948 research outputs found

    Enhanced local-type inflationary trispectrum from a non-vacuum initial state

    Get PDF
    We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k3k_3, is much smaller than the others, k3k1,2,4k_3 \ll k_{1,2,4}. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order ϵ(k1/k3)2 \epsilon ({k_1}/{k_3})^2. This amplitude can be larger than the prediction of the so-called Maldacena consistency relation by a factor 10610^6, and can reach the sensitivity of forthcoming observations, even for single-field inflationary models.Comment: 11 pages, 1 figure. References added, typos corrected, minor change

    On the production of26A1 in the early solar system by low-energy oxygen cosmic rays

    Get PDF
    Clayton & Jin have proposed that the high abundance of 26Al found in meteorites was produced by cosmic rays in the early solar system through the 12C(16O,x)26Ales reaction. We have measured the yield of 26A1 in the ground state (i.e., 26Algs) from this reaction and find that, if this mechanism produced the meteoritic 26Al, a substantial fraction of the solar system oxygen must have entered the solar system as low-energy cosmic rays. This does not seem plausible. If the proto-Sun itself was the source of the oxygen cosmic rays, they must have carried off some 5% of the power of the protosolar wind for 1 Myr. This too seems unlikely. Although we do not address the role of other cosmic-ray species in the production of26 Al, it appears that 26A1 was produced in a stellar environment, and not by cosmic rays

    Spirituality and attitudes towards nature in the Pacific Islands: insights for enabling climate - change adaptation

    Get PDF
    A sample of 1226 students at the University of the South Pacific, the premier tertiary institution in the Pacific Islands, answered a range of questions intended to understand future island decision-makers’ attitudes towards Nature and concern about climate change. Questions asking about church attendance show that the vast majority of participants have spiritual values that explain their feelings of connectedness to Nature which in turn may account for high levels of pessimism about the current state of the global/Pacific environment. Concern about climate change as a future livelihood stressor in the Pacific region is ubiquitous at both societal and personal levels. While participants exhibited a degree of understanding matching objective rankings about the vulnerability of their home islands/countries, a spatial optimism bias was evident in which ‘other places’ were invariably regarded as ‘worse’. Through their views on climate change concern, respondents also favoured a psychological distancing of environmental risk in which ‘other places’ were perceived as more exposed than familiar ones. Influence from spirituality is implicated in both findings. Most interventions intended to reduce exposure to environmental risk and to enable effective and sustainable adaptation to climate change in the Pacific Islands region have failed to acknowledge influences on decision making of spirituality and connectedness to Nature. Messages that stress environmental conservation and stewardship, particularly if communicated within familiar and respected religious contexts, are likely to be more successful than secular ones

    HadISDH: an updateable land surface specific humidity product for climate monitoring

    Get PDF
    HadISDH is a near-global land surface specific humidity monitoring product providing monthly means from 1973 onwards over large-scale grids. Presented herein to 2012, annual updates are anticipated. HadISDH is an update to the land component of HadCRUH, utilising the global high-resolution land surface station product HadISD as a basis. HadISD, in turn, uses an updated version of NOAA's Integrated Surface Database. Intensive automated quality control has been undertaken at the individual observation level, as part of HadISD processing. The data have been subsequently run through the pairwise homogenisation algorithm developed for NCDC's US Historical Climatology Network monthly temperature product. For the first time, uncertainty estimates are provided at the grid-box spatial scale and monthly timescale. HadISDH is in good agreement with existing land surface humidity products in periods of overlap, and with both land air and sea surface temperature estimates. Widespread moistening is shown over the 1973–2012 period. The largest moistening signals are over the tropics with drying over the subtropics, supporting other evidence of an intensified hydrological cycle over recent years. Moistening is detectable with high (95%) confidence over large-scale averages for the globe, Northern Hemisphere and tropics, with trends of 0.089 (0.080 to 0.098) g kg−1 per decade, 0.086 (0.075 to 0.097) g kg−1 per decade and 0.133 (0.119 to 0.148) g kg−1 per decade, respectively. These changes are outside the uncertainty range for the large-scale average which is dominated by the spatial coverage component; station and grid-box sampling uncertainty is essentially negligible on large scales. A very small moistening (0.013 (−0.005 to 0.031) g kg−1 per decade) is found in the Southern Hemisphere, but it is not significantly different from zero and uncertainty is large. When globally averaged, 1998 is the moistest year since monitoring began in 1973, closely followed by 2010, two strong El Niño years. The period in between is relatively flat, concurring with previous findings of decreasing relative humidity over land

    Compactifications of conformal gravity

    Full text link
    We study conformal theories of gravity, i.e. those whose action is invariant under the local transformation g_{\mu\nu} -> \omega^2 (x) g_{\mu\nu}. As is well known, in order to obtain Einstein gravity in 4D it is necessary to introduce a scalar compensator with a VEV that spontaneously breaks the conformal invariance and generates the Planck mass. We show that the compactification of extra dimensions in a higher dimensional conformal theory of gravity also yields Einstein gravity in lower dimensions, without the need to introduce the scalar compensator. It is the field associated with the size of the extra dimensions (the radion) who takes the role of the scalar compensator in 4D. The radion has in this case no physical excitations since they are gauged away in the Einstein frame for the metric. In these models the stabilization of the size of the extra dimensions is therefore automatic.Comment: 13 page

    Coherent and squeezed states in black-hole evaporation

    Get PDF
    In earlier Letters, we adopted a complex approach to quantum processes in the formation and evaporation of black holes. Taking Feynman's +iϵ+i\epsilon prescription, rather than than one of the more usual approaches, we calculated the quantum amplitude (not just the probability density) for final weak-field configurations following gravitational collapse to a black hole with subsequent evaporation. What we have done is to find quantum amplitudes relating to a pure state at late times following black-hole matter collapse. Such pure states are then shown to be susceptible to a description in terms of coherent and squeezed states - in practice, this description is not very different from that for the well-known highly-squeezed final state of the relic radiation background in inflationary cosmology. The simplest such collapse model involves Einstein gravity with a massless scalar field. The Feynman approach involves making the boundary-value problem for gravity and a massless scalar field well-posed. To define this, let T be the proper-time separation, measured at spatial infinity, between two space-like hypersurfaces on which initial (collapse) and final (evaporation) data are posed. Then, in this approach, one rotates T by a complex phase exp(-i\delta) into the lower half-plane. In an adiabatic approximation, the resulting quantum amplitude may be expressed in terms of generalised coherent states of the quantum oscillator, and a physical interpretation is given. A squeezed-state representation, as above, then follows

    Test of Sum Rules in Nucleon Transfer Reactions

    Get PDF
    The quantitative consistency of nucleon transfer reactions as a probe of the occupancy of valence orbits in nuclei is tested. Neutron-adding, neutron-removal, and proton-adding transfer reactions were measured on the four stable even Ni isotopes, with particular attention to the cross section determinations. The data were analyzed consistently in terms of the distorted wave Born approximation to yield spectroscopic factors. Valence-orbit occupancies were extracted, utilizing the Macfarlane-French sum rules. The deduced occupancies are consistent with the changing number of valence neutrons, as are the vacancies for protons, both at the level of <5%. While there has been some debate regarding the true “observability” of spectroscopic factors, the present results indicate that empirically they yield self-consistent results

    Valence nucleon populations in the Ni isotopes

    Get PDF
    Measurements of neutron-adding, neutron-removing, and proton-adding reactions were carried out for the four stable even Ni isotopes. Particular attention was paid to obtaining precise values of the cross sections at the peaks of the angular distributions. Tests with sum rules for the neutron data indicate that the results are self-consistent at the level of a few tenths of a nucleon. Data on proton-adding reactions were also obtained and analyzed with a slightly different method—while these data are also consistent, the ambiguities are larger. The occupancies of the neutron orbits derived from the data, the proton vacancies, and the energy centroids of the neutron, neutron-hole, and proton single-particle excitations are obtained. The data also provide some estimate about the closure of the 0f7/2 shell. The results are compared to shell-model calculations and may serve as a reference point for future exploration

    Indirect study of low-energy resonances in P31(p,)28Si and Cl35(p,)32S

    Get PDF
    The reaction sequences governing the reaction flow in the rp process are important for the understanding of the energy generation and nucleosynthesis of heavy elements in hot and explosive stellar hydrogen burning. Of considerable interest are (p,) reactions along the process path which lead to the formation of reaction cycles rather than to chains of proton capture processes and decays. Previous direct attempts to measure the low-energy reaction cross sections for P31(p,)28Si and Cl35(p,)32S resulted only in upper limits for the strengths of possible low-energy resonances which may dominate the reaction rates. In this paper an indirect experimental approach is presented to study the structure of the low-energy unbound states in the compound nuclei 32 S and Ar36. The results allow a more accurate determination of the contributions of these low-energy levels in the (p,) reaction channel
    corecore