419 research outputs found

    ComPARAFAC: a library and tools for rapid and quantitative comparison of dissolved organic matter components resolved by Parallel Factor Analysis.

    Get PDF
    Parallel Factor Analysis (PARAFAC) is a well-established method for characterizing dissolved organic matter (DOM). While methods for sample processing and PARAFAC analysis are well defined and robust, subsequent classification of DOM fluorescence components and comparisons of components among studies remain highly qualitative. Because these comparisons often guide the interpretation of subsequent data, it is important that quantitatively accurate comparisons be made. We developed a statistical tool, comPARAFAC, using a modified Tucker’s Congruence Coefficient (mTCC), an established method of factor comparison, to provide a quantitative basis for comparing models. To develop and test this tool we used mTCC to compare factors from 35 DOM fluorescence studies using Parallel Factor Analysis (PARAFAC) in marine and freshwater environments. We compared mTCCguided component matching with qualitative comparisons made in the literature to describe the current perceptions of component equivalence. Based on our analysis, 21% of the direct comparisons made using the qualitative approach are potentially erroneous, whereas possible matches are missed 14% of the time using that same approach. The procedure and accompanying PARAFAC model library for performing quantitative mTCC-guided comparisons are available as an R package (see Web Appendix A). This method simplifies and standardizes the process by which researchers identify and compare fluorescent DOM components across studies

    Dissolved organic carbon uptake in streams: A review and assessment of reach‐scale measurements

    Get PDF
    Quantifying the role that freshwater ecosystems play in the global carbon cycle requires accurate measurement and scaling of dissolved organic carbon (DOC) removal in river networks. We reviewed reach‐scale measurements of DOC uptake from experimental additions of simple organic compounds or leachates to inform development of aquatic DOC models that operate at the river network, regional, or continental scale. Median DOC uptake velocity (vf) across all measurements was 2.28 mm min−1. Measurements using simple compound additions resulted in faster vf (2.94 mm min−1) than additions of leachates (1.11 mm min−1). We also reviewed published data of DOC bioavailability for ambient stream water and leaf leachate DOC from laboratory experiments. We used these data to calculate and apply a correction factor to leaf leachate uptake velocity to estimate ambient stream water DOC uptake rates at the reach scale. Using this approach, we estimated a median ambient stream DOC vf of 0.26 mm min−1. Applying these DOC vf values (0.26, 1.11, 2.28, and 2.94 mm min−1) in a river network inverse model in seven watersheds revealed that our estimated ambient DOC vf value is plausible at the network scale and 27 to 45% of DOC input was removed. Applying the median measured simple compound or leachate vf in whole river networks would require unjustifiably high terrestrial DOC inputs to match observed DOC concentrations at the basin mouth. To improve the understanding and importance of DOC uptake in fluvial systems, we recommend using a multiscale approach coupling laboratory assays, with reach‐scale measurements, and modeling

    Biogeochemical hotspots in Forested Landscapes: The Role of Vernal Pools in Denitrification and Organic Matter

    Get PDF
    Quantifying spatial and temporal heterogeneity in ecosystem processes presents a challenge for conserving ecosystem function across landscapes. In particular, many ecosystems contain small features that play larger roles in ecosystem processes than their size would indicate; thus, they may represent ‘‘hotspots’’ of activity relative to their surroundings. Biogeochemical hotspots are characterized as small features within a landscape that show comparatively high chemical reaction rates. In northeastern forests in North America, vernal pools are abundant, small features that typically fill in spring with snow melt and precipitation and dry by the end of summer. Ephemeral flooding alters soil moisture and the depth of the soil’s oxic/anoxic boundary, which may affect biogeochemical processes. We studied the effects of vernal pools on leaf-litter decomposition rates, soil enzyme activity, and denitrification in vernal pools to assess whether they function as biogeochemical hotspots. Our results indicate that seasonal inundation enhanced leaf-litter decomposition, denitrification, and enzyme activity in vernal pools relative to adjacent forest sites. Leaves in seasonally flooded areas decomposed faster than leaves in terra firme forest sites. Flooding also influenced the C, N, and P stoichiometry of decomposing leaf litter and explained the variance in microbial extracellular enzyme activity for phosphatase, ÎČ-D- glucosidase, and ÎČ-N-acetylglucosaminidase. Additionally, denitrification rates were enhanced by seasonal flooding across all of the study pools. Collectively, these data suggest that vernal pool eco- systems may function as hotspots of leaf-litter decomposition and denitrification and play a significant role in decomposition and nutrient dynamics relative to their size

    JWST Near-Infrared Detectors: Latest Test Results

    Get PDF
    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection

    Classical kinetic energy, quantum fluctuation terms and kinetic-energy functionals

    Get PDF
    We employ a recently formulated dequantization procedure to obtain an exact expression for the kinetic energy which is applicable to all kinetic-energy functionals. We express the kinetic energy of an N-electron system as the sum of an N-electron classical kinetic energy and an N-electron purely quantum kinetic energy arising from the quantum fluctuations that turn the classical momentum into the quantum momentum. This leads to an interesting analogy with Nelson's stochastic approach to quantum mechanics, which we use to conceptually clarify the physical nature of part of the kinetic-energy functional in terms of statistical fluctuations and in direct correspondence with Fisher Information Theory. We show that the N-electron purely quantum kinetic energy can be written as the sum of the (one-electron) Weizsacker term and an (N-1)-electron kinetic correlation term. We further show that the Weizsacker term results from local fluctuations while the kinetic correlation term results from the nonlocal fluctuations. For one-electron orbitals (where kinetic correlation is neglected) we obtain an exact (albeit impractical) expression for the noninteracting kinetic energy as the sum of the classical kinetic energy and the Weizsacker term. The classical kinetic energy is seen to be explicitly dependent on the electron phase and this has implications for the development of accurate orbital-free kinetic-energy functionals. Also, there is a direct connection between the classical kinetic energy and the angular momentum and, across a row of the periodic table, the classical kinetic energy component of the noninteracting kinetic energy generally increases as Z increases.Comment: 10 pages, 1 figure. To appear in Theor Chem Ac

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmainte−nancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    Get PDF
    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins

    Comment on Spracklandus Hoser, 2009 (Reptilia, Serpentes, ELAPIDAE): request for confirmation of the availability of the generic name and for the nomenclatural validation of the journal in which it was published (Case 3601; see BZN 70: 234–237; 71: 30–38, 133–135, 181–182, 252–253)

    Get PDF

    James Webb Space Telescope Near-Infrared Spectrograph: Dark Performance of the First Flight Candidate Detector Arrays

    Get PDF
    The James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 micron) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. This article focuses on the measured performance of the first flight-candidate, and near-flight candidate, detector arrays. These are the first flight-packaged detector arrays that meet NIRSpec's challenging 6 e(-) rms total noise requirement
    • 

    corecore