31 research outputs found

    Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A

    Get PDF
    We present gamma-ray observations with the LAT on board the Fermi Gamma-Ray Telescope of the nearby radio galaxy Centaurus~A. The previous EGRET detection is confirmed, and the localization is improved using data from the first 10 months of Fermi science operation. In previous work, we presented the detection of the lobes by the LAT; in this work, we concentrate on the gamma-ray core of Cen~A. Flux levels as seen by the LAT are not significantly different from that found by EGRET, nor is the extremely soft LAT spectrum (\G=2.67\pm0.10_{stat}\pm0.08_{sys} where the photon flux is \Phi\propto E^{-\G}). The LAT core spectrum, extrapolated to higher energies, is marginally consistent with the non-simultaneous HESS spectrum of the source. The LAT observations are complemented by simultaneous observations from Suzaku, the Swift Burst Alert Telescope and X-ray Telescope, and radio observations with the Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry (TANAMI) program, along with a variety of non-simultaneous archival data from a variety of instruments and wavelengths to produce a spectral energy distribution (SED). We fit this broadband data set with a single-zone synchrotron/synchrotron self-Compton model, which describes the radio through GeV emission well, but fails to account for the non-simultaneous higher energy TeV emission observed by HESS from 2004-2008. The fit requires a low Doppler factor, in contrast to BL Lacs which generally require larger values to fit their broadband SEDs. This indicates the \g-ray emission originates from a slower region than that from BL Lacs, consistent with previous modeling results from Cen~A. This slower region could be a slower moving layer around a fast spine, or a slower region farther out from the black hole in a decelerating flow.Comment: Accepted by ApJ. 32 pages, 5 figures, 2 tables. J. Finke and Y. Fukazawa corresponding author

    Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade

    No full text
    AMPK (AMP-activated protein kinase) is activated allosterically by AMP and by phosphorylation of Thr(172) within the catalytic α subunit. Here we show that mutations in the regulatory γ subunit reduce allosteric activation of the kinase by AMP. In addition to its allosteric effect, AMP significantly reduces the dephosphorylation of Thr(172) by PP (protein phosphatase)2Cα. Moreover, a mutation in the γ subunit almost completely abolishes the inhibitory effect of AMP on dephosphorylation. We were unable to detect any effect of AMP on Thr(172) phosphorylation by either LKB1 or CaMKKβ (Ca(2+)/calmodulin-dependent protein kinase kinase β) using recombinant preparations of the proteins. However, using partially purified AMPK from rat liver, there was an apparent AMP-stimulation of Thr(172) phosphorylation by LKB1, but this was blocked by the addition of NaF, a PP inhibitor. Western blotting of partially purified rat liver AMPK and LKB1 revealed the presence of PP2Cα in the preparations. We suggest that previous studies reporting that AMP promotes phosphorylation of Thr(172) were misinterpreted. A plausible explanation for this effect of AMP is inhibition of dephosphorylation by PP2Cα, present in the preparations of the kinases used in the earlier studies. Taken together, our results demonstrate that AMP activates AMPK via two mechanisms: by direct allosteric activation and by protecting Thr(172) from dephosphorylation. On the basis of our new findings, we propose a simple model for the regulation of AMPK in mammalian cells by LKB1 and CaMKKβ. This model accounts for activation of AMPK by two distinct signals: a Ca(2+)-dependent pathway, mediated by CaMKKβ and an AMP-dependent pathway, mediated by LKB1

    Fragment-Based Approach to the Development of an Orally Bioavailable Lactam Inhibitor of Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>)

    No full text
    Lp-PLA<sub>2</sub> has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA<sub>2</sub>. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC<sub>50</sub> > 1 mM). The fragment hit was optimized using a variety of structure-based drug design techniques, including virtual screening, fragment merging, and improvement of shape complementarity. A novel series of Lp-PLA<sub>2</sub> inhibitors was generated with low lipophilicity and a promising pharmacokinetic profile

    Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>) Discovered through X‑ray Fragment Screening

    No full text
    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA<sub>2</sub>) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA<sub>2</sub> in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues

    Exploitation of a Novel Binding Pocket in Human Lipoprotein-Associated Phospholipase A2 (Lp-PLA<sub>2</sub>) Discovered through X‑ray Fragment Screening

    No full text
    Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA<sub>2</sub>) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA<sub>2</sub> in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273). Using structure guided design, we optimized a fragment that bound in this pocket to generate a novel low nanomolar chemotype, which did not interact with the catalytic residues
    corecore