120 research outputs found

    Simultaneous Interpreting : Characteristic of Autonomic Provision of Extreme Cognitive Loads

    Get PDF
    Simultaneous interpreting is one of the most comprehensive and energy-consuming types of cognitive activity. To work successfully, a simultaneous interpreter must have a specific functional state. The aim of our study was to find out the basic mechanisms of this functional state, the effect of the simultaneous interpreting on cognitive function changes, and the main factors influencing the degree of the regulatory systems strain. Materials and Methods. 33 individuals participated in the study: 22 linguists specially trained in simultaneous translation composed the experimental group and 11 language-qualified people having no skills of simultaneous translation represented the control group. In compliance with the study design, the measurements were performed under the conditions similar to the real work of simultaneous interpreters: the participants working in succession performed professional tasks: shadowing in the native and foreign languages (German and English), simultaneous interpretation of the reports from the native language to the foreign, and vice versa. The interpreters were psychologically tested using ApWay.ru Web platform before and after the performance on the professional tasks: computer campimetry, test for a simple sensorimotor activity, Stroop test, and test for emotional disadaptation level. Cardiointervalogram was telemetrically recorded during the entire experiment. Results. Some specific aspects of autonomic provision of simultaneous interpreting have been unraveled. A significantly greater tension of the autonomic regulation is manifested by the simultaneous interpreters compared to the control group. It was most prominent when translation was done from the foreign language. The total level of stress during the performance on the linguistic tasks appeared to be higher in the control group. In the simultaneous interpreters, in contrast to the control group, there was registered a high activity level of the sympathetic and parasympathetic systems and a marked integration of the cardiac rhythm regulation circuits over the entire period of performing the linguistic tasks. The psychological tests have demonstrated a significantly more confident cognitive control relative to the control group. Thus, a specific functional system has been formed in the simultaneous interpreters providing a successful interaction of various information images (or codes) and consolidation of autonomic and cognitive resources during the performance on professional tasks. Lack of the necessary skills and, consequently, of the task-oriented functional system in the participants of the control group resulted in the enhancement of the non-specific (less effective) stress response.Peer reviewe

    TELECOMMUNICATION TECHNOLOGIES FOR MONITORING OF FUNCTIONAL STATUS OF DRIVERS DURING THEIR WORK

    Get PDF
    The article is devoted to development of modern telemetric methods for an on-line evaluation of functional status of vehicle drivers during their work. The study of occupational load effect on cardiovascular system was performed with the use of mobile devices included portable sensors and storage device to collect information (smartphone). The developed computer programs were used to calculate spectral indices of heart rhythm variability (HRV). A high self-descriptiveness of wavelet transform for identification offunctional status of cardiovascular system was shown. The reduction of HRV, increase of sympathetic component in regulation and increase of vegetative balance index were observed in drivers by fatigue. The intensity of HRV changes met with occupational load level and characterized degree of individual response as well as allowed to detect exposure induced the stress. A wireless cardiorhythmography is a perspective method for creating personal monitoring system for increasing quality of the drivers' life andfor their health preservation

    Evidence of atmospheric nanoparticle formation from emissions of marine microorganisms

    Get PDF
    International audienceEarth, as a whole, can be considered as a living organism emitting gases and particles into its atmosphere, in order to regulate its own temperature. In particular, oceans may respond to climate change by emitting particles that ultimately will influence cloud coverage. At the global scale, a large fraction of the aerosol number concentration is formed by nucleation of gas-phase species, but this process has never been directly observed above oceans. Here we present, using semicontrolled seawater-air enclosures, evidence that nucleation may occur from marine biological emissions in the atmosphere of the open ocean. We identify iodine-containing species as major precursors for new particle clusters’ formation, while questioning the role of the commonly accepted dimethyl sulfide oxidation products, in forming new particle clusters in the region investigated and within a time scale on the order of an hour. We further show that amines would sustain the new particle formation process by growing the new clusters to larger sizes. Our results suggest that iodine-containing species and amines are correlated to different biological tracers. These observations, if generalized, would call for a substantial change of modeling approaches of the sea-to-air interactions

    Deep-Sea Fish Distribution Varies between Seamounts: Results from a Seamount Complex off New Zealand

    Get PDF
    Fish species data from a complex of seamounts off New Zealand termed the “Graveyard Seamount Complex’ were analysed to investigate whether fish species composition varied between seamounts. Five seamount features were included in the study, with summit depths ranging from 748–891 m and elevation from 189–352 m. Measures of fish species dominance, rarity, richness, diversity, and similarity were examined. A number of factors were explored to explain variation in species composition, including latitude, water temperature, summit depth, depth at base, elevation, area, slope, and fishing effort. Depth at base and slope relationships were significant with shallow seamounts having high total species richness, and seamounts with a more gradual slope had high mean species richness. Species similarity was modelled and showed that the explanatory variables were driven primarily by summit depth, as well as by the intensity of fishing effort and elevation. The study showed that fish assemblages on seamounts can vary over very small spatial scales, in the order of several km. However, patterns of species similarity and abundance were inconsistent across the seamounts examined, and these results add to a growing literature suggesting that faunal communities on seamounts may be populated from a broad regional species pool, yet show considerable variation on individual seamounts

    Characteristics of the Mesophotic Megabenthic Assemblages of the Vercelli Seamount (North Tyrrhenian Sea)

    Get PDF
    The biodiversity of the megabenthic assemblages of the mesophotic zone of a Tyrrhenian seamount (Vercelli Seamount) is described using Remotely Operated Vehicle (ROV) video imaging from 100 m depth to the top of the mount around 61 m depth. This pinnacle hosts a rich coralligenous community characterized by three different assemblages: (i) the top shows a dense covering of the kelp Laminaria rodriguezii; (ii) the southern side biocoenosis is mainly dominated by the octocorals Paramuricea clavata and Eunicella cavolinii; while (iii) the northern side of the seamount assemblage is colonized by active filter-feeding organisms such as sponges (sometimes covering 100% of the surface) with numerous colonies of the ascidian Diazona violacea, and the polychaete Sabella pavonina. This study highlights, also for a Mediterranean seamount, the potential role of an isolated rocky peak penetrating the euphotic zone, to work as an aggregating structure, hosting abundant benthic communities dominated by suspension feeders, whose distribution may vary in accordance to the geomorphology of the area and the different local hydrodynamic conditions

    Science Priorities for Seamounts: Research Links to Conservation and Management

    Get PDF
    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment

    Nikolai Vasil'evich Parin (1932–2012)

    No full text

    Rare cause of pediatric obesity: Bardet - Biedl Syndrome

    No full text
    Bardet - Biedl syndrome (BBS) is a rare autosomal recessive disorder, characterized by central obesity, retinal pigmentation, polydactyly, mental retardation, hypogonadism, and renal dysfunction. Other features may include deafness, diabetes mellitus, genitourinary abnormalities, short stature, hormonal abnormalities, developmental defects, and speech problems. We report a case of BBS who presented with night blindness, marked central obesity, polydactyly, syndactyly, hypogonadism, micropenis, and behavioral problems, along with a brief review of the literature
    corecore