1,528 research outputs found

    Smell of Infection:a novel, non-invasive method for detection of fish excretory- secretory proteins

    Get PDF
    Chemical signals are produced by aquatic organisms following predatory attacks or perturbations such as parasitic infection. Ectoparasites feeding on fish hosts are likely to cause release of similar alarm cues into the environment due to the stress, wounding, and immune response stimulated upon infection. Alarm cues are often released in the form of proteins, antimicrobial peptides, and immunoglobulins that provide important insights into bodily function and infection status. Here we outline a noninvasive method to identify potential chemical cues associated with infection in fish by extracting, purifying, and characterizing proteins from water samples from cultured fish. Gel free proteomic methods were deemed the most suitable for protein detection in saline water samples. It was confirmed that teleost proteins can be characterized from water and that variation in protein profiles could be detected between infected and uninfected individuals and fish and parasite only water samples. Our novel assay provides a noninvasive method for assessing the health condition of both wild and farmed aquatic organisms. Similar to environmental DNA monitoring methods, these proteomic techniques could provide an important tool in applied ecology and aquatic biology

    Material-Specific Investigations of Correlated Electron Systems

    Full text link
    We present the results of numerical studies for selected materials with strongly correlated electrons using a combination of the local-density approximation and dynamical mean-field theory (DMFT). For the solution of the DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed. All simulations were performed on the supercomputer HLRB II at the Leibniz Rechenzentrum in Munich. Specifically we have analyzed the pressure induced metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the fluctuating-valence elemental metal Yb, and the spectral properties of a covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in Science and Engineering, Garching 2009" (Springer

    Retention of Supraspinal Delta-like Analgesia and Loss of Morphine Tolerance in δ Opioid Receptor Knockout Mice

    Get PDF
    AbstractGene targeting was used to delete exon 2 of mouse DOR-1, which encodes the δ opioid receptor. Essentially all 3H-[D-Pen2,D-Pen5]enkephalin (3H-DPDPE) and 3H-[D-Ala2,D-Glu4]deltorphin (3H-deltorphin-2) binding is absent from mutant mice, demonstrating that DOR-1 encodes both δ1 and δ2 receptor subtypes. Homozygous mutant mice display markedly reduced spinal δ analgesia, but peptide δ agonists retain supraspinal analgesic potency that is only partially antagonized by naltrindole. Retained DPDPE analgesia is also demonstrated upon formalin testing, while the nonpeptide δ agonist BW373U69 exhibits enhanced activity in DOR-1 mutant mice. Together, these findings suggest the existence of a second delta-like analgesic system. FinallyDOR-1 mutant mice do not develop analgesic tolerance to morphine, genetically demonstrating a central role for DOR-1 in this process

    Charge-transfer metal-insulator transitions in the spin-one-half Falicov-Kimball model

    Full text link
    The spin-one-half Falicov-Kimball model is solved exactly on an infinite-coordination-number Bethe lattice in the thermodynamic limit. This model is a paradigm for a charge-transfer metal-insulator transition where the occupancy of localized and delocalized electronic orbitals rapidly changes at the metal-insulator transition (rather than the character of the electronic states changing from insulating to metallic as in a Mott-Hubbard transition). The exact solution displays both continuous and discontinuous (first-order) transitions.Comment: 22 pages including 4 figures(eps), RevTe

    MICE: the Muon Ionization Cooling Experiment. Step I: First Measurement of Emittance with Particle Physics Detectors

    Get PDF
    The Muon Ionization Cooling Experiment (MICE) is a strategic R&D project intended to demonstrate the only practical solution to providing high brilliance beams necessary for a neutrino factory or muon collider. MICE is under development at the Rutherford Appleton Laboratory (RAL) in the United Kingdom. It comprises a dedicated beamline to generate a range of input muon emittances and momenta, with time-of-flight and Cherenkov detectors to ensure a pure muon beam. The emittance of the incoming beam will be measured in the upstream magnetic spectrometer with a scintillating fiber tracker. A cooling cell will then follow, alternating energy loss in Liquid Hydrogen (LH2) absorbers to RF cavity acceleration. A second spectrometer, identical to the first, and a second muon identification system will measure the outgoing emittance. In the 2010 run at RAL the muon beamline and most detectors were fully commissioned and a first measurement of the emittance of the muon beam with particle physics (time-of-flight) detectors was performed. The analysis of these data was recently completed and is discussed in this paper. Future steps for MICE, where beam emittance and emittance reduction (cooling) are to be measured with greater accuracy, are also presented

    Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    Get PDF
    A measurement of the double-differential π±\pi^{\pm} production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta <2.15 \rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)

    Atomic Force Microscopy of height fluctuations of fibroblast cells

    Get PDF
    We investigated the nanometer scale height fluctuations of 3T3 fibroblast cells with the atomic force microscope (AFM) under physiological conditions. Correlation between these fluctuations and lateral cellular motility can be observed. Fluctuations measured on leading edges appear to be predominantly related to actin polymerization-depolymerization processes. We found fast (5 Hz) pulsatory behavior with 1--2 nm amplitude on a cell with low motility showing emphasized structure of stress fibres. Myosin driven contractions of stress fibres are thought to induce this pulsation.Comment: 6 pages, 5 figures, 1 tabl

    Measurement of the production cross-section of positive pions in the collision of 8.9 GeV/c protons on beryllium

    Get PDF
    The double-differential production cross-section of positive pions, d2σπ+/dpdΩd^2\sigma^{\pi^{+}}/dpd\Omega, measured in the HARP experiment is presented. The incident particles are 8.9 GeV/c protons directed onto a beryllium target with a nominal thickness of 5% of a nuclear interaction length. The measured cross-section has a direct impact on the prediction of neutrino fluxes for the MiniBooNE and SciBooNE experiments at Fermilab. After cuts, 13 million protons on target produced about 96,000 reconstructed secondary tracks which were used in this analysis. Cross-section results are presented in the kinematic range 0.75 GeV/c < pπp_{\pi} < 6.5 GeV/c and 30 mrad < θπ\theta_{\pi} < 210 mrad in the laboratory frame.Comment: 39 pages, 21 figures. Version accepted for publication by Eur. Phys. J.

    ‘Sons of athelings given to the earth’: Infant Mortality within Anglo-Saxon Mortuary Geography

    Get PDF
    FOR 20 OR MORE YEARS early Anglo-Saxon archaeologists have believed children are underrepresented in the cemetery evidence. They conclude that excavation misses small bones, that previous attitudes to reporting overlook the very young, or that infants and children were buried elsewhere. This is all well and good, but we must be careful of oversimplifying compound social and cultural responses to childhood and infant mortality. Previous approaches have offered methodological quandaries in the face of this under-representation. However, proportionally more infants were placed in large cemeteries and sometimes in specific zones. This trend is statistically significant and is therefore unlikely to result entirely from preservation or excavation problems. Early medieval cemeteries were part of regional mortuary geographies and provided places to stage events that promoted social cohesion across kinship systems extending over tribal territories. This paper argues that patterns in early Anglo-Saxon infant burial were the result of female mobility. Many women probably travelled locally to marry in a union which reinforced existing social networks. For an expectant mother, however, the safest place to give birth was with experience women in her maternal home. Infant identities were affected by personal and legal association with their mother’s parental kindred, so when an infant died in childbirth or months and years later, it was their mother’s identity which dictated burial location. As a result, cemeteries central to tribal identities became places to bury the sons and daughters of a regional tribal aristocracy
    corecore