156 research outputs found

    Protein Expression in the Nucleus Accumbens of Rats Exposed to Developmental Vitamin D Deficiency

    Get PDF
    Introduction: Developmental vitamin D (DVD) deficiency is a candidate risk factor for schizophrenia. Animal models have confirmed that DVD deficiency is associated with a range of altered genomic, proteomic, structural and behavioural outcomes in the rat. Because the nucleus accumbens has been implicated in neuropsychiatric disorders, in the current study we examined protein expression in this region in adult rats exposed to DVD deficienc

    Role of the Blood-Brain Barrier in the Formation of Brain Metastases

    Get PDF
    The majority of brain metastases originate from lung cancer, breast cancer and malignant melanoma. In order to reach the brain, parenchyma metastatic cells have to transmigrate through the endothelial cell layer of brain capillaries, which forms the morphological basis of the blood-brain barrier (BBB). The BBB has a dual role in brain metastasis formation: it forms a tight barrier protecting the central nervous system from entering cancer cells, but it is also actively involved in protecting metastatic cells during extravasation and proliferation in the brain. The mechanisms of interaction of cancer cells and cerebral endothelial cells are largely uncharacterized. Here, we provide a comprehensive review on our current knowledge about the role of junctional and adhesion molecules, soluble factors, proteolytic enzymes and signaling pathways mediating the attachment of tumor cells to brain endothelial cells and the transendothelial migration of metastatic cells. Since brain metastases represent a great therapeutic challenge, it is indispensable to understand the mechanisms of the interaction of tumor cells with the BBB in order to find targets of prevention of brain metastasis formation

    Specific Inhibition of Phosphodiesterase-4B Results in Anxiolysis and Facilitates Memory Acquisition

    Get PDF
    Cognitive dysfunction is a core feature of dementia and a prominent feature in psychiatric disease. As non-redundant regulators of intracellular cAMP gradients, phosphodiesterases (PDE) mediate fundamental aspects of brain function relevant to learning, memory, and higher cognitive functions. Phosphodiesterase-4B (PDE4B) is an important phosphodiesterase in the hippocampal formation, is a major Disrupted in Schizophrenia 1 (DISC1) binding partner and is itself a risk gene for psychiatric illness. To define the effects of specific inhibition of the PDE4B subtype, we generated mice with a catalytic domain mutant form of PDE4B (Y358C) that has decreased ability to hydrolyze cAMP. Structural modelling predictions of decreased function and impaired binding with DISC1 were confirmed in cell assays. Phenotypic characterization of the PDE4BY358C mice revealed facilitated phosphorylation of CREB, decreased binding to DISC1, and upregulation of DISC1 and β-Arrestin in hippocampus and amygdala. In behavioural assays, PDE4BY358C mice displayed decreased anxiety and increased exploration, as well as cognitive enhancement across several tests of learning and memory, consistent with synaptic changes including enhanced long-term potentiation and impaired depotentiation ex vivo. PDE4BY358C mice also demonstrated enhanced neurogenesis. Contextual fear memory, though intact at 24 hours, was decreased at 7 days in PDE4BY358C mice, an effect replicated pharmacologically with a non-selective PDE4 inhibitor, implicating cAMP signalling by PDE4B in a very late phase of consolidation. No effect of the PDE4BY358C mutation was observed in the pre-pulse inhibition and forced swim tests. Our data establish specific inhibition of PDE4B as a promising therapeutic approach for disorders of cognition and anxiety, and a putative target for pathological fear memory

    Developmental Expression of Kv Potassium Channels at the Axon Initial Segment of Cultured Hippocampal Neurons

    Get PDF
    Axonal outgrowth and the formation of the axon initial segment (AIS) are early events in the acquisition of neuronal polarity. The AIS is characterized by a high concentration of voltage-dependent sodium and potassium channels. However, the specific ion channel subunits present and their precise localization in this axonal subdomain vary both during development and among the types of neurons, probably determining their firing characteristics in response to stimulation. Here, we characterize the developmental expression of different subfamilies of voltage-gated potassium channels in the AISs of cultured mouse hippocampal neurons, including subunits Kv1.2, Kv2.2 and Kv7.2. In contrast to the early appearance of voltage-gated sodium channels and the Kv7.2 subunit at the AIS, Kv1.2 and Kv2.2 subunits were tethered at the AIS only after 10 days in vitro. Interestingly, we observed different patterns of Kv1.2 and Kv2.2 subunit expression, with each confined to distinct neuronal populations. The accumulation of Kv1.2 and Kv2.2 subunits at the AIS was dependent on ankyrin G tethering, it was not affected by disruption of the actin cytoskeleton and it was resistant to detergent extraction, as described previously for other AIS proteins. This distribution of potassium channels in the AIS further emphasizes the heterogeneity of this structure in different neuronal populations, as proposed previously, and suggests corresponding differences in action potential regulation

    The Late Archaic and Early Classical pottery of the Chalkidike in its wider Aegean context

    No full text
    In 2 volsSIGLEAvailable from British Library Document Supply Centre- DSC:D187511 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore