149 research outputs found

    Introduction to research topic – binocular rivalry: a gateway to studying consciousness

    Get PDF
    In 1593, Neapolitan polymath Giambattista della Porta publicly lamented that he was unable to improve his impressive productivity (he had published in areas as diverse as cryptography, hydraulics, pharmacology, optics, and classic fiction). Della Porta was trying to read two books simultaneously by placing both volumes side-by-side, and using each eye independently. To his great surprise, his setup allowed him to only read one book at a time. This discovery arguably marks the first written account of binocular rivalry (Wade, 2000) – a perceptual phenomenon that more than 400 years later still both serves to intrigue as well as to illuminate the limits of scientific knowledge. At first glance, binocular rivalry is an oddball. In every day vision, our eyes receive largely matching views of the world. The brain combines the two images into a cohesive scene, and concurrently, perception is stable. However, when showing two very different images (such as two different books) to each eye, the brain resolves the conflict by adopting a “diplomatic” strategy. Rather than mixing the views of the two eyes into an insensible visual percept, observers perceive a dynamically changing series of perceptual snapshots, with one eye’s view dominating for a few seconds before being replaced by its rival from the other eye. With prolonged viewing of a rivalrous stimulus, one inevitably experiences a sequence of subjective perceptual reversals, separated by random time intervals, and this process continues for as long as the sensory conflict is present

    Cellular mechanisms underlying the effects of an early experience on cognitive abilities and affective states

    Get PDF
    In the present study we investigated the effects of neonatal handling, an animal model of early experience, on spatial learning and memory, on hippocampal glucocorticoid (GR), mineralocorticoid (MR) and type 1A serotonin (5-HT1A) receptors, as well as brain derived neurotrophic factor (BDNF), and on circulating leptin levels, of male rats. METHOD: Spatial learning and memory following an acute restraint stress (30 min) were assessed in the Morris water maze. Hippocampal GR, MR and BDNF levels were determined immunocytochemically. 5-HT1A receptors were quantified by in vitro binding autoradiography. Circulating leptin levels, following a chronic forced swimming stress, were measured by radioimmunoassay (RIA). Data were statistically analyzed by analysis of variance (ANOVA). RESULTS: Neonatal handling increased the ability of male rats for spatial learning and memory. It also resulted in increased GR/MR ratio, BDNF and 5-HT1A receptor levels in the hippocampus. Furthermore, leptin levels, body weight and food consumption during chronic forced swimming stress were reduced as a result of handling. CONCLUSION: Neonatal handling is shown to have a beneficial effect in the males, improving their cognitive abilities. This effect on behavior could be mediated by the handling-induced increase in hippocampal GR/MR ratio and BDNF levels. The handling-induced changes in BDNF and 5-HT1A receptors could underlie the previously documented effect of handling in preventing "depression". Furthermore, handling is shown to prevent other maladaptive states such as stress-induced hyperphagia, obesity and resistance to leptin

    Cortical Microcircuit Dynamics Mediating Binocular Rivalry: The Role of Adaptation in Inhibition

    Get PDF
    Perceptual bistability arises when two conflicting interpretations of an ambiguous stimulus or images in binocular rivalry (BR) compete for perceptual dominance. From a computational point of view, competition models based on cross-inhibition and adaptation have shown that noise is a crucial force for rivalry, and operates in balance with adaptation. In particular, noise-driven transitions and adaptation-driven oscillations define two dynamical regimes and the system explains the observed alternations in perception when it operates near their boundary. In order to gain insights into the microcircuit dynamics mediating spontaneous perceptual alternations, we used a reduced recurrent attractor-based biophysically realistic spiking network, well known for working memory, attention, and decision making, where a spike-frequency adaptation mechanism is implemented to account for perceptual bistability. We thus derived a consistently reduced four-variable population rate model using mean-field techniques, and we tested it on BR data collected from human subjects. Our model accounts for experimental data parameters such as mean time dominance, coefficient of variation, and gamma distribution fit. In addition, we show that our model operates near the bifurcation that separates the noise-driven transitions regime from the adaptation-driven oscillations regime, and agrees with Levelt’s second revised and fourth propositions. These results demonstrate for the first time that a consistent reduction of a biophysically realistic spiking network of leaky integrate-and-fire neurons with spike-frequency adaptation could account for BR. Moreover, we demonstrate that BR can be explained only through the dynamics of competing neuronal pools, without taking into account the adaptation of inhibitory interneurons. However, the adaptation of interneurons affects the optimal parametric space of the system by decreasing the overall adaptation necessary for the bifurcation to occur, and introduces oscillations in the spontaneous state

    Content-specific activity in frontoparietal and default-mode networks during prior-guided visual perception

    Get PDF
    How prior knowledge shapes perceptual processing across the human brain, particularly in the frontoparietal (FPN) and default-mode (DMN) networks, remains unknown. Using ultra-high-field (7T) functional magnetic resonance imaging (fMRI), we elucidated the effects that the acquisition of prior knowledge has on perceptual processing across the brain. We observed that prior knowledge significantly impacted neural representations in the FPN and DMN, rendering responses to individual visual images more distinct from each other, and more similar to the image-specific prior. In addition, neural representations were structured in a hierarchy that remained stable across perceptual conditions, with early visual areas and DMN anchored at the two extremes. Two large-scale cortical gradients occur along this hierarchy: first, dimensionality of the neural representational space increased along the hierarchy; second, prior’s impact on neural representations was greater in higher-order areas. These results reveal extensive and graded influences of prior knowledge on perceptual processing across the brain

    Denial of Reward in the Neonate Shapes Sociability and Serotonergic Activity in the Adult Rat

    Get PDF
    BACKGROUND: Manipulations of the early environment are linked to long-lasting alterations of emotionality and social capabilities. Denial of rewarding mother-pup interactions in early life of rats could serve as model for child neglect. Negative consequences for social competence in later life, accompanied by changes in the serotonergic system would be expected. In contrast, rewarding mother-pup contact should promote adequate social abilities. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats trained in a T-maze during postnatal days 10-13 under denial (DER) or permission (RER) of maternal contact were tested for play behavior in adolescence and for coping with defeat in adulthood. We estimated serotonin (5-HT) levels in the brain under basal conditions and following defeat, as well as serotonin receptor 1A (5-HT1A) and serotonin transporter (SERT) expression. DER rats exhibited increased aggressive-like play behavior in adolescence (i.e. increased nape attacks, p<0.0001) and selected a proactive coping style during defeat in adulthood (higher sum of proactive behaviors: number of attacks, flights, rearings and defensive upright posture; p = 0.011, p<0.05 vs RER, non-handled-NH). In adulthood, they had lower 5-HT levels in both the prefrontal cortex (p<0.05 vs RER) and the amygdala (p<0.05 vs NH), increased 5-HT levels following defeat (PFC p<0.0001) and decreased serotonin turnover (amygdala p = 0.008). The number of 5-HT1A immunopositive cells in the CA1 hippocampal area was increased (p<0.05 DER, vs RER, NH); SERT levels in the amygdala were elevated (p<0.05 vs RER, NH), but were lower in the prefrontal cortex (p<0.05 vs NH). CONCLUSIONS/SIGNIFICANCE: Denial of expected maternal reward early in life negatively affects sociability and the serotonergic system in a complex manner. We propose that our animal model could contribute to the identification of the neurobiological correlates of early neglect effects on social behavior and coping with challenges, but also in parallel with the effects of a rewarding early-life environment

    Visually Driven Activation in Macaque Areas V2 and V3 without Input from the Primary Visual Cortex

    Get PDF
    Creating focal lesions in primary visual cortex (V1) provides an opportunity to study the role of extra-geniculo-striate pathways for activating extrastriate visual cortex. Previous studies have shown that more than 95% of neurons in macaque area V2 and V3 stop firing after reversibly cooling V1 [1], [2], [3]. However, no studies on long term recovery in areas V2, V3 following permanent V1 lesions have been reported in the macaque. Here we use macaque fMRI to study area V2, V3 activity patterns from 1 to 22 months after lesioning area V1. We find that visually driven BOLD responses persist inside the V1-lesion projection zones (LPZ) of areas V2 and V3, but are reduced in strength by ∼70%, on average, compared to pre-lesion levels. Monitoring the LPZ activity over time starting one month following the V1 lesion did not reveal systematic changes in BOLD signal amplitude. Surprisingly, the retinotopic organization inside the LPZ of areas V2, V3 remained similar to that of the non-lesioned hemisphere, suggesting that LPZ activation in V2, V3 is not the result of input arising from nearby (non-lesioned) V1 cortex. Electrophysiology recordings of multi-unit activity corroborated the BOLD observations: visually driven multi-unit responses could be elicited inside the V2 LPZ, even when the visual stimulus was entirely contained within the scotoma induced by the V1 lesion. Restricting the stimulus to the intact visual hemi-field produced no significant BOLD modulation inside the V2, V3 LPZs. We conclude that the observed activity patterns are largely mediated by parallel, V1-bypassing, subcortical pathways that can activate areas V2 and V3 in the absence of V1 input. Such pathways may contribute to the behavioral phenomenon of blindsight

    The coming decade of digital brain research: a vision for neuroscience at the intersection of technology and computing

    Get PDF
    In recent years, brain research has indisputably entered a new epoch, driven by substantial methodological advances and digitally enabled data integration and modelling at multiple scales— from molecules to the whole brain. Major advances are emerging at the intersection of neuroscience with technology and computing. This new science of the brain combines high-quality research, data integration across multiple scales, a new culture of multidisciplinary large-scale collaboration and translation into applications. As pioneered in Europe’s Human Brain Project (HBP), a systematic approach will be essential for meeting the coming decade’s pressing medical and technological challenges. The aims of this paper are to: develop a concept for the coming decade of digital brain research, discuss this new concept with the research community at large, to identify points of convergence, and derive therefrom scientific common goals; provide a scientific framework for the current and future development of EBRAINS, a research infrastructure resulting from the HBP’s work; inform and engage stakeholders, funding organisations and research institutions regarding future digital brain research; identify and address the transformational potential of comprehensive brain models for artificial intelligence, including machine learning and deep learning; outline a collaborative approach that integrates reflection, dialogues and societal engagement on ethical and societal opportunities and challenges as part of future neuroscience research
    corecore