323 research outputs found

    Zinc Center as Redox Switch—New Function for an Old Motif

    Full text link
    Oxidative stress affects a wide variety of different cellular processes. Now, an increasing number of proteins have been identified that use the presence of reactive oxygen species or alterations in the cellular thiol–disulfide state as regulators of their protein function. This review focuses on two members of this growing group of redox-regulated proteins that utilize a cysteine-containing zinc center as the redox switch: Hsp33, the first molecular chaperone, whose ability to protect cells against stress-induced protein unfolding depends on the presence of reactive oxygen species and RsrA, the first anti-sigma factor that uses a cysteine-containing zinc center to sense and respond to cellular disulfide stress.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/63205/1/ars.2006.8.835.pd

    Redox-regulated molecular chaperones

    Full text link
    The conserved heat shock protein Hsp33 functions as a potent molecular chaperone with a highly sophisticated regulation. On transcriptional level, the Hsp33 gene is under heat shock control; on posttranslational level, the Hsp33 protein is under oxidative stress control. This dual regulation appears to reflect the close but rather neglected connection between heat shock and oxidative stress. The redox sensor in Hsp33 is a cysteine center that coordinates zinc under reducing, inactivating conditions and that forms two intramolecular disulfide bonds under oxidizing, activating conditions. Hsp33's redox-regulated chaperone activity appears to specifically protect proteins and cells from the otherwise deleterious effects of reactive oxygen species. That redox regulation of chaperone activity is not restricted to Hsp33 became evident when the chaperone activity of protein disulfide isomerase was recently also shown to cycle between a low- and high-affinity substrate binding state, depending on the redox state of its cysteines.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41834/1/20591624.pd

    Diverse soil carbon dynamics expressed at the molecular level

    Get PDF
    The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change

    Outbreak of Cutaneous Leishmaniasis in Peruvian Military Personnel Undertaking Training Activities in the Amazon Basin, 2010

    Get PDF
    ArticleMilitary personnel deployed to the Amazon Basin are at high risk for cutaneous leishmaniasis (CL). We responded to an outbreak among Peruvian Army personnel returning from short-term training in the Amazon, conducting active case detection, lesion sample collection, and risk factor assessment. The attack rate was 25% (76/303); the incubation period was 2–36 weeks (median = 8). Most cases had one lesion (66%), primarily ulcerative (49%), and in the legs (57%). Real-time polymerase chain reaction (PCR) identified Leishmania (Viannia) braziliensis (59/61 = 97%) and L. (V.) guyanensis (2/61 = 3%). Being male (risk ratio [RR] = 4.01; P = 0.034), not wearing long-sleeve clothes (RR = 1.71; P = 0.005), and sleeping in open rooms (RR = 1.80; P = 0.009) were associated with CL. Sodium stibogluconate therapy had a 41% cure rate, less than previously reported in Peru (70%; P < 0.001). After emphasizing pre-deployment education and other basic prevention measures, trainees in the following year had lower incidence (1/278 = 0.4%; P < 0.001). Basic prevention can reduce CL risk in deployed militaries.The outbreak response was supported by the Peruvian Army Health Command COSALE and the Peruvian Ministry of Health through the General Epidemiology Directorate and the Health Directorate II, south Lima, and the. In addition, partial support was provided by grants CO497_11_L1 and CO466_11_L1 of the Global Emerging Infections Surveillance and Response System (AFHSC/GEIS) of the U.S. Department of Defense and the training grant 2D43 TW007393 awarded to the U.S. Naval Medical Research Unit No. 6 (NAMRU-6) by the Fogarty International Center of the National Institutes of Health (FIC/NIH). This study is part of the dissertation of Marianela Ore for a Masters in Epidemiological Research offered jointly by the Universidad Peruana Cayetano Heredia (UPCH) and NAMRU-6

    Failure of Supervised Chloroquine and Primaquine Regimen for the Treatment of Plasmodium vivax in the Peruvian Amazon

    Get PDF
    The widespread use of primaquine (PQ) and chloroquine (CQ), together, may be responsible for the relatively few, isolated cases of chloroquine-resistant P. vivax (CQRPV) that have been reported from South America. We report here a case of P. vivax from the Amazon Basin of Peru that recurred against normally therapeutic blood levels of CQ. Four out of 540 patients treated with combination CQ and PQ had a symptomatic recurrence of P. vivax parasitemia within 35 days of treatment initiation, possibly indicating CQ failure. Whole blood total CQ level for one of these four subjects was 95 ng/ml on the day of recurrence. Based on published criteria that delineate CQRPV as a P. vivax parasitemia, either recrudescence or relapse, that appears against CQ blood levels >100 ng/mL, we document the occurrence of a P. vivax strain in Peru that had unusually high tolerance to the synergistic combination therapy of CQ + PQ that normally works quite well

    Improved X-ray detection and particle identification with avalanche photodiodes

    Full text link
    Avalanche photodiodes are commonly used as detectors for low energy x-rays. In this work we report on a fitting technique used to account for different detector responses resulting from photo absorption in the various APD layers. The use of this technique results in an improvement of the energy resolution at 8.2 keV by up to a factor of 2, and corrects the timing information by up to 25 ns to account for space dependent electron drift time. In addition, this waveform analysis is used for particle identification, e.g. to distinguish between x-rays and MeV electrons in our experiment.Comment: 6 pages, 6 figure

    Training of Instrumentalists and Development of New Technologies on SOFIA

    Full text link
    This white paper is submitted to the Astronomy and Astrophysics 2010 Decadal Survey (Astro2010)1 Committee on the State of the Profession to emphasize the potential of the Stratospheric Observatory for Infrared Astronomy (SOFIA) to contribute to the training of instrumentalists and observers, and to related technology developments. This potential goes beyond the primary mission of SOFIA, which is to carry out unique, high priority astronomical research. SOFIA is a Boeing 747SP aircraft with a 2.5 meter telescope. It will enable astronomical observations anywhere, any time, and at most wavelengths between 0.3 microns and 1.6 mm not accessible from ground-based observatories. These attributes, accruing from the mobility and flight altitude of SOFIA, guarantee a wealth of scientific return. Its instrument teams (nine in the first generation) and guest investigators will do suborbital astronomy in a shirt-sleeve environment. The project will invest $10M per year in science instrument development over a lifetime of 20 years. This, frequent flight opportunities, and operation that enables rapid changes of science instruments and hands-on in-flight access to the instruments, assure a unique and extensive potential - both for training young instrumentalists and for encouraging and deploying nascent technologies. Novel instruments covering optical, infrared, and submillimeter bands can be developed for and tested on SOFIA by their developers (including apprentices) for their own observations and for those of guest observers, to validate technologies and maximize observational effectiveness.Comment: 10 pages, no figures, White Paper for Astro 2010 Survey Committee on State of the Professio

    In situ, real-time visualization of electrochemistry using magnetic resonance imaging

    Get PDF
    The drive to develop better electrochemical energy storage devices requires the development of not only new materials, but also better understanding of the underpinning chemical and dynamical processes within such devices during operation, for which new analytical techniques are required. Currently, there are few techniques that can probe local composition and transport in the electrolyte during battery operation. In this paper, we report a novel application of magnetic resonance imaging (MRI) for probing electrochemical processes in a model electrochemical cell. Using MRI, the transport and zinc and oxygen electrochemistry in an alkaline electrolyte, typical of that found in zinc-air batteries, are investigated. Magnetic resonance relaxation maps of the electrolyte are used to visualize the chemical composition and electrochemical processes occurring during discharge in this model metal-air battery. Such experiments will be useful in the development of new energy storage/conversion devices, as well as other electrochemical technologies

    Superconductivity in Ce- and U-based "122" heavy-fermion compounds

    Full text link
    This review discusses the heavy-fermion superconductivity in Ce- and U-based compounds crystallizing in the body-centered tetragonal ThCr2Si2 structure. Special attention will be paid to the theoretical background of these systems which are located close to a magnetic instability.Comment: 12 pages, 9 figures. Invited topical review (special issue on "Recent Developments in Superconductivity") Metadata and references update

    The size of the proton and the deuteron

    Get PDF
    We have recently measured the 2S1/2⁼¹ − 2P3/2 ⁼ ² energy splitting in the muonic hydrogen atom μp to be 49881.88 (76) GHz. Using recent QED calculations of the fine-, hyperfine, QED and finite size contributions we obtain a root-mean-square proton charge radius of rp = 0.84184 (67) fm. This value is ten times more precise, but 5 standard deviations smaller, than the 2006 CODATA value of rp = 0.8768 (69) fm. The source of this discrepancy is unknown. Using the precise measurements of the 1S-2S transition in regular hydrogen and deuterium and our value of rp we obtain improved values of the Rydberg constant, R∞ = 10973731.568160 (16) m⁻¹and the rms charge radius of the deuteron rd = 2.12809 (31) fm
    corecore