152 research outputs found

    Resting-state hippocampal connectivity correlates with symptom severity in post-traumatic stress disorder

    Get PDF
    AbstractPost-traumatic stress disorder (PTSD) is a serious mental health injury which can manifest after experiencing a traumatic life event. The disorder is characterized by symptoms of re-experiencing, avoidance, emotional numbing and hyper-arousal. Whilst its aetiology and resultant symptomology are better understood, relatively little is known about the underlying cortical pathophysiology, and in particular whether changes in functional connectivity may be linked to the disorder. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in the combat-related PTSD group (n = 23), and a military control group (n = 21). We identify atypical long-range hyperconnectivity in the high-gamma-band resting-state networks in a combat-related PTSD population compared to soldiers who underwent comparable environmental exposure but did not develop PTSD. Using graph analysis, we demonstrate that apparent network connectivity of relevant brain regions is associated with cognitive-behavioural outcomes. We also show that left hippocampal connectivity in the PTSD group correlates with scores on the well-established PTSD Checklist (PCL). These findings indicate that atypical synchronous neural interactions may underlie the psychological symptoms of PTSD, whilst also having utility as a potential biomarker to aid in the diagnosis and monitoring of the disorder

    Low-frequency connectivity is associated with mild traumatic brain injury

    Get PDF
    AbstractMild traumatic brain injury (mTBI) occurs from a closed-head impact. Often referred to as concussion, about 20% of cases complain of secondary psychological sequelae, such as disorders of attention and memory. Known as post-concussive symptoms (PCS), these problems can severely disrupt the patient's quality of life. Changes in local spectral power, particularly low-frequency amplitude increases and/or peak alpha slowing have been reported in mTBI, but large-scale connectivity metrics based on inter-regional amplitude correlations relevant for integration and segregation in functional brain networks, and their association with disorders in cognition and behaviour, remain relatively unexplored. Here, we used non-invasive neuroimaging with magnetoencephalography to examine functional connectivity in a resting-state protocol in a group with mTBI (n = 20), and a control group (n = 21). We observed a trend for atypical slow-wave power changes in subcortical, temporal and parietal regions in mTBI, as well as significant long-range increases in amplitude envelope correlations among deep-source, temporal, and frontal regions in the delta, theta, and alpha bands. Subsequently, we conducted an exploratory analysis of patterns of connectivity most associated with variability in secondary symptoms of mTBI, including inattention, anxiety, and depression. Differential patterns of altered resting state neurophysiological network connectivity were found across frequency bands. This indicated that multiple network and frequency specific alterations in large scale brain connectivity may contribute to overlapping cognitive sequelae in mTBI. In conclusion, we show that local spectral power content can be supplemented with measures of correlations in amplitude to define general networks that are atypical in mTBI, and suggest that certain cognitive difficulties are mediated by disturbances in a variety of alterations in network interactions which are differentially expressed across canonical neurophysiological frequency ranges

    Star clusters near and far; tracing star formation across cosmic time

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00690-x.Star clusters are fundamental units of stellar feedback and unique tracers of their host galactic properties. In this review, we will first focus on their constituents, i.e.\ detailed insight into their stellar populations and their surrounding ionised, warm, neutral, and molecular gas. We, then, move beyond the Local Group to review star cluster populations at various evolutionary stages, and in diverse galactic environmental conditions accessible in the local Universe. At high redshift, where conditions for cluster formation and evolution are more extreme, we are only able to observe the integrated light of a handful of objects that we believe will become globular clusters. We therefore discuss how numerical and analytical methods, informed by the observed properties of cluster populations in the local Universe, are used to develop sophisticated simulations potentially capable of disentangling the genetic map of galaxy formation and assembly that is carried by globular cluster populations.Peer reviewedFinal Accepted Versio

    A MODEST review

    Get PDF
    We present an account of the state of the art in the fields explored by the research community invested in 'Modeling and Observing DEnse STellar systems'. For this purpose, we take as a basis the activities of the MODEST-17 conference, which was held at Charles University, Prague, in September 2017. Reviewed topics include recent advances in fundamental stellar dynamics, numerical methods for the solution of the gravitational N-body problem, formation and evolution of young and old star clusters and galactic nuclei, their elusive stellar populations, planetary systems, and exotic compact objects, with timely attention to black holes of different classes of mass and their role as sources of gravitational waves. Such a breadth of topics reflects the growing role played by collisional stellar dynamics in numerous areas of modern astrophysics. Indeed, in the next decade, many revolutionary instruments will enable the derivation of positions and velocities of individual stars in the Milky Way and its satellites and will detect signals from a range of astrophysical sources in different portions of the electromagnetic and gravitational spectrum, with an unprecedented sensitivity. On the one hand, this wealth of data will allow us to address a number of long-standing open questions in star cluster studies; on the other hand, many unexpected properties of these systems will come to light, stimulating further progress of our understanding of their formation and evolution.Comment: 42 pages; accepted for publication in 'Computational Astrophysics and Cosmology'. We are much grateful to the organisers of the MODEST-17 conference (Charles University, Prague, September 2017). We acknowledge the input provided by all MODEST-17 participants, and, more generally, by the members of the MODEST communit

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV

    Search for heavy resonances decaying into a Z or W boson and a Higgs boson in final states with leptons and b-jets in 139 fb−1 of pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This article presents a search for new resonances decaying into a Z or W boson and a 125 GeV Higgs boson h, and it targets the νν¯¯¯bb¯¯, ℓ+ℓ−bb¯¯, or ℓ±νbb¯¯ final states, where ℓ = e or μ, in proton-proton collisions at s√ = 13 TeV. The data used correspond to a total integrated luminosity of 139 fb−1 collected by the ATLAS detector during Run 2 of the LHC at CERN. The search is conducted by examining the reconstructed invariant or transverse mass distributions of Zh or Wh candidates for evidence of a localised excess in the mass range from 220 GeV to 5 TeV. No significant excess is observed and 95% confidence-level upper limits between 1.3 pb and 0.3 fb are placed on the production cross section times branching fraction of neutral and charged spin-1 resonances and CP-odd scalar bosons. These limits are converted into constraints on the parameter space of the Heavy Vector Triplet model and the two-Higgs-doublet model

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (tt¯) charge asymmetry Att¯C and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive tt¯ charge asymmetry is measured to be Att¯C = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the tt¯ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients

    Search for single production of vector-like T quarks decaying into Ht or Zt in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a search for the single production of an up-type vector-like quark (T) decaying as T → Ht or T → Zt. The search utilises a dataset of pp collisions at s√ = 13 TeV collected with the ATLAS detector during the 2015–2018 data-taking period of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Data are analysed in final states containing a single lepton with multiple jets and b-jets. The presence of boosted heavy resonances in the event is exploited to discriminate the signal from the Standard Model background. No significant excess above the Standard Model expectation is observed, and 95% CL upper limits are set on the production cross section of T quarks in different decay channels. The results are interpreted in several benchmark scenarios to set limits on the mass and universal coupling strength (κ) of the vector-like quark. For singlet T quarks, κ values above 0.53 are excluded for all masses below 2.3 TeV. At a mass of 1.6 TeV, κ values as low as 0.35 are excluded. For T quarks in the doublet scenario, where the production cross section is much lower, κ values above 0.72 are excluded for all masses below 1.7 TeV, and this exclusion is extended to κ above 0.55 for low masses around 1.0 TeV
    corecore