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I should have caught this earlier: Would you please develop a figure, in color, to 

accompany section 2. Conceptual framework of fatigue?  This would help the reader 

visual key relationships, inputs and outputs in the fatigue process. 

As suggested, we added a figure in color to accompany section 2 (please see figure 1 in 

file attached). This is now specified lines 148 and 186 in the manuscript. Furthermore, we 

added a legend to this figure page 36 as follows: 

 

“Figure 1. Schematic framework of fatigue with the possible sites and mechanisms that 

may contribute to it.” 
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Abstract 34 

Purpose: In recent decades, the interest for exercise-induced fatigue in youth has 35 

substantially increased, and the effects of growth on the peripheral (muscular) and 36 

central (neural) mechanisms underpinning differences in neuromuscular fatigue 37 

between healthy children and adults have been described more extensively. The purpose 38 

of this review is to retrieve, report and analyse the findings of studies comparing 39 

neuromuscular fatigue between children and adults. Objective measures of the 40 

evaluation of the physiological mechanisms are discussed. Method: Major databases 41 

(PubMed, Ovid, Scopus and Web of Science) were systematically searched and limited 42 

to English language from inception to September 2017. Result: Collectively, the 43 

analysed studies indicate that children experience less muscular and potentially more 44 

neural fatigue than adults. However, there are still many unknown aspects of fatigue 45 

regarding neural (supra-spinal and spinal) and peripheral mechanisms that should be 46 

more thoroughly examined in children. Conclusion: Suitable methods, such as 47 

transcranial magnetic stimulation, transcranial electrical stimulation, functional 48 

magnetic resonance imaging, near-infrared spectroscopy, tendon vibration, H-reflex, 49 

and ultrasound are recommended in the research field of fatigue in youth. By designing 50 

studies that test the fatigue effects in movements that replicate daily activities, new 51 

knowledge will be acquired. The linkage and interaction between physiological, 52 

cognitive, and psychological aspects of human performance remains to be resolved in 53 

young people. This can only be successful if research is based on a foundation of basic 54 

research focused on the mechanisms of fatigue, whilst measuring all three above 55 

aspects. 56 

 57 
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Abbreviations 59 

 60 
CNS: central nervous system 61 

 62 

E-C: excitation-contraction 63 

 64 

MRI: magnetic resonance imaging 65 

 66 

MTU: muscle-tendon unit 67 

 68 
MVC: maximum voluntary contraction 69 

 70 

NIRS: near infrared spectroscopy 71 

 72 

PCr: phosphocreatine 73 

 74 

PICs: persistent inward currents 75 

 76 
sEMG: surface electromyography 77 

 78 

TMS: transcranial magnetic stimulation 79 

 80 

VA: voluntary activation  81 
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1. Introduction 82 

Compared to adult studies of fatigue, there is much less known about fatigue in children 83 

and adolescents. Whilst the consequences of fatigue are just as important to understand 84 

in children and adolescents as for adults, the necessity to require youngsters to exercise 85 

until exhaustion, presents some ethical dilemmas that, no doubt, have limited its 86 

investigation (Williams and Ratel 2009). However, in the last 20 years fatigue, induced 87 

mainly by exercise related studies, has received more attention in children (Ratel et al. 88 

2002a; De Ste Croix et al. 2009; Gorianovas et al. 2013; Hatzikotoulas et al. 2014; 89 

Murphy et al. 2014). A significant reason for this interest is the translation of results 90 

into children’s and adolescents’ high-level sports participation. Today’s youth are 91 

experiencing training regimens that are considered as highly demanding as those of 92 

adult athletes. In some sports, such as female gymnastics, youth athletes excel and reach 93 

world standards, often commencing this specialized training early in the first decade of 94 

life. However, most fatigue-related studies are still experimental laboratory based and 95 

fatigue assessment in sports tend to be observational by design and usually related to 96 

injury prevention. Therefore, knowledge of the demands of exercise and its ensuing 97 

fatigue is fundamentally important for coaches and practitioners in paediatric research, 98 

but research design and measurement outcomes need to demonstrate better external 99 

validity to youth sports performance. More encouragingly, research studies in assessing 100 

fatigue in a clinical setting have been more valid to the functional setting of the young 101 

patient. 102 

In a recent review, Ratel and Blazevich (2017) analysed the effects of growth and 103 

maturation on energy metabolism during exercise and showed how differences between 104 

prepubertal children and untrained adults could be analogous to those observed between 105 
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 6 

well-trained endurance adult athletes and untrained adults. However, while some 106 

aspects of fatigue were discussed between children and adults, those concerning the 107 

neuromuscular features, were not referenced. Since the latest reviews regarding muscle 108 

fatigue in children were published more than a decade ago (Falk and Dotan 2006; Ratel 109 

et al. 2006a) and this topic has gained the interest of researchers over the last years, the 110 

main objective of this review is to provide a synthesis of the literature, as related to the 111 

exercising child and adolescent and the consequences of fatigue, with a particularly 112 

emphasis on neuromuscular research and the approaches/methods currently used. The 113 

following databases were systematically searched, and limited to English language: 114 

PubMed, Ovid, Scopus and Web of Science from inception to September, 2017. To 115 

retrieve papers that compared neuromuscular fatigue between children and adults, the 116 

following search terms and Medical Subject Headings (MeSH) were used to source 117 

pertinent peer-reviewed literature: muscle fatigue (MeSH) OR children (All Fields), 118 

adolescent (All Fields) AND exercise (MeSH) OR exercise (All Fields).  119 

The following count of papers were found in the respective databases with the keywords 120 

shown in square brackets (date of retrieval: 27th September 2017): 121 

 Pubmed: 82 [muscle fatigue AND child AND exercise[MeSH]] 122 

 Scopus: 139 [“muscle fatigue” AND child AND exercise] 123 

 Web of Science: 171 [muscle fatigue AND child AND exercise] 124 

 Ovid: 60 [muscle fatigue AND child AND exercise] 125 

The search was supplemented by manually cross-matching reference lists, key author 126 

searches, and citation searching of all retrieved papers to potentially identify additional 127 

studies. Grey literature including monographs was searched also through databases, 128 

cross referencing in conference proceedings and personal communications. 129 
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2. Conceptual framework of fatigue 130 

2.1. Definition 131 

There are as many definitions for fatigue as there are theories for its causality. The lack 132 

of a consistent and agreed upon definition has led to a divisive field of study (Enoka and 133 

Duchateau 2016). A part of this inconsistency reflects the relative ease at which the 134 

diminution of muscle force can be measured compared to the assessment of the 135 

sensation of fatigue. This dichotomy proposed by Mosso (1904) who stated it is easier 136 

to measure the physical but not the ‘psychic’ reflects much of the mechanistic 137 

physiological type literature focused on rate limiting processes, central or peripheral, 138 

and less on regulation of sensations. A commonly accepted definition of fatigue is by 139 

Gandevia (2001) who defined it as ‘any exercise-induced reduction in the ability of a 140 

muscle to generate force or power; it has peripheral and central causes’. The 141 

operationalisation of fatigue as a reduction in force or power is easy to measure, 142 

however it is limited in respect to acknowledging changes in sensation associated with 143 

fatigue. Enoka and Duchateau (2016) have recently proposed combining these two 144 

concepts and further unifying the nomenclature of Kluger (2013), related to 145 

performance fatigability and perceived fatigability so as to define fatigue as “a disabling 146 

symptom in which physical and cognitive function is limited by interactions between 147 

performance fatigability and perceived fatigability” (p. 2230) (Figure 1). Whether 148 

‘disabling’ is the correct term to adopt, as it might imply a negative consequence of the 149 

fatigue rather than as a protective consequence, remains to be seen. 150 

 151 
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2.2. Topography 152 

As outlined earlier operationalising fatigue in the context of a reduction in muscle force 153 

or power simplifies the identification of the fatigue, if not the mechanism. Furthermore, 154 

a distinction is made between the muscle fatigue and the completion of the task 155 

protocol. In this context, muscle fatigue represents the decrease in maximal power or 156 

force production and develops soon after, depending on the nature of the physical task. 157 

But the fatigue does not represent the point of the task failure or when exhaustion 158 

occurs. That is to say, fatigue can be investigated as a process that apparently will lead 159 

to task failure. For example, during a submaximal isometric contraction the task of 160 

keeping a target force constant may be successful whereas fatigue, captured by 161 

increased values of EMG, may also develop in the background. To distinguish between 162 

the fatigue and task failure, the use of brief maximal muscle contractions (either 163 

voluntary or electrically evoked), which interrupts a fatiguing protocol and measures the 164 

decline in the MVC score, thus quantifying muscle fatigue (Merton 1954; Bigland-165 

Ritchie et al. 1986). Equally valid, is the procedure whereby the decline in maximal 166 

power or force is measured after a fatiguing protocol (Taylor et al. 1996; McNeil et al. 167 

2006). However, the faster recovery observed in children (see below section 3), should 168 

be taken into account as a differentiating factor when intermittent fatigue protocols are 169 

used for the evaluation of the MVC between the fatiguing contractions. 170 

Potential factors involved in fatigue development have been typically classified into two 171 

categories: central factors involving the central nervous system (CNS) and neural 172 

pathways (Enoka 1995), and peripheral factors occurring within the muscle itself 173 

(Westerblad et al. 1991; Fitts 1994). Enoka and Duchateau (2016) propose that the 174 

adjectives central and peripheral be removed given that multi-processes are likely 175 
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 9 

involved and the decline in power or force is task dependent (Asmussen 1979; Enoka 176 

and Stuart 1992). Whether this call to eliminate the description of fatigue as central or 177 

peripheral per se is adopted, remains to be shown. For the purpose of this review we 178 

will continue, to be consistent with previous literature, to refer to fatigue as centrally 179 

and peripherally orientated. 180 

 181 

2.3. Mechanisms 182 

As discussed above and putting to one side the issue of performance fatigability and 183 

perceived fatigability, the factors that contribute to fatigue have been typically classified 184 

into two categories: central factors involving the CNS and neural pathways and 185 

peripheral factors occurring within the muscle milieu (Figure 1). Among the peripheral 186 

factors, a major mechanism leading to the development of fatigue, for example, during 187 

high-intensity exercise would be the failure in muscle contractility and excitation-188 

contraction (E-C) coupling. This could be associated with an impairment of 189 

myofilament function, sarcolemmal excitability and/or calcium release from 190 

sarcoplasmic reticulum (Allen et al. 2008). However, there is little information 191 

regarding muscle activation during fatiguing tasks for young people, where surface 192 

electromyography (sEMG) and evoked twitch techniques have been used. The 193 

inferences from fatigue involving the CNS mechanisms, including the changes in the 194 

motor cortex and spinal excitability require methods that are more difficult to apply in 195 

healthy individuals due to ethical concerns i.e., transcranial magnetic stimulation, 196 

neurotransmitters derived from blood, and have been studied less in young people. 197 

 198 
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3. Current knowledge about neuromuscular fatigue in children 199 

Until now, it has been widely demonstrated that prepubertal children fatigue less than 200 

adults when performing whole-body dynamic activities, such as maximal cycling (Ratel 201 

et al. 2002a, b, 2004) and short running bouts (Ratel et al. 2004, 2006b), resistance 202 

exercise (Faigenbaum et al. 2008), or MVCs under isometric (Halin et al. 2003; 203 

Armatas et al. 2010; Hatzikotoulas et al. 2014; Ratel et al. 2015) and isokinetic 204 

contraction conditions (Zafeiridis et al. 2005; Paraschos et al. 2007; De Ste Croix et al. 205 

2009; Dipla et al. 2009). However, prepubertal children seem to fatigue similarly to 206 

young adults during sustained isometric contractions at similar relative submaximal 207 

intensities (Hatzikotoulas et al. 2009; Patikas et al. 2013). Comparatively, women are 208 

more resistant to fatigue than men particularly at similar relative submaximal 209 

contraction intensities (Hunter et al. 2004), whereas prepubertal girls seem to fatigue at 210 

the same rate than their prepubertal male counterparts regardless of the nature of 211 

exercise (Streckis et al. 2007; De Ste Croix et al. 2009; Dipla et al. 2009). 212 

 213 

3.1. Whole-body dynamic activities 214 

3.1.1. Cycling 215 

The first study that investigated muscle fatigue in children was published by Hebestreit 216 

et al. (1993). In their seminal study, boys (9–12 years) and young men (19–23 years) 217 

had to complete two consecutive 30-s maximal intensity cycle sprints separated by a 1, 218 

2, and 10 min recovery. It was found that boys’ mean power reached 89.9% of the first 219 

sprint value after 1 min recovery, 96.4% after 2 min recovery, and 103.5% after 10 min 220 

recovery. For the men, the values were 71.2%, 77.1%, and 94.0%, respectively. The 221 

authors concluded that boys recovered faster than men from the sprint cycling exercise. 222 
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Similar conclusions were drawn by other researchers when investigating the effects of 223 

age and recovery duration on cycling peak power during repeated sprints (Ratel et al. 224 

2002a). Eleven prepubertal (mean ± SD; 9.6 ± 0.7 years) and nine pubertal boys (15.0 ± 225 

0.7 years) and 10 men (20.4 ± 0.8 years) completed ten 10 s cycling sprints separated by 226 

30 s, 1 min, or 5 min of passive recovery. For the prepubertal boys whatever recovery 227 

duration was chosen, peak power remained unchanged during the 10 s sprints. In the 228 

pubertal boys, peak power decreased significantly by 20% during the 30 s recovery, by 229 

15% during the 1 min recovery, and was unchanged by the 5 min recovery. For the men, 230 

peak power significantly decreased by 29%, 11%, and decreased slightly but non-231 

significantly during the 30 s, 1 min, and 5 min recovery periods, respectively. 232 

 233 

3.1.2. Running 234 

In contrast to cycling and under laboratory conditions, Ratel et al. (2006b) compared the 235 

effects of ten consecutive 10-s sprints on a non-motorized treadmill separated by 15 s 236 

and 180 s passive recovery between 11.7 year-old boys and 22.1 year-old men. Results 237 

showed that boys decreased their power or force outputs and running velocity much less 238 

than men during the ten repeated sprints with 15 s recovery intervals (power: -28.9 vs. -239 

47.0%; force: -13.1 vs. -25.6%; velocity: -18.8 vs. -29.4%, respectively). With 180 s 240 

recovery, boys could maintain running performance over the 10 s sprints whereas the 241 

men decreased their power and force outputs significantly (-7.8 and -4.6%, 242 

respectively), although they were able to maintain their running velocity. 243 

 244 
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3.2. Resistance exercise 245 

Similar conclusions as cycling and running were reported during resistance exercise. 246 

Faigenbaum et al. (2008) assessed bench press performance during three sets with a 10 247 

repetition maximum load and 1, 2 or 3 min rest intervals between sets in boys (11.3 248 

years), male adolescents (13.6 years), and men (21.4 years). Significant differences in 249 

lifting performance between age groups were observed within each set with boys and 250 

male adolescents performing significantly more total repetitions than men following 251 

protocols with 1 min (27.9, 26.9, and 18.2, respectively), 2 min (29.6, 27.8, and 21.4, 252 

respectively) and 3 min (30.0, 28.8, and 23.9, respectively) recovery intervals. The 253 

authors concluded that boys and male adolescents are better able to maintain muscle 254 

performance during intermittent moderate intensity bench press exercise compared to 255 

men. 256 

 257 

3.3. Maximal voluntary muscle contractions 258 

The lower fatigability in children has been confirmed during sustained or repeated 259 

MVC whatever the nature of contraction and the muscle group investigated (Zafeiridis 260 

et al. 2005; De Ste Croix et al. 2009; Dipla et al. 2009; Chen et al. 2014; Ratel et al. 261 

2015). Some authors reported a lower reduction of peak torque and total work during 262 

repeated concentric maximal knee extensions and flexions on an isokinetic 263 

dynamometer in prepubertal children compared to adults (Zafeiridis et al. 2005; De Ste 264 

Croix et al. 2009; Dipla et al. 2009). Also, when muscle contractions included repeated 265 

eccentric phases, the decline of concentric peak torque of the elbow flexors was found 266 

to be lower in prepubertal children compared to adolescents and lower in adolescents 267 

compared to adults (Chen et al. 2014). Similar results were obtained during repeated 268 
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MVC of the knee extensors under repeated isometric contractions in prepubertal 269 

children compared to adults (Ratel et al. 2015). For instance, during a fatigue protocol 270 

consisting of repetitions of 5 s isometric MVC of the knee extensors separated by 5 s 271 

passive recovery periods until the torque reached 60% of its initial value, Ratel et al. 272 

(2015) showed that the number of repetitions was significantly lower in men compared 273 

to prepubertal boys (34.0 vs. 49.5 repetitions, respectively), showing a lower fatigability 274 

in children. 275 

 276 

3.4. Sub-maximal voluntary muscle contractions 277 

Contrary to maximal intensity fatigue protocols, prepubertal children seem to fatigue 278 

similarly to young adults during sustained isometric contractions, which are conducted 279 

at submaximal intensities (Hatzikotoulas et al. 2009; Patikas et al. 2013). Indeed, 280 

Patikas et al. (2013) examined the effects of two submaximal sustained contractions 281 

(20% and 60% MVC) until exhaustion, on the fatigue and recovery properties of plantar 282 

flexors, in untrained prepubescent children (n = 14) and adults (n = 14). The authors 283 

showed that immediately after fatigue, MVC torque decreased similarly in both groups, 284 

compared with pre-fatigue values and children recovered faster than adults in both 285 

protocols. Furthermore, the reduction in agonist EMG during MVC after fatigue, 286 

independent of the protocols, was not significantly different between children and 287 

adults. However, EMG of children recovered to baseline values after 3 min for both 288 

fatigue protocols, whereas adults did not recover and exhibited significantly lower 289 

values (torque & EMG) 3 min after fatigue compared to the pre-fatigue baseline values. 290 

The authors concluded that submaximal (low- and moderate-intensity) sustained 291 
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isometric fatigue protocols induced similar fatigue effects in children and adults, and 292 

children recovered faster than adults. 293 

 294 

In summary, whatever the nature of the maximal task performed (whole-body dynamic 295 

activities, resistance exercise or MVC) and the muscle group investigated, prepubertal 296 

children fatigue less than their older counterparts. This lower muscle fatigue in 297 

prepubertal children could be explained by peripheral (i.e. muscular) and central (i.e. 298 

neural) changes that occur during adolescence, which we address in the following 299 

sections. 300 

 301 

3.5. Mechanisms underpinning differences between children and adults 302 

3.5.1. Central mechanisms 303 

Central factors may be responsible for the lower fatigue in children. These factors could 304 

include the capacity to maximally activate the motor units of agonist muscles (i.e. 305 

agonist activation) and the coactivation level of antagonist muscles (i.e. antagonist 306 

activation). 307 

 308 

Agonist activation 309 

Recently, some studies have reported a greater decrement in voluntary activation (VA) 310 

of agonist muscles when using the twitch interpolation technique during fatigue 311 

protocols in children compared to adults (Streckis et al. 2007; Ratel et al. 2015). For 312 

instance, following a sustained 2-min MVC of the knee extensors, Streckis et al. (2007) 313 

reported a greater decrement of VA in 13.9-yr-old boys compared to 22.2-yr-old men 314 

(around -55 vs. -45%, respectively). Furthermore, after a fatigue protocol consisting in a 315 
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repetition of 5-s MVC of the knee extensors until the generated torque reached 60% of 316 

its initial value, Ratel et al. (2015) showed that VA remained unchanged in 23.9-yr-old 317 

men (91.2  2.6 vs. 86.7  2.6%), whereas it decreased significantly by 27% in 9.9-yr-318 

old boys (86.9  7.6 vs. 63.4  17.9%). This result was associated with a lower fatigue 319 

regarding peripheral factors in children, as evidenced by a lower twitch torque 320 

decrement (Ratel et al. 2015). The interplay of central vs. peripheral mechanisms of 321 

fatigue in children remains to be elucidated; however, on the basis of these studies 322 

(Streckis et al. 2007; Ratel et al. 2015), it could be suggested that the greater fatigue 323 

effect on central mechanisms in children accounts for their lower fatigue at peripheral 324 

level. As such, Amann and Dempsey (2008) proposed the existence of a “critical 325 

threshold” of fatigue observed at the periphery and demonstrated that when the 326 

inhibitory feedback from group III/IV afferents was reduced by pharmacological 327 

blockade, the exercising adult subjects “tolerated” the development of peripheral muscle 328 

fatigue substantially beyond their critical threshold (Amann et al. 2011). It is currently 329 

unknown if this critical threshold is different in children and adults, but the lower 330 

contribution of peripheral mechanisms to fatigue development (and higher of central 331 

mechanisms) reported previously (Streckis et al. 2007; Ratel et al. 2015) supports the 332 

proposition that the critical threshold could be set centrally at a higher level in children. 333 

However, the interplay of central vs. peripheral mechanisms of fatigue during childhood 334 

requires further research since some authors have reported greater peripheral fatigue in 335 

adults compared to children, despite similar central fatigue in plantar flexors between 336 

both age groups (Hatzikotoulas et al. 2014). 337 

Beyond the influence of this potential central regulation of agonist activation during a 338 

fatiguing task, the exercise duration could promote the development of fatigue at the 339 
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CNS in children (Armatas et al. 2010; Ratel et al. 2015). Indeed, the lower fatigue in 340 

prepubertal children translates into a longer exercise duration when repeating MVC 341 

until the same level of exhaustion, i.e. until a predetermined percentage of initial MVC 342 

is reached (Armatas et al. 2010; Ratel et al. 2015). This observation is supported 343 

recently by Ratel et al. (2015) showing a positive relationship between the decrement in 344 

VA and the number of repeated isometric maximal contractions of the knee extensor 345 

muscles until the same level of exhaustion in prepubertal children and adults. 346 

It is also important to note that the ability to fully activate voluntarily the neuromuscular 347 

system might be crucial for the development of fatigue. A lower activation level implies 348 

higher resistance to fatigue. Some studies have shown that children have lower levels of 349 

activation during a brief non-fatigued MVC (Table 1), although this has not always 350 

reached statistical significance (Belanger and McComas 1989; Grosset et al. 2008; 351 

O’Brien et al. 2009; Kluka et al. 2015, 2016; Martin et al. 2015). However, such 352 

potential differences between children and adults in their ability to reach their maximal 353 

voluntary activation should be accounted for when interpreting the level of fatigue. 354 

 355 

Antagonist coactivation 356 

Regarding the central regulation of the antagonist coactivation under fatigue conditions, 357 

studies have reported different patterns between children and adults. Ratel et al. (2015) 358 

showed that antagonist activity of the biceps femoris remained constant in adults, 359 

whereas it significantly decreased in prepubertal children during repeated maximal 360 

voluntary isometric knee extensions. This decrease in antagonist coactivation in 361 

children may contribute to limit the loss of force, and therefore to delay fatigue at the 362 

peripheral level (Ratel et al. 2015). Also, in this same study, the decrement of 363 
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coactivation in children was positively correlated with the decrement of VA, which is 364 

consistent with the theory of ‘common drive’. Such a phenomenon could serve to 365 

maintain the balance between agonist and antagonist force in children, to preserve their 366 

joint integrity (Psek and Cafarelli 1993). However, these results should be confirmed 367 

since other studies have reported contradictory results (Paraschos et al. 2007; Armatas 368 

et al. 2010; Murphy et al. 2014). For example, it has been shown during repeated 369 

isokinetic knee extensions that antagonist activity of the biceps femoris remained 370 

constant in adults and increased in prepubertal children (Paraschos et al. 2007; Murphy 371 

et al. 2014). Furthermore, Armatas et al. (2010) showed during repeated maximal 372 

voluntary isometric knee extensions that antagonist activity of the biceps femoris did 373 

not change in prepubertal children and adults and this could not explain the differences 374 

of fatigability between children and adults. Therefore, this issue remains unresolved and 375 

further research into this area is warranted. 376 

 377 

3.5.2. Peripheral mechanisms 378 

Several studies have shown a lower fatigue at peripheral level, as indicated by a lower 379 

twitch torque decrement after sustained or repeated MVC in children or adolescents 380 

compared to adults (Streckis et al. 2007; Hatzikotoulas et al. 2014; Murphy et al. 2014; 381 

Ratel et al. 2015). Furthermore, after a repetitive stretch-shortening cycle fatigue 382 

protocol, which induces muscle damage, Gorianovas et al. (2013) reported a lower low-383 

frequency fatigue, evaluated by the low-to-high frequency tetanic force ratio, in children 384 

compared to adults, showing a lower alteration of the excitation-contraction coupling. 385 

However, the contribution of sarcolemmal excitability changes to fatigue in children 386 

still remains equivocal (Hatzikotoulas et al. 2014; Murphy et al. 2014; Ratel et al. 387 
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2015). Indeed, while some authors reported a similar decrement (Hatzikotoulas et al. 388 

2014) or no change of the M-wave (Ratel et al. 2015) in response to exercise in 389 

prepubertal children compared to adults, others showed an increase in children and a 390 

significant decrease in adults (Murphy et al. 2014). These discrepancies could result 391 

from a different balance of potentiation and fatigue on the M-wave during exercise 392 

between children and adults. Therefore, despite the underlying factors not being fully 393 

acknowledged, there is a consensus that prepubertal children develop a lower fatigue at 394 

the peripheral level compared to adults (Streckis et al. 2007; Hatzikotoulas et al. 2014; 395 

Murphy et al. 2014; Ratel et al. 2015). This could be attributed to different factors such 396 

as absolute force and muscle phenotype. 397 

 398 

Absolute force 399 

The higher fatigue observed at peripheral mechanisms in adults during high-intensity 400 

exercise could be associated with their larger active muscle mass involved during 401 

exercise and their superior maximal force-generating capacity. To the best of our 402 

knowledge in the only study testing this assumption, Ratel et al. (2015) showed a 403 

significant positive relationship between the first MVC and the twitch torque decrement 404 

during repeated maximal contractions of the knee extensors in children and adults. 405 

Furthermore, when the initial MVC torque was used as covariate, no significant 406 

difference in the course of the twitch torque was observed between groups, supporting 407 

the importance of MVC torque in the development of fatigue. This finding is also 408 

consistent with other studies that showed the fatigability of the knee extensors during 409 

repeated MVC was no longer different between obese and non-obese adolescent girls 410 

when the initial MVC torque was used as a covariate in statistical analysis (Garcia-411 
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Vicencio et al. 2015). In addition, other studies reported that the greater fatigue 412 

observed in men versus women was eliminated when subjects were matched for 413 

absolute force (Hunter et al. 2004). This greater muscle mass involved during exercise 414 

in adults could be the cause of a greater vascular occlusion and therefore greater 415 

metabolic disturbances that are usually observed during high-intensity exercise in adults 416 

compared to children (Kappenstein et al. 2013). However, this suggestion is speculative 417 

because this has not been tested in adults compared to children. Studies with fatigue 418 

protocols using variable intensities controlling for blood vascular occlusion are required 419 

to elucidate this speculation. 420 

 421 

Muscle phenotype 422 

Muscle phenotype, which is more oxidative than glycolytic in prepubertal children 423 

regarding muscle fibre type composition and muscle metabolism (Ratel and Blazevich 424 

2017), could also account for the differences in fatigue between children and adults. 425 

The distribution of muscle fibre types in the muscle can determine not only its force 426 

production capacity and contractile properties, but its resistance to fatigue as well. It has 427 

been previously shown that individuals with predominantly fast-twitch fibres in their 428 

vastus lateralis develop a greater fatigue during knee extension compared to subjects 429 

with a higher proportion of slow-twitch fibres (Hamada et al. 2003). Furthermore, it has 430 

been reported that adults have a lower percentage of slow-twitch fibres in the vastus 431 

lateralis muscle than children (Lexell et al. 1992; Glenmark et al. 1994). For instance, 432 

Lexell et al. (1992) reported individual values of 63, 65, 67 and 69% in four children 433 

aged between 5 and 13 years and values comprised between 47 and 57% in sixteen 434 

adults aged between 18 and 37 years. However, the influence of muscle type on the 435 
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fatigue in children remains to be established since other studies showed no difference in 436 

muscle fibre type composition in the vastus lateralis between children and adults (Berg 437 

and Keul 1988). 438 

Furthermore, several studies provided evidence that children rely more on oxidative 439 

relative to anaerobic metabolism during exercise (Berg and Keul 1988; Ratel et al. 440 

2008; Tonson et al. 2010). Indeed, using 31P-magnetic resonance spectroscopy, it has 441 

been shown that post-exercise phosphocreatine (PCr) resynthesis rates are higher in 442 

children compared to adults, suggesting a higher muscle oxidative activity during 443 

exercise in children (Taylor et al. 1997; Ratel et al. 2008; Fleischman et al. 2010; 444 

Tonson et al. 2010). This specific metabolic profile in children could lead to a lower 445 

accumulation of muscle by-products (i.e. H+ ions and inorganic phosphate) and a lower 446 

PCr depletion during high-intensity intermittent exercise in children compared to adults 447 

(Kappenstein et al. 2013). As inorganic phosphate is strongly associated with the 448 

decrease of myofibrillar force production and Ca2+ sensitivity as well as sarcoplasmic 449 

reticulum Ca2+ release (Allen et al. 2008), its lower accumulation in exercising muscle 450 

in prepubertal children could constitute the major cause of their lower fatigue at the 451 

periphery (Streckis et al. 2007; Hatzikotoulas et al. 2014; Murphy et al. 2014; Ratel et 452 

al. 2015). The lower decrement in intramuscular pH in prepubertal children may also 453 

account for this; however, the reduction in pH obtained under physiological 454 

circumstances, could have far less inhibitory (or restraining) effects on the contractile 455 

apparatus efficiency and Ca2+ release than previously assumed (Allen et al. 2008). 456 

Collectively, these studies report a lower peripheral fatigue and a potentially greater 457 

neural fatigue in children. However, further studies are required to better investigate the 458 
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neuromuscular mechanisms underpinning differences in fatigue between children, 459 

adolescents and adults (Table 2). 460 

 461 

==== Table 2 near here ==== 462 

 463 

4. Challenges and future perspectives 464 

To better investigate the exercise-induced fatigue, it is necessary to examine the whole 465 

chain of events that occur from the generation of the movement to its execution. 466 

However, this process should not overlook the importance of the sensory feedback and 467 

its integration to the motor command. In general, it is important to evaluate all possible 468 

neural and mechanical properties of the neuromuscular system as thoroughly as possible 469 

and to understand how they adapt and interact during the development of fatigue. 470 

Therefore, the objective evaluation of fatigue and its underlying mechanisms is essential 471 

for understanding the strategies that the neuromuscular system develops to sustain an 472 

external load. Numerous methods are available to investigate neuromuscular fatigue and 473 

some of these that have been applied in children are shown in Table 3. 474 

 475 

==== Table 3 near here ==== 476 

 477 

Additionally, this research should not only be focused on well-controlled experiments 478 

that isolate one mechanism under certain, mostly laboratory, conditions. One major goal 479 

of research should be the documentation of the interaction between different 480 

mechanisms with the utmost perspective to describe fatigue universally, in real-world 481 

conditions (i.e. during training and everyday activities, to increase the ecological 482 
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validity of the experiment) and to determine the weakest link or links in the chain of 483 

events producing muscle force. 484 

Although there are ethical limitations for using some methods, especially invasive ones, 485 

in healthy young and adult people, there are more instruments and methods available to 486 

examine fatigue compared to twenty years ago. Many of the assessments described in 487 

the present review have drawn useful conclusions about the fatigue development and 488 

recovery, and their underlying causes. However, fatigue remains a complex and 489 

multifactorial process. This situation demands the assessment of carefully designed 490 

experimental setups, that could limit controversial findings and accept or reject possible 491 

candidate theories explaining the mechanisms that are responsible for any differences in 492 

fatigability between youth and adulthood. 493 

It is important to note, that some studies regarding fatigue in youth have revealed 494 

controversial findings. This could be attributed to methodological issues such as 495 

different fatigue protocols, the characteristics of the participants (sample size and 496 

homogeneity), and the methods used, which might not be sensitive or accurate enough 497 

to capture any systematic differentiation (Table 2). Therefore, cross-validation of the 498 

current findings is of major importance. The direct or indirect evidence that earlier 499 

findings have shown can be replicated, thus building a sound foundation for future 500 

research. This will not only verify that our current knowledge is valid but may also 501 

enlighten any current discrepancies. Finally, the importance of the sensation of fatigue 502 

should be also considered in future research since its effect, which has not been studied 503 

extensively in this age group, might be responsible for current controversial findings in 504 

various parameters measuring performance. 505 

 506 
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5. What remains to be discovered? 507 

The studies shown in Tables 2 and 3 illustrate the current status of the literature 508 

regarding the investigation of exercise-induced fatigue in healthy young population. 509 

Considering all the available methodological approaches, it is apparent that there are 510 

still many unknown aspects of fatigue that need to be more thoroughly examined using 511 

methods such as transcranial magnetic stimulation (TMS), transcranial electrical 512 

stimulation, functional Magnetic Resonance Imaging (MRI), near infrared spectroscopy 513 

(NIRS), tendon vibration, H-reflex, and ultrasound. This knowledge may reveal new 514 

insights in fatigue and would cross-validate previous findings.  515 

More specifically, by means of electrical or magnetic stimulation it is possible to 516 

identify more precisely the site of fatigue (spinal, supraspinal or both). Methods such as 517 

TMS (Gandevia et al. 1999; Taylor et al. 2000, 2006) that examine the cortical 518 

excitability, and electroencephalography, functional MRI, or NIRS that examine the 519 

activation of the brain, have not yet been applied in children during different fatigue 520 

protocols. Moreover, application of methods such as the H-reflex (Tucker et al. 2005) 521 

and the development of persistent inward currents (PICs) (Heckman et al. 2005) could 522 

give an insight in the spinal excitability and the function of different spinal mechanisms, 523 

such as the IA reciprocal inhibition (Crone et al. 1987), the Ia presynaptic inhibition 524 

(Hultborn et al. 1987), the recurrent inhibition (Pierrot-Deseilligny and Bussel 1975), 525 

and the post-activation depression (Crone and Nielsen 1989). 526 

Regarding the evaluation of the muscle, the low-frequency electrical/magnetic 527 

stimulation could be applied to the motor nerve during a fatiguing protocol to quantify 528 

the consequences of low-frequency fatigue, i.e. the reduction of Ca2+ release from 529 

sarcoplasmic reticulum (Chin et al. 1997), on differences in peripheral fatigue between 530 
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children and adults. Additional studies using surface EMG and electrical/magnetic 531 

stimulation are also required to get a better understanding of the effects of fatigue on M-532 

wave or sarcolemmal excitability in children and adults. NIRS could be also applied on 533 

the surface of a muscle to quantify deoxygenation and oxygenation rates in the muscle 534 

during strenuous exercise (Racinais et al. 2007; Smith and Billaut 2010), but only a few 535 

researchers have assessed measurements in children during fatigue (Moalla et al. 2006, 536 

2012; Callewaert et al. 2013). The findings from studies using NIRS measurement will 537 

be even more valuable if they are coupled with methods measuring directly blood flow 538 

velocity and arterial size, such as Doppler ultrasound. Furthermore, structural changes 539 

on the muscle-tendon unit (MTU) captured with ultrasound (fascicle length, MTU 540 

stiffness, pennation angle), affect force production and transmission (Folland and 541 

Williams 2007) have not been studied in children yet under fatigue conditions. 542 

Although such MTU properties are affected by fatigue (Mademli and Arampatzis 2005) 543 

and are different between children and adults (Waugh et al. 2012), this is an area that 544 

requires more research. 545 

It is also important to underline that since all methods have their limitations, it is 546 

important to cross-validate previous findings with other approaches and from a different 547 

perspective. For example, the estimation of the level of VA by means of the twitch 548 

interpolation technique (Herbert and Gandevia 1999), has its limitations (Shield and 549 

Zhou 2004) and particularly in children, the application of a train of electrical 550 

supramaximal nerve stimuli might be a limiting factor due to potential pain. Therefore, 551 

it is recommended to apply electrical single or double nerve stimuli, or magnetic nerve 552 

stimulation or muscle electrical stimulation (Belanger and McComas 1989; Streckis et 553 

al. 2007; Grosset et al. 2008; O’Brien et al. 2009; Hatzikotoulas et al. 2014; Ratel et al. 554 
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2015). Another example regards the sEMG that might be influenced by cross-talk, 555 

signal cancelation, motor unit synchronization and muscle fibre conduction velocity 556 

(Farina et al. 2004). Due to these limitations, the MRI with T2 enhancement could be 557 

used to identify which portion and to what extent the muscle is activated (Ploutz-Snyder 558 

et al. 1994; Kinugasa et al. 2004). Furthermore, specific experiments using advanced 559 

decomposition techniques of the surface EMG would need to be also performed to 560 

determine the recruitment thresholds and firing frequencies of active units (De Luca et 561 

al. 2015) before and after fatigue in children compared to adults. 562 

The multifaceted nature of fatigue implies its investigation using a wide variety of 563 

fatigue protocols, that differ in intensity, duration, type of contraction 564 

(dynamic/isometric, eccentric/concentric, sustained/intermittent), number of active 565 

muscles and joints, and the source of muscle activation (volitional or evoked) is 566 

encouraged. This serves to highlight the importance of selecting appropriate fatigue 567 

protocols that limit factors, which may influence the variability of the outcome 568 

variables. Nonetheless, the variety of fatigue protocols makes comparisons between 569 

studies difficult to evaluate. Therefore, there needs to be common agreement on the 570 

selected fatigue protocols when attempting to elucidate contributing mechanisms to 571 

fatigue and whilst designing studies to document the effects of fatigue protocols with 572 

different outcome properties.  573 

 574 

In conclusion, the cited references related to exercise-induced fatigue in children and 575 

adolescents of this review reveals that more in-depth and systematic research is required 576 

to understand the broader topic of fatigue. This goal can be achieved by designing 577 

studies that test the fatigue effects in movements to replicate daily activities. However, 578 
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this can only be successful if it is based on more basic research focused on the 579 

mechanisms of fatigue, whilst accounting for physiological, cognitive, and 580 

psychological aspects of performance. Some objective measures of the evaluation of the 581 

physiological mechanisms have been cited in the current review, however, the linkage 582 

and interaction between all three above aspects remains to be resolved in young people. 583 
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Figure legend 803 

Figure 1. Schematic framework of fatigue with the possible sites and mechanisms that 804 

may contribute to it. 805 
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 1 

Table 1. Voluntary activation (VA) during a brief non-fatigued maximal contraction in children and adults. 1 

Reference Age (y) Sex Contraction Muscle Joint angle VA (%) 

Belanger and 

McComas (1989) 

C: 11.0  2.3 

Ado: 16.5  0.9 

M 

M 
Isometric Plantar flexors 

Ankle: 20°DF 

Knee: 90° 

C: 94.0  11.3 

Ado: 99.4  1.8 

C < A* 

Grosset et al. (2008) 
C: 7, 8, 9, 10, 11 

A: 21.0  2.3 
M + F Isometric Plantar flexors 

Ankle: 90° 

Knee: 120° 

 

C7y: 87.0 

C10y: 95.6 

C11y: 96.7 

A: 98.5 

C7y < A 

Kluka et al. (2015) 
C: 10.2  1.1 

A: 23.9  2.9 

M 

M 
Isometric Knee extensors Knee: 90° 

C: 88  8 

A: 94  4 

C < A 

Kluka et al. (2016) 
C: 10.0  1.0 

A: 24.6  4.2 

M 

M 
Isometric Plantar flexors 

Ankle: 10°DF to 20°PF 

Knee: 180° 

C: 87.6  1.6 

A: 92.4  1.7 

C < A 

Martin et al. (2015) 
C: 11.6  0.1 

A: 25.6  1.5 

M 

M 
Isometric Adductor pollicis Thumb: full abduction 

C: 85.0  2.7 

A: 94.8  1.4 

C < A 

O’Brien et al. (2009) 

C: 8.9  0.7 

C: 9.3  0.8 

A: 28.2  3.6 

A: 27.4  4.2 

M 

F 

M 

F 

Isometric Knee extensors Knee: 90° 

C-M: 75.1  12.8 

C-F: 66.9  13 

A-M: 85.6  8.5 

A-F: 86.6  6.6 

C-F < A 

Mean  SD, C: child, A: adult, Ado: adolescent, M: male, F: female, DF: dorsi-flexion, PF: plantar-flexion, *: not significant. 2 
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Table 2. Factors underpinning differences in exercise-induced fatigue between children and adults 1 

Mechanisms Factors involved in the 

development of fatigue 

References Fatigue protocol Child-Adult 

comparison 

Central (neural) 

mechanisms 

Motor cortex activation deficit - - - 

Neural drive alteration (cortex 

 spinal cord) 
- - - 

Motor unit activation deficit 

(voluntary activation loss) 

Hatzikotoulas et al. (2014) 

Streckis et al. (2007) 

Ratel et al. (2015) 

Gorianovas et al. (2013) 

Sustained MVC of PF muscles until 50% of initial MVC 

2-min sustained MVC of KE muscles 

Repeated MVC of KE muscles until 60% of initial MVC 

100 repeated drop jumps 

Child = Adult 

Child > Adult 

Child > Adult 

Child < Adult 

Peripheral (muscular) 

mechanisms 

Sarcolemmal excitability 

alteration (M-wave alteration) 

Hatzikotoulas et al. (2014) 

Murphy et al. (2014) 

Ratel et al. (2015) 

Sustained MVC of PF muscles until 50% of initial MVC 

Repeated dynamic knee extensions 

Repeated MVC of KE muscles until 60% of initial MVC 

Child = Adult 

Child < Adult 

No alteration in both groups 

Excitation-contraction coupling 

alteration (Low-Frequency 

fatigue) 

Gorianovas et al. (2013) 100 repeated drop jumps Child < Adult 

Energy substrates depletion 

(Glycogen, phosphocreatine) 
Kappenstein et al. (2013) Repeated dynamic plantar flexions Child < Adult 

Metabolites accumulation Kappenstein et al. (2013) Repeated dynamic plantar flexions Child < Adult 

Contractile properties alteration 

(twitch torque alteration) 

Streckis et al. (2007) 

Hatzikotoulas et al. (2014) 

Murphy et al. (2014) 

Ratel et al. (2015) 

2-min sustained MVC of KE muscles 

Sustained MVC of PF muscles until 50% of initial MVC 

Repeated dynamic knee extensions 

Repeated MVC of KE muscles until 60% of initial MVC 

Child < Adult 

Child < Adult 

Child < Adult 

Child < Adult 

Blood flow alteration - - - 

KE: knee extensors, PF: plantar flexors, MVC: maximal voluntary contraction. 2 
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Table 3. Studies assessing fatigue in young people with the respective fatigue tests and 1 

the corresponding physiological analyzed properties. 2 

References Fatigue test 
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Hebestreit et al. (1993) Cycling sprints      X X    

Kanehisa et al. (1995) Isokinetic KE           

Ratel et al. (2002) Cycling sprints        X X  

Halin et al. (2003) Isometric EF X          

Zafeiridis et al. (2005) Isokinetic KE KF      X  X   

Ratel et al. (2006) Running sprints        X   

Paraschos et al. (2007) Isokinetic KE X          

Streckis et al. (2007) Isometric KE  X  X       

Ratel et al. (2008) Isometric FF     X      

Faigenbaum et al. (2008) Bench press           

De Ste Croix et al. (2009) Isokinetic KE KF           

Dipla et al. (2009) Isokinetic KE KF      X  X   

Hatzikotoulas et al. (2009) Isometric PF X          

Armatas et al. (2010) Isometric KE X          

Fleischman et al. (2010) Isotonic KE     X      

Tonson et al. (2010) Isometric FF     X      

Bottaro et al. (2011) Isokinetic KE        X   

Gorianovas et al. (2013) SSC  X  X      X 

Kappenstein et al. (2013) Isotonic PF     X      

Patikas et al. (2013) Isometric PF X       X   

Chen et al. (2014) Eccentric EF          X 

Hatzikotoulas et al. (2014) Isometric PF X X X X       

Murphy et al. (2014) Isotonic KE  X   X  X     

Ratel et al. (2015) Isometric KE X X X X       

Lazaridis et al. (2018) SSC X          

 3 

KE: knee extension; KF: knee flexion; PF: plantar flexion; EF: elbow flexion; FF: 4 

finger flexion; SSC: stretch-shortening cycle bouts; sEMG: surface electromyography; 5 

VA: voluntary activation assessed by means of interpolated twitch technique; NIRS: 6 

Table 3
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near infra-red spectroscopy; HR: heart rate; VO2: oxygen consumption and gas 7 

exhange; 31P-MRS: 31P-magnetic resonance spectroscopy; [La]: blood lactate 8 

concentration; CK: plasma creatine kinase. 9 
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