We present the results of numerical studies for selected materials with
strongly correlated electrons using a combination of the local-density
approximation and dynamical mean-field theory (DMFT). For the solution of the
DMFT equations a continuous-time quantum Monte-Carlo algorithm was employed.
All simulations were performed on the supercomputer HLRB II at the Leibniz
Rechenzentrum in Munich. Specifically we have analyzed the pressure induced
metal-insulator transitions in Fe2O3 and NiS2, the charge susceptibility of the
fluctuating-valence elemental metal Yb, and the spectral properties of a
covalent band-insulator model which includes local electronic correlations.Comment: 14 pages, 7 figures, to appear in "High Performance Computing in
Science and Engineering, Garching 2009" (Springer