1,514 research outputs found

    Navigation in Curved Space-Time

    Full text link
    A covariant and invariant theory of navigation in curved space-time with respect to electromagnetic beacons is written in terms of J. L. Synge's two-point invariant world function. Explicit equations are given for navigation in space-time in the vicinity of the Earth in Schwarzschild coordinates and in rotating coordinates. The restricted problem of determining an observer's coordinate time when their spatial position is known is also considered

    Merlin controls the repair capacity of Schwann cells after injury by regulating Hippo/YAP activity

    Get PDF
    Loss of the Merlin tumor suppressor and activation of the Hippo signaling pathway play major roles in the control of cell proliferation and tumorigenesis. We have identified completely novel roles for Merlin and the Hippo pathway effector Yes-associated protein (YAP) in the control of Schwann cell (SC) plasticity and peripheral nerve repair after injury. Injury to the peripheral nervous system (PNS) causes a dramatic shift in SC molecular phenotype and the generation of repair-competent SCs, which direct functional repair. We find that loss of Merlin in these cells causes a catastrophic failure of axonal regeneration and remyelination in the PNS. This effect is mediated by activation of YAP expression in Merlin-null SCs, and loss of YAP restores axonal regrowth and functional repair. This work identifies new mechanisms that control the regenerative potential of SCs and gives new insight into understanding the correct control of functional nerve repair in the PNS

    Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 m to 1 mm

    Get PDF
    We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h−1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc−3 of which (1.2 ± 0.1) × 1035 h W Mpc−3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc−3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology

    The bashful and the boastful : prestigious leaders and social change in Mesolithic Societies

    Get PDF
    The creation and maintenance of influential leaders and authorities is one of the key themes of archaeological and historical enquiry. However the social dynamics of authorities and leaders in the Mesolithic remains a largely unexplored area of study. The role and influence of authorities can be remarkably different in different situations yet they exist in all societies and in almost all social contexts from playgrounds to parliaments. Here we explore the literature on the dynamics of authority creation, maintenance and contestation in egalitarian societies, and discuss the implications for our interpretation and understanding of the formation of authorities and leaders and changing social relationships within the Mesolithic

    GAMA: towards a physical understanding of galaxy formation

    Full text link
    The Galaxy And Mass Assembly (GAMA) project is the latest in a tradition of large galaxy redshift surveys, and is now underway on the 3.9m Anglo-Australian Telescope at Siding Spring Observatory. GAMA is designed to map extragalactic structures on scales of 1kpc - 1Mpc in complete detail to a redshift of z~0.2, and to trace the distribution of luminous galaxies out to z~0.5. The principal science aim is to test the standard hierarchical structure formation paradigm of Cold Dark Matter (CDM) on scales of galaxy groups, pairs, discs, bulges and bars. We will measure (1) the Dark Matter Halo Mass Function (as inferred from galaxy group velocity dispersions); (2) baryonic processes, such as star formation and galaxy formation efficiency (as derived from Galaxy Stellar Mass Functions); and (3) the evolution of galaxy merger rates (via galaxy close pairs and galaxy asymmetries). Additionally, GAMA will form the central part of a new galaxy database, which aims to contain 275,000 galaxies with multi-wavelength coverage from coordinated observations with the latest international ground- and space-based facilities: GALEX, VST, VISTA, WISE, HERSCHEL, GMRT and ASKAP. Together, these data will provide increased depth (over 2 magnitudes), doubled spatial resolution (0.7"), and significantly extended wavelength coverage (UV through Far-IR to radio) over the main SDSS spectroscopic survey for five regions, each of around 50 deg^2. This database will permit detailed investigations of the structural, chemical, and dynamical properties of all galaxy types, across all environments, and over a 5 billion year timeline.Comment: GAMA overview which appeared in the October 2009 issue of Astronomy & Geophysics, ref: Astron.Geophys. 50 (2009) 5.1

    Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd

    Full text link
    A theory for the equilibrium low-temperature magnetization M of a diluted Heisenberg antiferromagnetic chain is presented. The magnetization curve, M versus B, is calculated using the exact contributions of finite chains with 1 to 5 spins, and the "rise and ramp approximation" for longer chains. Some non-equilibrium effects that occur in a rapidly changing B, are also considered. Specific non-equilibrium models based on earlier treatments of the phonon bottleneck, and of spin flips associated with cross relaxation and with level crossings, are discussed. Magnetization data on powders of TMMC diluted with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from pairs is used to determine the NN exchange constant, J, which changes from -5.9 K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained in the superconducting magnets are compared with simulations based on the equilibrium theory. Data for the differential susceptibility, dM/dB, were taken in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more severe as x decreased, were observed. The non-equilibrium effects are tentatively interpreted using the "Inadequate Heat Flow Scenario," or to cross-relaxation, and crossings of energy levels, including those of excited states.Comment: 16 pages, 14 figure

    Swirl Flow Bioreactor coupled with Cu-alginate beads: A system for the eradication of Coliform and Escherichia coli from biological effluents.

    Get PDF
    It is estimated that approximately 1.1 billion people globally drink unsafe water. We previously reported both a novel copper-alginate bead, which quickly reduces pathogen loading in waste streams and the incorporation of these beads into a novel swirl flow bioreactor (SFB), of low capital and running costs and of simple construction from commercially available plumbing pipes and fittings. The purpose of the present study was to trial this system for pathogen reduction in waste streams from an operating Dewats system in Hinjewadi, Pune, India and in both simulated and real waste streams in Seattle, Washington, USA. The trials in India, showed a complete inactivation of coliforms in the discharged effluent (Mean Log removal Value (MLRV) = 3.51), accompanied by a total inactivation of E. coli with a MLRV of 1.95. The secondary clarifier effluent also showed a 4.38 MLRV in viable coliforms during treatment. However, the system was slightly less effective in reducing E. coli viability, with a MLRV of 1.80. The trials in Seattle also demonstrated the efficacy of the system in the reduction of viable bacteria, with a LRV of 5.67 observed of viable Raoultella terrigena cells (100%)

    Defining decision thresholds for judgments on health benefits and harms using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision (EtD) frameworks : A protocol for a randomised methodological study (GRADE-THRESHOLD)

    Get PDF
    Introduction The Grading of Recommendations Assessment, Development and Evaluation (GRADE) and similar Evidence to Decision (EtD) frameworks require its users to judge how substantial the effects of interventions are on desirable and undesirable people-important health outcomes. However, decision thresholds (DTs) that could help understand the magnitude of intervention effects and serve as reference for interpretation of findings are not yet available. The objective of this study is an approach to derive and use DTs for EtD judgments about the magnitude of health benefits and harms. We hypothesise that approximate DTs could have the ability to discriminate between the existing four categories of EtD judgments (Trivial, Small, Moderate, Large), support panels of decision-makers in their work, and promote consistency and transparency in judgments. Methods and analysis We will conduct a methodological randomised controlled trial to collect the data that allow deriving the DTs. We will invite clinicians, epidemiologists, decision scientists, health research methodologists, experts in Health Technology Assessment (HTA), members of guideline development groups and the public to participate in the trial. Then, we will investigate the validity of our DTs by measuring the agreement between judgments that were made in the past by guideline panels and the judgments that our DTs approach would suggest if applied on the same guideline data. Ethics and dissemination The Hamilton Integrated Research Ethics Board reviewed this study as a quality improvement study and determined that it requires no further consent. Survey participants will be required to read a consent statement in order to participate in this study at the beginning of the trial. This statement reads: You are being invited to participate in a research project which aims to identify indicative DTs that could assist users of the GRADE EtD frameworks in making judgments. Your input will be used in determining these indicative thresholds. By completing this survey, you provide consent that the anonymised data collected will be used for the research study and to be summarised in aggregate in publication and electronic tools. PROTOCOL registration number NCT05237635

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium
    • …
    corecore