83 research outputs found

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Ariel: Enabling planetary science across light-years

    Get PDF

    Antimicrobial de-escalation in the critically ill patient and assessment of clinical cure: the DIANA study

    Get PDF
    Purpose: The DIANA study aimed to evaluate how often antimicrobial de-escalation (ADE) of empirical treatment is performed in the intensive care unit (ICU) and to estimate the effect of ADE on clinical cure on day 7 following treatment initiation. Methods: Adult ICU patients receiving empirical antimicrobial therapy for bacterial infection were studied in a prospective observational study from October 2016 until May 2018. ADE was defined as (1) discontinuation of an antimicrobial in case of empirical combination therapy or (2) replacement of an antimicrobial with the intention to narrow the antimicrobial spectrum, within the first 3 days of therapy. Inverse probability (IP) weighting was used to account for time-varying confounding when estimating the effect of ADE on clinical cure. Results: Overall, 1495 patients from 152 ICUs in 28 countries were studied. Combination therapy was prescribed in 50%, and carbapenems were prescribed in 26% of patients. Empirical therapy underwent ADE, no change and change other than ADE within the first 3 days in 16%, 63% and 22%, respectively. Unadjusted mortality at day 28 was 15.8% in the ADE cohort and 19.4% in patients with no change [p = 0.27; RR 0.83 (95% CI 0.60\u20131.14)]. The IP-weighted relative risk estimate for clinical cure comparing ADE with no-ADE patients (no change or change other than ADE) was 1.37 (95% CI 1.14\u20131.64). Conclusion: ADE was infrequently applied in critically ill-infected patients. The observational effect estimate on clinical cure suggested no deleterious impact of ADE compared to no-ADE. However, residual confounding is likely

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    The organization of transcription in the nucleus of mammalian cells

    No full text
    Visions of the Cell Nucleus brings together scientists working on different aspects of structure and function of the mammalian cell nucleus. The goal of this book is to give a state-of-the-art overview on chromatin organization, function and dynamics of subnuclear structures, gene expression, DNA distribution, and disease. Emhpasis is put on new ideas of dynamic structure/function relationships revealed by the recent advent of new microscopy techniques as well as on subnuclear pathology and disease associations. The book provides all the information researchers, scientists and professionals need for this rapidly growing field

    Fetal stem cells : betwixt and between

    No full text
    Fetal stem cells can be isolated not only from fetal blood and hemopoietic organs in early pregnancy, but from a variety of somatic organs as well as amniotic fluid and placenta throughout gestation. Fetal blood is a rich source of hemopoietic stem cells, which proliferate more rapidly than those in cord blood or adult bone marrow. First-trimester fetal blood, liver, and bone marrow also contain a population of mesenchymal stem cells, which appear to be more primitive with greater multipotentiality than their adult counterparts. Fetal stem cells may thus represent an intermediate cell type in the current debate focusing on dichotomized adult versus embryonic stem cells, and thus prove advantageous as a source for downstream cell therapy applications. They have also been implicated in fetomaternal trafficking in pregnancy, and in long-term microchimerism in postreproductive women

    Stem cell differentiation and expansion for clinical applications of tissue engineering

    No full text
    This invited review discusses the latest advances stem cell biology, tissue engineering and the transition from bench to bedside. An overview is presented as to which the best cell source might be for cell therapy and tissue engineering applications, best biomaterials currently available and the challenges the field faces to translate basic research into therapies for a large number of human diseases

    In utero therapy for congenital disorders using amniotic fluid stem cells.

    Get PDF
    Congenital diseases are responsible for over a third of all pediatric hospital admissions. Advances in prenatal screening and molecular diagnosis have allowed the detection of many life-threatening genetic diseases early in gestation. In utero transplantation with stem cells (IUT) could cure affected fetuses but so far in humans, successful IUT using allogeneic haematopoietic stem cells (HSCs), has been limited to fetuses with severe immunologic defects and more recently IUT with allogeneic mesenchymal stem cell transplantation, has improved phenotype in osteogenesis imperfecta. The option of preemptive treatment of congenital diseases in utero by stem cell or gene therapy are encouraging as it changes the perspective of congenital diseases. Thus, avoiding the need for post-natal treatment and reducing future costs. AFS have been isolated and characterized in human, mice, rodents, rabbit and sheep and can be a potential source of cells for therapeutic applications in a multitude of disorders that can be treated prenatally or postnatally. These cells have demonstrated the potential of repair in a range of disease models such as neurological disorder, tracheal repair, bladder injury and diaphragmatic hernia repair in adult or neonate stage. Several groups have shown the use of AFS in in utero therapy in rodents as well as sheep models. These results have been encouraging, thus allowing us to continue with the research and optimizing the procedures and experiments so as to allow it to be translated into clinic

    Stem Cell Therapy for Neonatal Brain Injury

    No full text
    This article introduces the basic concepts of modeling neonatal brain injury and provides background information regarding each of the commonly used types of stem cells. It summarizes the findings of preclinical research testing the therapeutic potential of stem cells in animal models of neonatal brain injury, reports briefly on the status of clinical trials, and discusses the important ongoing issues that need to be addressed before stem cell therapy is used to repair the injured brain

    Splicing Speckles Are Not Reservoirs of RNA Polymerase II, but Contain an Inactive Form, Phosphorylated on Serine(2) Residues of the C-Terminal Domain

    Get PDF
    “Splicing speckles” are major nuclear domains rich in components of the splicing machinery and polyA(+) RNA. Although speckles contain little detectable transcriptional activity, they are found preferentially associated with specific mRNA-coding genes and gene-rich R bands, and they accumulate some unspliced pre-mRNAs. RNA polymerase II transcribes mRNAs and is required for splicing, with some reports suggesting that the inactive complexes are stored in splicing speckles. Using ultrathin cryosections to improve optical resolution and preserve nuclear structure, we find that all forms of polymerase II are present, but not enriched, within speckles. Inhibition of polymerase activity shows that speckles do not act as major storage sites for inactive polymerase II complexes but that they contain a stable pool of polymerase II phosphorylated on serine(2) residues of the C-terminal domain, which is transcriptionally inactive and may have roles in spliceosome assembly or posttranscriptional splicing of pre-mRNAs. Paraspeckle domains lie adjacent to speckles, but little is known about their protein content or putative roles in the expression of the speckle-associated genes. We find that paraspeckles are transcriptionally inactive but contain polymerase II, which remains stably associated upon transcriptional inhibition, when paraspeckles reorganize around nucleoli in the form of caps
    • 

    corecore