax mortality. During 19 days of focused fly sampling, we retrieved *Bcbva* isolates from 17 flies, with 13 strains being more than two SNPs different from any other strain. Since two SNPs appear to be the upper level of within-host diversity (Table S9), this implies the presence of at least 13 different *Bcbva* positive carcasses. Yet, during the same sampling period, only three *Bcbva* positive carcasses were discovered and their isolates all corresponded to one of the

fly *Bcbva* lineages (≤ 2 SNPs difference). This suggests carcass monitoring alone underestimates mortality by at least an order of magnitude.

We investigated the consequences of Bcbva-induced mortality on the species best studied 188 in this ecosystem, chimpanzees. Chimpanzees have a low reproduction rate²⁵ and are thus 189 particularly sensitive towards external changes to their environment. Based on 190 demographic data collected from habituated groups in TNP, we simulated population 191 viability at a 150 years horizon across a broad range of demographic models including 192 and excluding anthrax induced mortality (Fig. S7 and S8). Our simulations showed that, 193 with *Bcbva*, the TNP chimpanzee population would only have high chances to persist in 194 195 the case of an overall annual per capita mortality rate due to other causes of 1% (Fig. S7 and S8). Such a low mortality rate is, however, not even observed in captive 196 chimpanzees. In wild chimpanzees the lowest annual per capita mortality rate is 4% (in 197 early adults)²⁵. Under such a survival probability (0.96), the simulated presence of 198 anthrax invariably led to a clearly reduced survival probability of communities (Fig. 4). 199 For example, 76/84 models resulted in extirpation probability higher than 50%, while the 200 model which we consider the most realistic (community size 60, maximum age 46 years 201 and inter birth interval 6 years) resulted in an extirpation probability of 89% (Fig. 4). Our 202 simulations therefore suggest that anthrax induced mortality will result in deterministic 203 population declines and possible extirpation of TNP chimpanzees over the next 150 204 205 years. The risk of extirpation will increase if chimpanzee mortality due to hunting and human-borne infectious diseases continues to rise ^{23,26,27}. 206 207 To determine whether similar unrecognized effects on wildlife might be occurring

elsewhere, we tested 784 flies collected at eight different sites, as well as 136 bones from

209	twelve sites in five and nine sub-Saharan countries, respectively (Fig. S3, Table S1). All
210	sites had chimpanzee populations but none (nor the country) had previously reported
211	Bcbva cases. We only detected Bcbva genetic material in 2 of 105 flies and 1 of 8 bones
212	collected in the Grebo National Forest (GNF) in Liberia, about 40 km from TNP (Fig.
213	S1). The genome sequences of isolates from the two fly samples nested within the
214	diversity of <i>Bcbva</i> in TNP which may indicate an epidemiological link (Fig. 3). We did
215	not detect Bcbva in 305 flies from two sites where Bcbva cases have been previously
216	reported (Dja Reserve, CM, and Dzanga Sangha Protected Areas, CAR, Table S4). While
217	the lack of detection at other sites needs to be interpreted with caution due to variable fly
218	species composition (Extended Data Fig. S10, Supplementary information S3f), these
219	data suggest that Bcbva dynamics may also vary across rainforest ecosystems. It will be
220	important to further uncover the scale and environmental drivers behind Bcbva
221	prevalence. Such knowledge will be critical for mitigating against the detrimental effects
222	of <i>Bcbva</i> on wildlife and for better assessing human infection risk, which for anthrax in
223	rainforest ecosystems has, to date, been considered very low.

References (1-27)

226 227	1	Hampson, K. <i>et al.</i> Predictability of anthrax infection in the Serengeti, Tanzania. <i>J Appl Ecol</i> 48 , 1333-1344, doi:10.1111/j.1365-2664.2011.02030.x (2011).
228	2	Hugh-Jones, M. & De Vos, V. Anthrax and wildlife. Revue Scientifique et
229		Technique-Office International des Epizooties 21, 359-384 (2002).
230	3	Lindeque, P. M. & Turnbull, P. C. Ecology and epidemiology of anthrax in the
231		Etosha National Park, Namibia. Onderstepoort J Vet Res 61, 71-83 (1994).
232	4	Beyer, W. & Turnbull, P. C. Anthrax in animals. Mol Aspects Med 30, 481-489,
233		doi:10.1016/j.mam.2009.08.004 (2009).
234	5	Turnbull, P. C. B. WHO Guidelines Approved by the Guidelines Review
235		Committee (World Health Organization, Department of Communicable Diseases
236		Surveillance and Response, 2008).

237	6	Good, K. M., Houser, A., Arntzen, L. & Turnbull, P. C. Naturally acquired
238		anthrax antibodies in a cheetah (Acinonyx jubatus) in Botswana. Journal of
239		<i>wildlife diseases</i> 44 , 721-723 (2008).
240	7	Wafula, M. M., Patrick, A. & Charles, T. Managing the 2004/05 anthrax outbreak
241		in Queen Elizabeth and Lake Mburo National Parks, Uganda. African Journal of
242		<i>Ecology</i> 46 , 24-31 (2008).
243	8	Clegg, S., Turnbull, P., Foggin, C. & Lindeque, P. Massive outbreak of anthrax in
244		wildlife in the Malilangwe Wildlife Reserve, Zimbabwe. The Veterinary Record
245		160 , 113-118 (2007).
246	9	Muoria, P. K. et al. Anthrax outbreak among Grevy's zebra (Equus grevyi) in
247		Samburu, Kenya. African Journal of Ecology 45, 483-489 (2007).
248	10	Turnbull, P. et al. Anthrax in wildlife in the Luangwa Valley, Zambia. The
249		Veterinary Record 128 , 399-403 (1991).
250	11	de Vos, V. The ecology of anthrax in the Kruger National Park, South Africa.
251		Salisbury Med Bull Suppl 68, 19-23 (1990).
252	12	Lembo, T. et al. Serologic surveillance of anthrax in the Serengeti ecosystem,
253		Tanzania, 1996-2009. Emerg Infect Dis 17, 387-394, doi:10.3201/eid1703.101290
254		(2011).
255	13	Beyer, W. et al. Distribution and molecular evolution of Bacillus anthracis
256		genotypes in Namibia. PLoS neglected tropical diseases 6, e1534 (2012).
257	14	Leendertz, F. H. et al. Anthrax kills wild chimpanzees in a tropical rainforest.
258		<i>Nature</i> 430 , 451-452, doi:10.1038/nature02722 (2004).
259	15	Klee, S. R. et al. The genome of a Bacillus isolate causing anthrax in chimpanzees
260		combines chromosomal properties of <i>B. cereus</i> with <i>B. anthracis</i> virulence
261		plasmids. PLoS One 5, 0010986 (2010).
262	16	Brézillon, C. et al. Capsules, toxins and AtxA as virulence factors of emerging
263		Bacillus cereus biovar anthracis. PLoS Negl Trop Dis 9, e0003455,
264		doi:10.1371/journal.pntd.0003455 (2015).
265	17	Antonation, K. S. et al. Bacillus cereus biovar anthracis causing anthrax in sub-
266		Saharan Africa - Chromosomal monophyly and broad geographic distribution.
267		PLOS Neglected Tropical Diseases (2016).
268	18	Leendertz, F. H. et al. Anthrax in Western and Central African great apes.
269		<i>American journal of primatology</i> 68 , 928-933, doi:10.1002/ajp.20298 (2006).
270	19	Calvignac-Spencer, S. et al. Carrion fly-derived DNA as a tool for comprehensive
271		and cost-effective assessment of mammalian biodiversity. <i>Molecular ecology</i> 22,
272		915-924, doi:10.1111/mec.12183 (2013).
273	20	Berry, H. H. Surveillance and control of anthrax and rabies in wild herbivores and
274		carnivores in Namibia. Rev Sci Tech 12, 137-146 (1993).
275	21	Vergnaud, G. et al. Comparison of French and worldwide Bacillus anthracis
276		strains favors a recent, Post-Columbian origin of the predominant North-
277		American Clade. PLoS One 11, e0146216, doi:10.1371/journal.pone.0146216
278		(2016).
279	22	Smith, K. L. et al. Bacillus anthracis diversity in Kruger National Park. Journal
280		of clinical microbiology 38 , 3780-3784 (2000).

281	23	Campbell, G., Kuehl, H., Diarrassouba, A., N'Goran, P. K. & Boesch, C. Long-
282		term research sites as refugia for threatened and over-harvested species. <i>Biology</i>
283		<i>letters</i> 7, 723-726, doi:10.1098/rsbl.2011.0155 (2011).
284	24	Blackburn, J. K., Van Ert, M., Mullins, J. C., Hadfield, T. L. & Hugh-Jones, M. E.
285		The necrophagous fly anthrax transmission pathway: empirical and genetic
286		evidence from wildlife epizootics. Vector-Borne and Zoonotic Diseases 14, 576-
287		583 (2014).
288	25	Hill, K. et al. Mortality rates among wild chimpanzees. Journal of human
289		evolution 40, 437-450, doi:10.1006/jhev.2001.0469 (2001).
290	26	Köndgen, S. et al. Pandemic human viruses cause decline of endangered great
291		apes. Current biology : CB 18, 260-264, doi:10.1016/j.cub.2008.01.012 (2008).
292	27	Boesch, C. & Boesch-Achermann, H. The chimpanzees of the Taï Forest:
293		Behavioural ecology and evolution. (Oxford University Press, USA, 2000).
294		

- 295 Supplementary information
- 296 Supplementary information: this file contains a more detailed method section as well as
- additional tables (Tables S1-10) and figures (Fig. S1-8).
- Additional Data Table S1: Results derived from the analyses of flies caught in TNP
- analyzed in this study. This file includes results from PCR and culture as well as flymeal
- 300 analysis results for a selection of flies.
- 301 Additional Data Table S2: Results of fly meal analysis with taxonomic assignment at
- 302 genus level. This file provides the number of sequences per amplicon assigned at genus
- 303 level.
- 304 Additional Data Table S3: Results of fly meal analysis with taxonomic assignment at
- 305 order level. This file provides the number of sequences per amplicon assigned at order
- 306 level.

308 Acknowledgements

309 We thank the authorities in Côte d'Ivoire for long-term support, especially the Ministry of

the Environment and Forests, the Ministry of Research, the directorship of the Taï

311	National Park, and the CSRS in Abidjan. We also thank the national authorities from all
312	other countries for providing permissions for our research (MINFoF, MINRESI, the
313	Service de la Conservation de la Réserve du Dja, Cameron, in CAR the Ministère d'Eaux
314	et Fôret, Chasse et Peche and the Ministère de l'Education Nationale, de
315	l'Alphabetisation, de l'Enseignement Superieur, et de la Recherche, the Agence
316	Nationale des Parcs Nationaux, Gabon, Centre National de la Recherche Scientifique et
317	Technologique, Gabon, Direction des Eaux, Forêts et Chasses, Senegal, Forestry
318	Development Authority, Liberia, Institut Congolais pour la Conservation de la Nature,
319	DR-Congo, Ministère de l'Agriculture de l'Elevage et des Eaux et Forêts, Guinea,
320	Instituto da Biodiversidade e das Áreas Protegidas (IBAP), Guinea-Bissau, Ministère de
321	la Recherche Scientifique, DR-Congo, Ministère de le Recherche Scientifique et
322	Technologique, R-Congo, Nigeria National Park Service, Nigeria, Uganda National
323	Council for Science and Technology, Ugandan Wildlife Authority, Uganda).
324	We thank the WWF CAR for their logistical support. For the collection of samples in
325	TNP we thank the field assistants, Arthur Henlin, Katerina Albrechtova and Alexander
326	Lang. We are also grateful to the field assistants from all other sites for their support. For
327	laboratory we are grateful to Silke Becker, Tatjana Franz, Sabine Howaldt, Angelika
328	Lander, Petra Lochau, Herbert Nattermann and Andy Schneider, for sequencing we thank
329	the RKI Central Sequencing Laboratory, particularly Julia Hinzmann, Andreas Nitsche
330	and Julia Tesch and for bioinformatic support to Piotr Wojciech Dabrowski and Torsten
331	Semmler from RKI, as well as Graham Hamilton at Glasgow Polyomics. We would
332	further like to thank Teresa Börding, Thurston Hicks, Yasmin Moebius, Volker Sommer,
333	Klaus Zuberbühler and Martine Peeters, and for administrative support Maja Kovacev-

- 334 Wegener. For funding we thank the German Research Council DFG KL 2521/1-1 and the
- 335 Sonnenfeld-Stiftung. We would like to thank the Max-Planck-Society and Krekeler
- 336 Foundation for funding of the *Pan African Programme*.
- 337

338 Author contributions

- 339 CH, FZ, AA, SA, MA, GB, KC, PD, KD, HE, PF, YG, AG, AG, SMG, JH, SJ, JJ, JK,
- 340 KL, JL, KL, VL, TL, SM, AM, SM, MM, JvS and ET collected flies, bones and
- according field data. Necropsies on wildlife found dead were performed by FZ, KN, AB,
- ECH, AD, PF, SAL, TL, SM, SN, HDN and FHL and laboratory analyses performed by
- 343 CH, FZ, KN, SD, KMR, KM, SM, HDN, AS, UT, SK, SC and FHL. The data were
- analyzed by CH, FZ, RB, HK, RM and SC and the manuscript prepared by CH, FZ, RB,
- 345 HK, RM, JG, SC and FHL. The manuscript was revised and approved by all authors. The
- study was supervised by CB, RW, SC and FHL.
- 347

348 Author information

- Reprints and permissions information is available at <u>www.nature.com/reprints</u>. The
- authors declare no competing financial interests. Correspondence and requests for
- 351 materials should be addressed to <u>leendertzf@rki.de</u>.

352

353 Figure legends

354 Fig. 1. Bcbva occurrence and study sampling sites in sub-Saharan Africa. Sites with

- known *Bcbva* occurrence are indicated in red. Detection of *Bcbva* in Taï National Park,
- 356 Dja Reserve, Dzanga-Sangha Protected Areas and Luebo has been described in previous

studies. For all *Bcbva* sites, except Luebo, samples were available. Within this study we
could identify Grebo as a new site of *Bcbva* occurrence. *Bcbva* was not detected at the
other tested sub-Saharan sites (indicated in black).

360

Fig. 2. Bcbva cases in Taï National Park. (A) Bcbva positive and negative carcasses. 361 38% of the observed wildlife mortality in Taï National Park is due to Bcbva. Bcbva 362 positive carcasses were broadly distributed throughout the research area with no obvious 363 pattern identifiable. GPS data was available for 113 of 204 detected carcasses and not for 364 365 those detected before 2001. (B) *Bcbva* positive and negative fly traps. Five percent of all analyzed flies contained *Bcbva* genetic material. Flies were also caught outside the 366 research area. A systematic snapshot sampling revealed higher prevalence of *Bcbva* 367 368 positive fly traps within the research area.

369

Fig. 3. Phylogenomic tree of *Bcbva* isolates. Maximum likelihood tree based on
chromosomal sequences of *Bcbva* isolates from TNP (Côte d'Ivoire, n=124) and Grebo
(Liberia, n=2). One sequence per host (mammals/flies, two divergent isolates for fly 600)
was included and the final alignment of variant sites measured 298bp.Internal branches
with bootstrap values lower than 90 are colored in grey. The colored strip represents
different host species. The tree was rooted using the heuristic residual mean squared
function in *TempEst* v 1.5. The scale bar is in substitution per chromosomal site.

377

Fig. 4. Proportions of simulated chimpanzee communities surviving 150 years with and without presence of anthrax. Shown are results for different community sizes and anthrax being absent (a, blue boxes) or present (p, red boxes). Bars represent median

381	estimates and boxes quartiles across a range of simulation models assuming different
382	inter birth intervals and maximum ages. All models summarized here assumed an annual
383	per capita survival rate of 0.96.

385 Methods

386 Study sites

TNP covers an area of $3,300 \text{ km}^2$ and an additional 200 km² buffer zone. Since 2001 a

veterinary program conducts outbreak investigations in wildlife. We defined the research

area as the habitat ranges of the three habituated chimpanzee groups plus a 500 m buffer

390 zone (103 km²; Fig. S2).

391 Samples belonging to the large-scale data set were collected at 16 sites in 11 sub-Saharan

392 countries stretching from Senegal to Uganda (Fig. S3, Table S1). Most sites (14 out of

393 16) were temporary research sites of the *Pan African Programme*

394 (www.panafrican.eva.mpg.de) where *Bcbva* has not been described. Additional samples

395 were obtained from Dja Faunal Reserve (DJR), Cameroon¹⁸ and Dzanga-Sangha

³⁹⁶ Protected Areas (DSPA), Central African Republic¹⁷, where *Bcbva* cases have been

397 previously described. Study sites are described in detail in Supplementary information

399 Necropsies

S1.

398

Carcass monitoring was performed in TNP by a veterinarian, performing necropsies on
 every carcass reported by researchers working in the forest (n=173). Samples of all inner
 organs were collected, as far as carcass decomposition allowed. Necropsies followed a

standardized protocol, including use of full personal protective equipment. Carcass sites were decontaminated according to World Health Organization (WHO) guidelines^{5,28}. For each sample aliquots were stored in liquid nitrogen and formalin in the field. Frozen samples were transported on dry ice and subsequently stored at -80°C. We received additional tissue samples from carcasses sampled by the WHO in TNP between 1996 and 2000 (n=31) (Table S2).

409 Rather than using serology, which would also detect animals that survived non-lethal infections, we used PCRs to detect the presence of anthrax in internal organs to confirm 410 that anthrax was the likely cause of death. DNA was extracted from various tissues per 411 412 animal (liver, spleen and lung when available) using the DNeasy Blood and Tissue Kit (Qiagen, Hilden, Germany); extracts were quantified using a Nanodrop (Thermo Fisher 413 414 Scientific, Waltham, MA, USA) and stored at -20°C. Two hundred ng DNA or 5 μ l of DNA extract (if DNA concentration was below 40 ng/µl) were tested for anthrax in 415 duplicate real-time PCR reactions (details in Supplementary Methods S2c). The full 416 anthrax assay used includes three real-time PCRs, each targeting one of the following 417 gene markers: pag (gene for protective antigen) located on the pXO1 plasmid²⁹, capB 418 (gene for capsule synthesis) located on pXO2 and Island IV, a chromosomal marker 419 specific for *Bcbva*^{15,17} (Table S3). Samples were first tested for *pag* and samples positive 420 in duplicate for pag were tested for capB and Island IV (Extended Data Fig. S1 and 421 Extended Data Fig. S2). 422

423 Culture under BSL3 conditions was attempted for all PCR positive necropsy samples

424 collected until the end of 2013 (June 2014 for duikers) (Table S2). A native and heat-

treated (65°C for 30 min, to assess presence of spores) aliquot were plated onto the

426	following agar plates: Columbia blood agar (Oxoid, Wesel, Germany), blood-
427	trimethoprim agar (1.6 mg trimethoprim, 6.4 mg sulfamethoxazole, 20 mg polymyxin B
428	per liter agar medium) and Cereus Ident agar (Heipha Diagnostica, Eppelheim, Germany)
429	with the chromogenic substrate 5-bromo-4-chloro-3-indoxyl-myoinositol-1-phosphate ³⁰ .
430	Cultures were incubated at 37°C and monitored daily. Morphologically suspicious
431	colonies were sub-cultured and tested in real-time PCR. Bcbva was cultured from native
432	and heat-treated samples indicating the presence of heat-resistant spores. Isolates were
433	frozen in Microbank tubes (Mast Diagnostica, Reinfeld, Germany) at -80°C.
434	Histopathology was performed on a subset of necropsy samples, including 15 Bcbva PCR
435	positive necropsy samples (Table S2). No signs of anthrax infection were detected in
436	carcasses that were PCR negative for anthrax, while for PCR positive carcasses the most
437	consistent histopathologic finding was per-acute to acute anthrax related pneumonia
438	characterized by mild lymphohistiocytic infiltrates and intraalveolar eosinophilic and
439	proteinaceous or fibrinous material. Numerous bacilli were found intravascular and
440	intraalveolar. Multifocal alveolar and peribronchiolar hemorrhages were present in all
441	animals. Lymph node changes consisted of sinus histiocytosis, cortical hemorrages and
442	edema especially in the mediastinal, tracheobronchiolar and mesenteric lymph nodes.
443	Huge amounts of bacilli were demonstrable in the sinusoids. Within the abdominal cavity
444	the spleen was the organ most affected, with myriads of bacilli visible in the splenic
445	sinusoids, partly embedded in fibrin deposition. There was moderate lymphoid depletion,
446	lymphocytolysis and histiocytosis. The liver parenchyma was severely congested with
447	masses of bacilli within the hepatic sinusoids. All anthrax PCR positive carcasses were

also tested for filoviruses³¹ and respiratory diseases ²⁶ to rule out co-infection with other common causes of death in this ecosystem.

450 Blow flies

Flies were caught on the ground and in the canopy using custom-made traps (Fig. S4 and 451 S5, Supplementary information S3a). Trapping was done for 60 min or until 20 flies were 452 collected. Flies were euthanized with ether and stored at -20°C in 2 ml Cryotubes (Carl 453 454 Roth) containing up to 10 flies or at ambient temperature on silica in 50 ml Falcon tubes (Thermo Fisher Scientific) containing up to 20 flies. In TNP, 726 flies were randomly 455 collected within the research area in 2008, 2009, 2012 and 2013 (Table S4). Another 908 456 flies were collected over 19 days in May and June 2014 according to a 2x2 km grid 457 system covering the research area and 225 km² surrounding the research area (referred to 458 as "snapshot flies"; Extended Data Fig. S7, Table S4). At a larger scale, 784 flies were 459 460 collected at 8 sites within 5 sub-Saharan countries (Pan African Programme) from 2012 461 to 2014 (Table S4) and 305 flies were analyzed from two sub-Saharan sites, DJR (n=105) and DSPA^{17,18} (n=200) (Table S4). In total, 2,723 flies were analyzed (Table S4). 462 DNA extraction of individual flies was performed using the GeneMATRIX Stool DNA 463 Purification Kit (Roboklon, Berlin, Germany). We followed manufacturer's instructions 464 465 except that each fly was first cut into small pieces using sterilized scissors before being homogenized using a Fast Prep® (MP Biomedicals, Santa Ana, CA, USA). DNA 466 concentration measurements and anthrax testing by real-time PCR were performed as 467 468 described for necropsy samples (Table S4). 469 A subset of 50 flies containing high *pag* copy numbers underwent bacterial culture (Table

409 A subset of 50 mes containing high pag copy numbers under went outcorful cutate (Table470 S4, Additional Data Table S1). Half of the fly mush remaining after DNA extraction was

471 plated directly onto the same culture media described for necropsy samples. Additionally, a 10 µl aliquot of the mush was diluted 1:10 in sterile NaCl, heat treated for 30 min at 472 65°C and plated. Bcbva was retrieved from native and heat-treated samples, indicating 473 the presence of heat-resistant spores in flies. An on-site study in TNP also used direct 474 culture of 204 flies without preceding PCR testing. Flies were homogenized and plated 475 directly onto Cereus Ident agar. Suspicious colonies were sub-cultured on blood-476 trimethoprim agar and tested in real-time PCR. This approach yielded another 21 Bcbva 477 isolates. 478

To examine whether certain mammals were preferentially affected by *Bcbva*, we tested 479 480 for differences in fly meal composition of anthrax positive and negative flies. We screened a subset of 750 TNP flies for mammalian DNA using a real time PCR targeting 481 a 130 bp fragment of mammalian 16S mitochondrial DNA (described in Calvignac-482 Spencer et al.¹⁹). We chose a subset of mammal and anthrax positive (n=28) and the 483 according number of mammal positive but anthrax negative flies (n=29) from the same 484 traps (Additional Data Table S1). To dissect fly meal composition, we used a 485 metabarcoding approach, whereby 16S amplicons were deep-sequenced, adapting the 486 amplicon preparation protocol provided by Illumina (San Diego, CA, US) 487 (Supplementary information S3e). We used a custom pipeline to determine taxonomic 488 assessment of each read to the genus and order level described in the Supplementary 489 490 information S3e (Table S5, Additional Data Tables S1 and S2). Sequences assigned to 491 domestic animals were regarded as contamination as it was shown that even stringent anti-contamination procedures do not prevent the amplification of human and domestic 492 animal sequences present in the environment and reagents 32 . 493

494 Details on blow fly analyses and results are in Supplementary information S3.

495 **Bones**

Bones were collected in TNP and 12 Pan African Programme sites in 9 countries (Fig. 496 497 S3, Table S1 and S7). Bones were transported and stored at ambient temperature. DNA was extracted using a silica-based method^{33,34} (Suppementary information S4b). Bone 498 499 extracts were tested by real-time PCR as described for necropsy samples (Table S1 and 500 S7). Powder from PCR positive bones was also used for bacterial culture attempts after homogenization in sterile NaCl (Table S7). We processed the homogenates as described 501 above for necropsy samples with one native aliquot and one heat- treated aliquot. Details 502 on bone analyses and additional results are in Supplementary information S4. 503

504 Whole-genome sequencing of Bcbva isolates and SNP calling

Table S8 contains a complete list of all *Bcbva* isolates sequenced (Fig. S6). Isolate

506 preparation and extraction is described in the Supplementary Methods S6a. Libraries for

507 whole-genome sequencing were prepared with the Nextera XT DNA Library Preparation

508 Kit (Illumina). Libraries were pooled and sequenced on the HiSeq 1500 platform

(Illumina) in rapid run mode using either v1 (2x150 bp) or v2 (2x250 bp) chemistry.

510 Illumina adapters were removed using *scythe* $v0.993^{35}$ and trimmed with *sickle* $v1.33^{36}$

applying a quality threshold of 25. Quality trimmed reads were aligned to the reference

512 genome (*Bcbva* strain CI, Accession numbers CP001746-749) with the BWA-MEM

algorithm implemented in *bwa* v0.7.12-r1039³⁷. For conversion to bam format, sorting,

deduplication and indexing of aligned reads, we used the *picard tools* 1.136^{31} software

515 package applying the commands *SortSam*, *MarkDuplicates* and *BuildBamIndex*.

516 Subsequent variant calling was performed using the *Genome Analysis Toolkit (GATK)*

- $v3.4^{38-40}$. We realigned bam files with the tools *RealignerTargetCreator* and
- 518 IndelRealigner. Variants were called with UnifiedGenotyper with a minimum phred
- scaled confidence threshold of 30 for SNPs to be called. Hard filtering of SNP sites was
- 520 done with the *VariantFiltration* command using recommended filter settings. With the
- 521 SelectVariants command, only SNP sites that passed the filter were selected for further
- 522 processing. *SelectVariants* was also used to exclude all SNPs with a coverage < 5x, a
- 523 minor allele frequency of > 0.1 and a *GATK* Genotype Quality value < 99. Final
- 524 consensus sequences were composed with FastaAlternateReferenceMaker. We assessed
- 525 coverages of all samples with the *GATK* tools *DepthOfCoverage* and
- 526 *CoveredByNSamplesSites*. Details and further analysis of whole-genome sequencing of
- 527 *Bcbva* isolates and SNP calling is Supplementary information S6.

528 Phylogenetic analyses

- 529 126 genome sequences (one isolate per mammal/fly) from TNP and GNF (Table S8)
- were aligned and stripped of non-variant sites with *Geneious Pro* v8.1.3 (Biomatters
- ⁵³¹ ltd.)⁴¹. Resulting alignments of variable sites were 298, 18 and 11 bp long for the
- chromosome, pXO1 and pXO2 respectively. Given the low number of variable sites in
- pXO1 and pXO2, we only performed phylogenetic analyses on the chromosome
- alignment. *jModelTest* v2.1.4⁴² was used for determination of the best nucleotide
- substitution model in a maximum likelihood (ML) framework, resulting in the choice of
 TVMef⁴³.
- 537 ML analysis was performed with *PhyML* v20131022⁴⁴ using a combination of subtree-
- ⁵³⁸ pruning-regrafting (SPR) and nearest-neighbor-interchange (NNI) tree search algorithms.
- 539 Branch support was estimated using non-parametric bootstrapping with 100 pseudo-

replicates. The tree was rooted using the heuristic residual mean squared function in *TempEst v 1.5*⁴⁵, placing the root at the position resulting in the most clock-like structure of the data(Fig. 3).

543 We also performed phylogenetic analyses using the Bayesian Markov Chain Monte Carlo

(BMCMC) sampling approach implemented in *BEAST* v1.8.2⁴⁶ specifying a constant

545 population coalescent tree prior and assuming an uncorrelated lognormal relaxed

⁵⁴⁶ molecular clock⁴⁷ (Supplementary information S7c). The maximum clade credibility tree

derived from this analysis was very similar to the ML tree (Fig. 3).

548 Another data set was assembled to compare *Bcbva* from TNP to other strains from sub-

549 Saharan Africa. It included the chromosomal sequences from a representative TNP

genome, GNF ones, as well as previously published genomes determined from isolates

derived from *Bcbva* cases in CAR and CM^{15,17} (Extended Data Fig. S6). The alignment

was compiled as described above and contained 1,016 variable positions. Model selection

- with *jModelTest* v2.1.4⁴² selected a TPM1⁴⁸ nucleotide substitution model. We performed
- 554 ML analyses as described above.

555 Statistical analyses

To test the effect of season on the probability of a carcass or fly, respectively, being anthrax positive, we used a Generalized Linear Mixed Model (GLMM)⁴⁹ with binomial error structure and logit link function⁵⁰. As predictors we included the species (monkeys, chimps, duikers, others, blow flies), season and their interaction. 'Season' was modelled by first turning the sampling date into a circular variable and including its sine and cosine into the model. As random intercept effects we included trap id (i.e., GPS location) and the combination of sampling date and GPS location, the latter accounting for potential

non-independence of flies sampled on the same day from the same trap. We further
included random slopes of season within trap id ^{51,52}. To test the effect of season we
compared the full model with a null model lacking the fixed effects of season and its
interaction with species⁵³, using a likelihood ratio test⁵⁴. Sample size for this model was
1803 samples (carcasses and flies), collected at 352 locations and 328 combinations of
sampling date and location including necropsy samples and flies.

In a second model we tested whether the probability of a fly to be tested anthrax positive 569 was influenced by season and the amount of mammalian DNA within in the fly. We used 570 a Generalized Linear Mixed Model (GLMM)⁴⁹ with binomial error structure and logit 571 link function⁵⁰. Into this we included the amount of mammalian DNA found within the 572 fly (determined with real time PCR described above) and season as fixed effects. 'Season' 573 we modeled by first turning the sampling date into a circular variable and then including 574 575 it sine and cosine into the model. Since the amount of mammalian DNA within the fly was highly skewed, we log transformed it before fitting the model. As random effects 576 (random intercepts) we included the ID of the trap and the date of sampling. To avoid 577 overconfident estimates we included random slopes of the amount of mammal DNA 578 within trap ID and trapping date 51,52 . As an overall test of the effects of the amount of 579 mammal DNA and season we compared the full model with a null model lacking these 580 effects⁵³ using a likelihood ratio test⁵⁴. We also used likelihood ratio tests to test for the 581 individual predictors (comparing the full model with a respective reduced model lacking 582 the predictor to be tested⁵¹). We fitted the model in R^{55} using the function *glmer* of the R 583 package lme4 (version 1.1-10⁵⁶). To estimate model stability we excluded levels of the 584 585 random effects one at a time which did not indicate influential levels to exist. The total

sample size for this model was a total of 474 flies caught on 43 days in 33 traps.

587 (Extended Data Fig. S4, Table S10, Supplementary information S8b).

To evaluate the reproducibility of fly meal identification for each fly we correlated the 588 proportion of sequence counts per amplicon (two amplicons per fly) that was assigned to 589 different mammalian genera using Spearman correlation. To test whether there were 590 differences in fly meal composition of anthrax positive and anthrax negative flies, we 591 tested whether detection of a given mammal taxon in a fly sample was associated with 592 anthrax positivity. We used GLMMs⁴⁹ applied separately for each mammal genus 593 identified in the flies. The response was whether the fly was anthrax positive and the key 594 595 predictor with fixed effect was mammal presence. We considered a mammal to be present when it was detected in at least one of the two amplicons per fly. We included 596 597 only those mammal genera in the model that were detected in at least five of all generated 598 amplicons (two per fly). In addition to mammal presence, we included tid and the factor sampling date as random effects (random intercepts)^{51,52}. Models were fitted with 599 binomial error structure and logit link function⁵⁰. Sample size for all models was 57 flies, 600 caught in 22 different traps on 13 days. To test whether mammal presence had an impact 601 on anthrax positivity, we dropped mammal presence from the model⁵³ and compared the 602 models using a likelihood ratio test⁵⁴. Model stability was accessed as above. We fitted 603 models at two different taxonomic resolutions: one with taxonomic assignment at genus 604 level and the other at order level. GLMMs were fit in R^{55} using the function *glmer* of the 605 *R* package *lme4* v1.1- 10^{56} . 606

To evaluate geographic distribution of *Bcbva* in TNP we checked whether, due to higher mammal density²³, *Bcbva* was more likely to occur inside the research area. To test this

hypothesis we analyzed 908 flies from 83 different traps (Extended Data Fig. S7, Table
S4, Additional Data Table S1). 21 traps were located within the research area and 62
traps in the adjoining forest belt. 8/21 traps within the research area were anthrax positive
and 8/62 outside the research area. We compared the two groups using Fisher Exact's
Test (Supplementary information S8d).

To learn more about the spatial dynamics of *Bcbva* in TNP, we investigated the 614 correlation between genetic and geographic distances. To correct for genetic and spatial 615 autocorrelation, we excluded strains from the data set that originated from the same fly 616 catching point (in a 1 km² radius) on the same day or from the same followed-up outbreak 617 618 in mammals. Only one strain was kept per outbreak or fly catching point, the selection criterion being high average coverage of the genome (Table S8, Supplementary 619 620 information S8e). Geographic distances (in km) were derived from GPS data using GeographicDistanceMatrixGenerator v1.2.3⁵⁷. Genetic distances were approximated 621 using the relative distances drawn from a Maximum Likelihood Tree built in *PhyML* 622 $v20131022^{44}$ with the *R* package *ape*⁵⁸ using the *cophenetic* function. Multiple regression 623 on distance matrices (MRM) as implemented in the R ecodist package⁵⁹ using 1000 624 permutations and Spearman correlations was performed on genetic and geographic 625 626 distance matrices. To examine variation within genetic lineages, we binned our data by genetic distance (bin size=relative genetic distance of 0.03, approx. 2.5 SNPs) and 627 focused on groups with low genetic distance (max relative genetic distance <0.5) and 628 629 their mean geographic distance (Extended Data Fig. S9). Homogeneity of variance between groups was assured with the Fligner Killeen test (p=0.07; >0.05 as requested). 630

631 To evaluate the impact *Bcbva* could have on the TNP chimpanzee population, we conducted a simulation (Supplementary information S8f). We first defined a series of 632 population parameters for the simulation²⁷. We simulated the survival prospects of 633 chimpanzee communities of a given size, with individuals reproducing at certain regular 634 intervals after maturation, having a maximum age, and an annual survival probability. 635 Since most of these parameters are associated with considerable uncertainty and since we 636 wanted to assess to what extent the simulation results depend on the particular parameters 637 chosen we parameterized the simulations as follows: Initial community size: 20 to 80 638 639 individuals (increment: 10); inter-birth interval: 4 to 7 years (increment: 1); interval after death of infant: 1 year; maximum age: 40 to 50 years (increment: 2); age of first 640 reproduction of males and females: 10 and 14 years, respectively. Since per capita annual 641 survival probability without the influence of anthrax is unknown (mortality cases due to 642 anthrax may not be detected in all cases, in particular before necropsies were made 643 systematically), we simulated per capita annual survival probabilities from 0.93 to 0.99644 (increment: 0.03). In addition, we made survival probability density dependent, as this is 645 a common characteristic observed in many species including chimpanzees⁶⁰. For this we 646 introduced a logistic function $(1/(1+\exp(-(20-0.08*\text{community size})))))$ that increased or 647 reduced mortality rate as a function of chimpanzee community size. At the beginning of 648 each simulation run we generated a community of the simulated size by randomly 649 650 allocating sexes (proportion of females: 0.7) and ages (uniformly distributed between 10 and the simulated maximum age) to individuals. To avoid stochastic effects of the 651 initially generated community, we let the simulation run for 50 time steps (i.e., 'years') 652 653 without anthrax presence before the evaluated time period began.

- 654 We estimated the risk of annual anthrax outbreak probability, its dependence on
- community size and the number of individuals affected as exp (-1.83+0.039*community
- size) from a Poisson regression (null, full model comparison, $\chi^2 = 7.89$, df=1, p <0.01).
- We simulated both an anthrax and a non-anthrax scenarios for 150 time steps (i.e., 'years')
- with 100 replications each and for each possible combination of the simulated
- parameters. Communities were considered to be extinct, when no reproducing femaleswere present.
- All *R* scripts are available upon request. Details on statistical analyses and additional
- results are in Supplementary information S8.

663 Data availability

- Raw reads of 16S amplicons are available in the European Nucleotide Archive (ENA)
- under project accession number PRJEB14554, sample accession numbers ERS1217219-
- 666 336. Raw reads for all 178 *Bcbva* isolates from TNP and GNF are available in the ENA
- under project accession number PRJEB14616, sample accession numbers ERS1222903-
- 668 3080. Variable position alignments are available from the Dryad Digital Repository:
- 669 http://dx.doi.org/10.5061/dryad.v8bn7.

671 Extended data figure legends

Extended Data Fig. S1. Necropsies performed since 1996. Shown is the total amount
of necropsies performed per year in TNP from 1996 to 2015. Grey bars indicate the
number and according proportion of *Bcbva* positive necropsies. In the years 2003 and
2010 only limited veterinary service was available at TNP due to political insecurity in
the region.

678 Extended Data Fig. S2. Geographic location of *Bcbva* positive carcasses in Taï

679 **National Park.** Shown are *Bcbva* positive tested necropsies in TNP since 2001. GPS data

680 was available for 70 of all positive tested (n=81) necropsies.

681

682 Extended Data Fig. S3. Effect of mammalian DNA content on anthrax positivity in

683 **flies.** Shown is the probability of *Bcbva* positivity (PA, pag respectively) as a function

of the amount of mammalian DNA (copies) found in a fly. The amount of mammal DNA

was binned (bin width 0.25) and the area of the points depicts the number of flies (range:

1 to 206) in the respective bins. The dashed line indicates the fitted model and the dotted
lines the 95% confidence interval.

688

Extended Data Fig. S4. Effect of season on anthrax positivity in flies. Shown is the probability of *Bcbva* (PA) positivity over the course of a year (binned in 10 day periods). The area of the points depicts the number of flies in the respective ten days period. The dashed line indicates the fitted model and the dotted lines the 95% confidence interval.

694	Extended Data Fig. S 5. Maximum clade credibility tree based on chromosomal
695	sequences of Bcbva isolates from TNP (Côte d'Ivoire, n=124) and Grebo (Liberia,
696	n=2). One sequence per host hosts (mammals/flies, two divergent isolates for fly 600)
697	was included and the final alignment of variant sites measured 298bp. Size of nodes
698	represents posterior probability values. The location of the root received a posterior
699	probability of 1.
700	
701	Extended Data Fig. S 6. Maximum likelihood tree for sub-Saharan Bcbva strains.
702	ML tree based on chromosomal sequences of Bcbva strains from Côte d'Ivoire,
703	Cameroon, Central African Republic and Liberia. The alignment of variant sites
704	measured 1016bp. Bootstrap values are shown above branches and the scale bar reflects
705	the genome-wide substitution rate. The tree was rooted using TempEst v 1.5.
706	
707	Extended Data Fig. S 7. Fly snapshot sampling scheme. For the fly snapshot flies were
708	caught following a 2x2 km grid system within and outside the research area within 19
709	days. In total 908 snapshot flies were analyzed.
710	
711	Extended Data Fig. S 8. Genetic and geographic distances of <i>Bcbva</i> isolates from the
712	fly snapshot. (A) Maximum Likelihood Tree based on chromosomal sequences of <i>Bcbva</i>
713	isolates from the 19 day fly snapshot. Each dot represents one fly isolate. Colors were
714	chosen to illustrate the distribution of genetically clustering isolates on the map presented
715	in panel B. The final alignment of variant sites measured 123bp. Bootstrap values are

shown above all internal branches. The tree was rooted using the "best-fit" option in

718	isolates collected during the fly snapshot. Colors correspond to ML tree (A). Big circles
719	represent two isolates.
720	
721	Extended Data Fig. S 9. Boxplot of genetic and mean geographic distances. Bcbva
722	isolates from TNP were binned by relative genetic distance (bin size = 0.03 , approx. 2.5
723	SNPs). The two most genetically distant isolates received a value of 1 and all other
724	distances were scaled accordingly. Diamonds indicate the geographic distance means of
725	the groups. To examine variation within genetic lineages, we analyzed isolates with low
726	genetic distance (max relative genetic distance < 0.5 , marked in blue) and their mean
727	geographic distance. For low genomic distances, genetic and mean geographic distances
728	are correlated ($p=4x10-5$, $R2=0.72$).
729	

Path-O-Gen v1.2. The scale bar is in substitution per site. (B) Geographic origin of Bcbva

730 Extended Data Fig. S10. Fly species composition based on GMYC analysis. Fly

r31 species composition for three sites with known Bcbva occurrence: TNP (Côte d'Ivoire)

(A), DJR (Cameroon) (B), DSPA (Central African Republic) (C). Shown are the

733 proportions of flies per site in % belonging to one single fly species identified with

734 GMYC models. Different colors indicate different taxonomic fly families.

735

717

References (28-60)

737	28	Turnbull, P. C. B. (World Health Organization, Department of Communicable
738		Diseases Surveillance and Response, 1998).
739	29	Ellerbrok, H. et al. Rapid and sensitive identification of pathogenic and
740		apathogenic Bacillus anthracis by real-time PCR. FEMS Microbiol Lett 214, 51-
741		59 (2002).
742	30	Klee, S. R. et al. Characterization of Bacillus anthracis-like bacteria isolated from
743		wild great apes from Cote d'Ivoire and Cameroon. J Bacteriol 188, 5333-5344
744		(2006).
745	31	Panning, M. et al. Diagnostic reverse-transcription polymerase chain reaction kit
746		for filoviruses based on the strain collections of all European biosafety level 4
747		laboratories. Journal of Infectious Diseases 196, S199-S204 (2007).
748	32	Leonard, J. A. et al. Animal DNA in PCR reagents plagues ancient DNA
749		research. Journal of Archaeological Science 34, 1361-1366 (2007).
750	33	Gamba, C. et al. Comparing the performance of three ancient DNA extraction
751		methods for high-throughput sequencing. <i>Molecular ecology resources</i> 16 , 459-
752		469, doi:10.1111/1755-0998.12470 (2016).
753	34	Rohland, N. & Hofreiter, M. Ancient DNA extraction from bones and teeth.
754		<i>Nature protocols</i> 2 , 1756-1762, doi:10.1038/nprot.2007.247 (2007).
755	35	Buffalo, V. Scythe: A 3'-end adapter contaminant trimmer [Software]. Available
756		at https://github.com/vsbuffalo/scythe.
757	36	Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based
758		trimming tool for FastQ files [Software]. Available at
759		https://github.com/najoshi/sickle. (2011).
760	37	Li, H. Aligning sequence reads, clone sequences and assembly contigs with
761		BWA-MEM. arXiv preprint arXiv:1303.3997 (2013).
762	38	Auwera, G. A. et al. From FastQ data to high-confidence variant calls: the
763		genome analysis toolkit best practices pipeline. Current Protocols in
764		Bioinformatics, 11.10. 11-11.10. 33 (2013).
765	39	DePristo, M. A. et al. A framework for variation discovery and genotyping using
766		next-generation DNA sequencing data. Nature genetics 43, 491-498 (2011).
767	40	McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for
768		analyzing next-generation DNA sequencing data. Genome Res 20, 1297-1303,
769		doi:10.1101/gr.107524.110 (2010).
770	41	Kearse, M. et al. Geneious Basic: an integrated and extendable desktop software
771		platform for the organization and analysis of sequence data. <i>Bioinformatics</i> 28,
772		1647-1649 (2012).
773	42	Darriba, D., Taboada, G. L., Doallo, R. & Posada, D. jModelTest 2: more models,
774		new heuristics and parallel computing. Nat Methods 9, 772,
775		doi:10.1038/nmeth.2109 (2012).
776	43	Posada, D. Using MODELTEST and PAUP* to select a model of nucleotide
777		substitution. Current protocols in bioinformatics, 6.5. 1-6.5. 14 (2003).
778	44	Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood
779		phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59, 307-321,
780		doi:10.1093/sysbio/syq010 (2010).

781	45	Rambaut, A., Lam, T. T., Max Carvalho, L. & Pybus, O. G. Exploring the
782		temporal structure of heterochronous sequences using TempEst (formerly Path-O-
783		Gen). Virus Evolution 2 (2016).
784	46	Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian
785		phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29, 1969-1973,
786		doi:10.1093/molbev/mss075 (2012).
787	47	Drummond, A. J., Ho, S. Y., Phillips, M. J. & Rambaut, A. Relaxed phylogenetics
788		and dating with confidence. <i>PLoS biology</i> 4 , e88,
789		doi:10.1371/journal.pbio.0040088 (2006).
790	48	Kimura, M. Estimation of evolutionary distances between homologous nucleotide
791		sequences. Proceedings of the National Academy of Sciences 78, 454-458 (1981).
792	49	Baayen, R. H. Analyzing linguistic data: A practical introduction to statistics
793		using R. (Cambridge University Press, 2008).
794	50	McCullagh, P. & Nelder, J. A. Generalized linear models. Vol. 37 (CRC press,
795		1989).
796	51	Barr, D. J., Levy, R., Scheepers, C. & Tily, H. J. Random effects structure for
797		confirmatory hypothesis testing: Keep it maximal. J Mem Lang 68,
798		doi:10.1016/j.jml.2012.11.001 (2013).
799	52	Schielzeth, H. & Forstmeier, W. Conclusions beyond support: overconfident
800		estimates in mixed models. Behavioral Ecology 20, 416-420 (2009).
801	53	Forstmeier, W. & Schielzeth, H. Cryptic multiple hypotheses testing in linear
802		models: overestimated effect sizes and the winner's curse. Behavioral Ecology
803		and Sociobiology 65, 47-55 (2011).
804	54	Dobson, A. J. & Barnett, A. An introduction to generalized linear models. (CRC
805		press, 2008).
806	55	Team, R. C. R: A language and environment for statistical computing., (R
807		Foundation for Statistical Computing, Vienna, Austria, 2015).
808	56	Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects
809		models using lme4. Journal of Statistical Software 67, 1-48 (2014).
810	57	Ersts, P. Geographic distance matrix generator (version 1.2. 3). American
811		Museum of Natural History. Available at
812		http://biodiversityinformatics.amnh.org/open_source/gdmg. Center for
813		Biodiversity and Conservation (2011).
814	58	Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and
815		Evolution in R language. Bioinformatics 20, 289-290 (2004).
816	59	Goslee, S. C. & Urban, D. L. The ecodist package for dissimilarity-based analysis
817		of ecological data. Journal of Statistical Software 22, 1-19 (2007).
818	60	Kuehl, H., Elzner, C., Möbius, Y., Boesch, C. & Walsh, P. D. The price of play:
819		Self-organized infant mortality cycles in chimpanzees. PLoS One 3,
820		doi:10.1371/journal.pone.0002440 (2008).
821		