77 research outputs found

    Exercise-induced fatigue in young people: advances and future perspectives

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.PURPOSE: In recent decades, the interest for exercise-induced fatigue in youth has substantially increased, and the effects of growth on the peripheral (muscular) and central (neural) mechanisms underpinning differences in neuromuscular fatigue between healthy children and adults have been described more extensively. The purpose of this review is to retrieve, report, and analyse the findings of studies comparing neuromuscular fatigue between children and adults. Objective measures of the evaluation of the physiological mechanisms are discussed. METHOD: Major databases (PubMed, Ovid, Scopus and Web of Science) were systematically searched and limited to English language from inception to September 2017. RESULT: Collectively, the analyzed studies indicate that children experience less muscular and potentially more neural fatigue than adults. However, there are still many unknown aspects of fatigue regarding neural (supraspinal and spinal) and peripheral mechanisms that should be more thoroughly examined in children. CONCLUSION: Suitable methods, such as transcranial magnetic stimulation, transcranial electrical stimulation, functional magnetic resonance imaging, near-infrared spectroscopy, tendon vibration, H-reflex, and ultrasound are recommended in the research field of fatigue in youth. By designing studies that test the fatigue effects in movements that replicate daily activities, new knowledge will be acquired. The linkage and interaction between physiological, cognitive, and psychological aspects of human performance remain to be resolved in young people. This can only be successful if research is based on a foundation of basic research focused on the mechanisms of fatigue while measuring all three above aspects

    Swaying to the complex motion of a visual target affects postural sway variability

    Get PDF
    Background Voluntary shifting body weight in the anteroposterior direction is an important element of daily life activities, such as rising from a chair or initiating a step. In order to accommodate the daily-life challenges of such tasks, voluntary postural sway needs to be flexible and variable. Research question In this study we asked how whole-body tracking of a complex visual target motion with the concurrent provision of feedback modulates the variability of voluntary sway. Methods Twenty young adults (age: 27.10 ± 9.15years, height: 170.73 ± 9.40 cm, mass: 62.84 ± 11.48 kg) performed 132 cycles of voluntary antero-posterior sway, on a force platform, under two conditions: a) self-paced sway and b) swaying while tracking the complex motion of a visual target. Magnitude and temporal structure of variability of postural sway were investigated with the Coefficient of Variance (CoV) and the fractal exponent α, respectively. This analysis was performed for sway cycle duration, amplitude and velocity. The cross-correlation function between the target and sway cycle parameters was computed as a measure of visuo-postural coupling. Results The CoV of sway cycle amplitude, duration and velocity increased during active tracking of the complex target. Fractal exponent α increased for sway cycle amplitude but decreased for cycle duration and remained unchanged for sway velocity. The cross-correlation function revealed a consistent peak at lag+1 indicating an asynchrony between the target and sway cycle duration, while the peak cross-correlation for cycle amplitude was noted at lag 0. Significance Swaying to the complex motion of a visual target improves the variability of sway cycle amplitude, at the cost of cycle duration. This is associated with a more synchronous spatial than temporal coupling to the visual target motion. This knowledge could inform the design of postural tracking paradigms as appropriate exercise interventions, for improving voluntary sway in populations with reduced limits of stability (i.e. older adults)

    Age induced modifications in the persistency of voluntary sway when actively tracking the complex motion of a visual target

    Get PDF
    Movement persistency, reflected in systematic cycle to cycle fluctuations of a rhythmical task such as walking or voluntary sway, is compromised with increasing age, making older adults more susceptible to falls. In the present study, we tested whether it is possible to improve rhythmic voluntary sway persistency in old age by actively tracking the complex (i.e. persistent) motion of a visual target. Twenty healthy young and 20 older adults performed 132 cycles of anterior-posterior sway under two conditions: a) self-paced sway and b) sway while tracking the vertical motion of a complex visual target. The persistency of sway cycle amplitude and duration, detected from the center of pressure displacement, was quantified using the Fractal exponent α. We also recorded body kinematics in order to assess the intersegmental coordination that was quantified in the Mean Absolute Relative Phase (MARP) and the Deviation Phase (DPh) between the trunk and the lower limbs. In self-paced sway, older adults showed a lower persistency of cycle duration and a higher MARP and DPh between the trunk and the lower limbs compared to young adults. Tracking the complex visual target motion increased the persistency of cycle amplitude, in young but not in older adults, when compared to the self-paced sway while it decreased the persistency of cycle duration in both groups. The relative phase measures showed a moderate to strong relationship with the persistency of cycle amplitude and duration when older adults swayed in their self-pace. These findings suggest older adults cannot exploit active tracking of the complex visual motion cue to improve voluntary sway persistency. This could be related to the less stable and out of phase intersegmental coordination characterizing rhythmic voluntary sway in old age

    Normative EMG activation patterns of school-age children during gait

    Get PDF
    Gait analysis is widely used in clinics to study walking abnormalities for surgery planning, definition of rehabilitation protocols, and objective evaluation of clinical outcomes. Surface electromyography allows the study of muscle activity non-invasively and the evaluation of the timing of muscle activation during movement. The aim of this study was to present a normative dataset of muscle activation patterns obtained from a large number of strides in a population of 100 healthy children aged 6-11 years. The activity of Tibialis Anterior, Lateral head of Gastrocnemius, Vastus Medialis, Rectus Femoris and Lateral Hamstrings on both lower limbs was analyzed during a 2.5-min walk at free speed. More than 120 consecutive strides were analyzed for each child, resulting in approximately 28,000 strides. Onset and offset instants were reported for each observed muscle. The analysis of a high number of strides for each participant allowed us to obtain the most recurrent patterns of activation during gait, demonstrating that a subject uses a specific muscle with different activation modalities even in the same walk. The knowledge of the various activation patterns and of their statistics will be of help in clinical gait analysis and will serve as reference in the design of future gait studie

    The influence of inspiratory muscle work history and specific inspiratory muscle training upon human limb muscle fatigue

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund and is available from the specified link - Copyright @ 2006 The Authors.The purpose of this study was to assess the influence of the work history of the inspiratory muscles upon the fatigue characteristics of the plantar flexors (PF). We hypothesized that under conditions where the inspiratory muscle metaboreflex has been elicited, PF fatigue would be hastened due to peripheral vasoconstriction. Eight volunteers undertook seven test conditions, two of which followed 4 week of inspiratory muscle training (IMT). The inspiratory metaboreflex was induced by inspiring against a calibrated flow resistor. We measured torque and EMG during isometric PF exercise at 85% of maximal voluntary contraction (MVC) torque. Supramaximal twitches were superimposed upon MVC efforts at 1 min intervals (MVCTI); twitch interpolation assessed the level of central activation. PF was terminated (T-lim) when MVCTI was < 50% of baseline MVC. PF T-lim was significantly shorter than control (9.93 +/- 1.95 min) in the presence of a leg cuff inflated to 140 mmHg (4.89 +/- 1.78 min; P = 0.006), as well as when PF was preceded immediately by fatiguing inspiratory muscle work (6.28 +/- 2.24 min; P = 0.009). Resting the inspiratory muscles for 30 min restored the PF T-lim to control. After 4 weeks, IMT, inspiratory muscle work at the same absolute intensity did not influence PF T-lim, but T-lim was significantly shorter at the same relative intensity. The data are the first to provide evidence that the inspiratory muscle metaboreflex accelerates the rate of calf fatigue during PF, and that IMT attenuates this effect

    Altered drop jump landing biomechanics following eccentric exercise-induced muscle damage

    Get PDF
    © 2021 The Authors. Published by MDPI. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.3390/sports9020024Limited research exists in the literature regarding the biomechanics of the jump-landing sequence in individuals that experience symptoms of muscle damage. The present study investigated the effects of knee localized muscle damage on sagittal plane landing biomechanics during drop vertical jump (DVJ). Thirteen regional level athletes performed five sets of 15 maximal eccentric voluntary contractions of the knee extensors of both legs at 60◦/s. Pelvic and lower body kinematics and kinetics were measured preand 48 h post-eccentric exercise. The examination of muscle damage indicators included isometric torque, muscle soreness, and serum creatine kinase (CK) activity. The results revealed that all indicators changed significantly following eccentric exercise (p< 0.05). Peak knee and hip joint flexion as well as peak anterior pelvic tilt significantly increased, whereas vertical ground reaction force (GRF), internal knee extension moment, and knee joint stiffness significantly decreased during landing (p< 0.05). Therefore, the participants displayed a softer landing pattern following knee-localized eccentric exercise while being in a muscle-damaged state. This observation provides new insights on how the DVJ landing kinematics and kinetics alter to compensate the impaired function of the knee extensors following exercise-induced muscle damage (EIMD) and residual muscle soreness 48 h post-exercise.This research was supported by the postdoctoral scholarship program implemented by University of Thessaly (Greece) and funded by the Stavros Niarchos Foundation, grant number 5394.02.02Published versio

    The transcription factor BCL11A defines distinct subsets of midbrain dopaminergic neurons.

    Get PDF
    Midbrain dopaminergic (mDA) neurons are diverse in their projection targets, effect on behavior, and susceptibility to neurodegeneration. Little is known about the molecular mechanisms establishing this diversity during development. We show that the transcription factor BCL11A is expressed in a subset of mDA neurons in the developing and adult murine brain and in a subpopulation of pluripotent-stem-cell-derived human mDA neurons. By combining intersectional labeling and viral-mediated tracing, we demonstrate that Bcl11a-expressing mDA neurons form a highly specific subcircuit within the murine dopaminergic system. In the substantia nigra, the Bcl11a-expressing mDA subset is particularly vulnerable to neurodegeneration upon α-synuclein overexpression or oxidative stress. Inactivation of Bcl11a in murine mDA neurons increases this susceptibility further, alters the distribution of mDA neurons, and results in deficits in skilled motor behavior. In summary, BCL11A defines mDA subpopulations with highly distinctive characteristics and is required for establishing and maintaining their normal physiology

    Effectiveness of physical therapy interventions for children with cerebral palsy: A systematic review

    Get PDF
    Background To assess the effectiveness of physical therapy (PT) interventions on functioning in children with cerebral palsy (CP). Methods A search was made in Medline, Cinahl, PEDro and the Cochrane library for the period 1990 to February 2007. Only randomized controlled trials (RCTs) on PT interventions in children with diagnosed CP were included. Two reviewers independently assessed the methodological quality and extracted the data. The outcomes measured in the trials were classified using the International Classification of Functioning, Disability and Health (ICF). Results Twenty-two trials were identified. Eight intervention categories were distinguished. Four trials were of high methodological quality. Moderate evidence of effectiveness was established for two intervention categories: effectiveness of upper extremity treatments on attained goals and active supination, and of prehensile hand treatment and neurodevelopmental therapy (NDT) or NDT twice a week on developmental status, and of constraint-induced therapy on amount and quality of hand use. Moderate evidence of ineffectiveness was found of strength training on walking speed and stride length. Conflicting evidence was found for strength training on gross motor function. For the other intervention categories the evidence was limited due to low methodological quality and the statistically insignificant results of the studies. Conclusion Due to limitations in methodological quality and variations in population, interventions and outcomes, mostly limited evidence on the effectiveness of most PT interventions is available through RCTs. Moderate evidence was found for some effectiveness of upper extremity training. Well-designed trials are needed especially for focused PT interventions.BioMed Central Open acces

    Lower limb strength training in children with cerebral palsy – a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP.</p> <p>Methods/Results</p> <p>Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events.</p> <p>Conclusion</p> <p>Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive.</p> <p>Trial Registration</p> <p>Trial Register NTR1403</p
    corecore