24 research outputs found

    The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β

    Get PDF
    The transcription factor BMAL1 is a clock protein that generates daily or circadian rhythms in physiological functions including the inflammatory response of macrophages. Intracellular metabolic pathways direct the macrophage inflammatory response, however whether the clock is impacting intracellular metabolism to direct this response is unclear. Specific metabolic reprogramming of macrophages controls the production of the potent pro-inflammatory cytokine IL-1β. We now describe that the macrophage molecular clock, through Bmal1, regulates the uptake of glucose, its flux through glycolysis and the Krebs cycle, including the production of the metabolite succinate to drive Il-1β production. We further demonstrate that BMAL1 modulates the level and localisation of the glycolytic enzyme PKM2, which in turn activates STAT3 to further drive Il-1β mRNA expression. Overall, this work demonstrates that BMAL1 is a key metabolic sensor in macrophages, and its deficiency leads to a metabolic shift of enhanced glycolysis and mitochondrial respiration, leading to a heightened pro-inflammatory state. These data provide insight into the control of macrophage driven inflammation by the molecular clock, and the potential for time-based therapeutics against a range of chronic inflammatory diseases

    Glutathione Transferase Omega-1 Regulates NLRP3 Inflammasome Activation through NEK7 Deglutathionylation

    Get PDF
    The NLRP3 inflammasome is a cytosolic complex sensing phagocytosed material and various damage-associated molecular patterns, triggering production of the pro-inflammatory cytokines interleukin-1 beta (IL)-1β and IL-18 and promoting pyroptosis. Here, we characterize glutathione transferase omega 1-1 (GSTO1-1), a constitutive deglutathionylating enzyme, as a regulator of the NLRP3 inflammasome. Using a small molecule inhibitor of GSTO1-1 termed C1-27, endogenous GSTO1-1 knockdown, and GSTO1-1−/− mice, we report that GSTO1-1 is involved in NLRP3 inflammasome activation. Mechanistically, GSTO1-1 deglutathionylates cysteine 253 in NIMA related kinase 7 (NEK7) to promote NLRP3 activation. We therefore identify GSTO1-1 as an NLRP3 inflammasome regulator, which has potential as a drug target to limit NLRP3-mediated inflammation.We would like to acknowledge the following grants: the National Health and Medical Research Council of Australia (NHMRC) is thanked for Project Grant APP1124673 to P.G.B., M.G.C., and L.A.J.O.; Principal Research Fellowship 1117602 to J.B.B.; and NHMRC Project Grant APP1156455 to J.B.B., P.G.B., and M.G.C. The O’Neill laboratory acknowledges the following grant support: European Research Council (ECFP7-ERC-MICROINNATE) and Science Foundation Ireland Investigator Award (SFI 12/IA/1531)

    How the redox state regulates immunity

    Get PDF
    Oxidative stress is defined as an imbalance beween the levels of reactive oxygen species (ROS) and antioxidant defences. The view of oxidative stress as a cause of cell damage has evolved over the past few decades to a much more nuanced view of the role of oxidative changes in cell physiology. This is no more evident than in the field of immunity, where oxidative changes are now known to regulate many aspects of the immune response, and inflammatory pathways in particular. Our understanding of redox regulation of immunity now encompasses not only increases in reactive oxygen and nitrogen species, but also changes in the activities of oxidoreductase enzymes. These enzymes are important regulators of immune pathways both via changes in their redox activity, but also via other more recently identified cytokine-like functions. The emerging picture of redox regulation of immune pathways is one of increasing complexity and while therapeutic targeting of the redox environment to treat inflammatory disease is a possibility, any such strategy is likely to be more nuanced than simply inhibiting ROS production

    Pyruvate kinase M2: a potential target for regulating inflammation

    Get PDF
    Pyruvate kinase (PK) is the enzyme responsible for catalyzing the last step of glycolysis. Of the four PK isoforms expressed in mammalian cells, PKM2 has generated the most interest due to its impact on changes in cellular metabolism observed in cancer as well as in activated immune cells. As our understanding of dysregulated metabolism in cancer develops, and in light of the growing field of immunometabolism, intense efforts are in place to define the mechanism by which PKM2 regulates the metabolic profile of cancer as well as of immune cells. The enzymatic activity of PKM2 is heavily regulated by endogenous allosteric effectors as well as by intracellular signalling pathways, affecting both the enzymatic activity of PKM2 as a pyruvate kinase and the regulation of the recently described non-canonical nuclear functions of PKM2. We here review the current literature on PKM2 and its regulation, and discuss the potential for PKM2 as a therapeutic target in inflammatory and metabolic disorders

    Glucocorticoids inhibit IRF3 phosphorylation in response to Toll-like

    No full text
    Phosphorylation of the transcription factor interferon regulatory factor 3 (IRF3) is essential for the induction of promoters which contain the interferon-stimulated response element (ISRE). IRF3 can be activated by Toll-like receptor 3 (TLR3) in response to the double-stranded RNA mimic poly(I-C) and by TLR4 in response to lipopolysaccharide (LPS). Here we have analyzed the effect of the glucocorticoid dexamethasone on this response. Dexamethasone inhibited the induction of the ISRE-dependent gene RANTES (regulated on activation normal T cell expressed and secreted) in both U373-CD14 cells and human peripheral blood mononuclear cells and also an ISRE luciferase construct, activated by either TLR3 or TLR4. It also inhibited increased phosphorylation of IRF3 in its N terminus in response to LPS and in its C terminus on Ser-396 in response to either poly(I-C) or LPS. Several dexamethasone-induced phosphatases were tested for possible involvement in these effects; MKP1 did not appear to be involved, although MKP2 and MKP5 both partially inhibited induction of the ISRE, pointing to their possible involvement in the effect of dexamethasone. Importantly, we found that dexamethasone could inhibit TBK1 kinase activity and TBK1 phosphorylation on Ser-172, both of which are required for IRF3 phosphorylation downstream of TLR3 and TLR4 stimulation. Our study, therefore, demonstrates that TBK1 is a target for dexamethasone, common to both TLR3 and TLR4 signaling

    NF-kappaB activation by the Toll-IL-1 receptor domain-containing protein Mal is regulated by caspase-1

    No full text
    Toll-like receptors (TLRs)-2 and -4 are important proteins in innate immunity, recognizing microbial products and eliciting host defense responses. Both use the adapter proteins MyD88 and MyD88 adapter-like (Mal) to activate signaling pathways. Here we report that Mal but not MyD88 interacts with caspase-1, the enzyme that processes the precursors of the proinflammatory cytokines IL-1? and IL-18. The interaction was found in a yeast two-hybrid screen and was confirmed by reciprocal GST pull-downs and coimmunoprecipitation of endogenous proteins. We were unable to implicate Mal in regulating caspase-1 activation. However, we found that Mal was cleaved by caspase-1 and that inhibition of caspase-1 activity blocked TLR2- and TLR4-mediated NF-?B and p38 MAP kinase activation but not IL-1 or TLR7 signaling, which are Mal independent. These responses, and the induction of TNF, were also attenuated in caspase-1-deficient cells. Finally, unlike wild-type Mal, a mutant Mal, which was not cleaved by caspase-1, was unable to signal and acted as a dominant negative inhibitor of TLR2 and TLR4 signaling. Our study therefore reveals a role for caspase-1 in the regulation of TLR2 and TLR4 signaling pathways via an effect on Mal. This functional interaction reveals an important aspect of the coordination between TLRs and caspase-1 during the innate response to pathogens

    A Common Variant in the Adaptor Mal Regulates Interferon Gamma Signaling.

    No full text
    Humans that are heterozygous for the common S180L polymorphism in the Toll-like receptor (TLR) adaptor Mal (encoded by TIRAP) are protected from a number of infectious diseases, including tuberculosis (TB), whereas those homozygous for the allele are at increased risk. The reason for this difference in susceptibility is not clear. We report that Mal has a TLR-independent role in interferon-gamma (IFN-?) receptor signaling. Mal-dependent IFN-? receptor (IFNGR) signaling led to mitogen-activated protein kinase (MAPK) p38 phosphorylation and autophagy. IFN-? signaling via Mal was required for phagosome maturation and killing of intracellular Mycobacterium tuberculosis (Mtb). The S180L polymorphism, and its murine equivalent S200L, reduced the affinity of Mal for the IFNGR, thereby compromising IFNGR signaling in macrophages and impairing responses to TB. Our findings highlight a role for Mal outside the TLR system and imply that genetic variation in TIRAP may be linked to other IFN-?-related diseases including autoimmunity and cancer

    Pyruvate Kinase M2 Is Required for the Expression of the Immune Checkpoint PD-L1 in Immune Cells and Tumors

    No full text
    Blocking interaction of the immune checkpoint receptor PD-1 with its ligand PD-L1 is associated with good clinical outcomes in a broad variety of malignancies. High levels of PD-L1 promote tumor growth by restraining CD8+ T-cell responses against tumors. Limiting PD-L1 expression and function is therefore critical for allowing the development of antitumor immune responses and effective tumor clearance. Pyruvate kinase isoform M2 (PKM2) is also a key player in regulating cancer as well as immune responses. PKM2 catalyzes the final rate-limiting step of glycolysis. Furthermore, PKM2 as a dimer translocates to the nucleus, where it stimulates hypoxia-inducible factor 1α (Hif-1α) transactivation domain function and recruitment of p300 to the hypoxia response elements (HRE) of Hif-1α target genes. Here, we provide the first evidence of a role for PKM2 in regulating the expression of PD-L1 on macrophages, dendritic cells (DCs), T cells, and tumor cells. LPS-induced expression of PD-L1 in primary macrophages was inhibited by the PKM2 targeting compound TEPP-46. Furthermore, RNA silencing of PKM2 inhibited LPS-induced PD-L1 expression. This regulation occurs through direct binding of PKM2 and Hif-1α to HRE sites on the PD-L1 promoter. Moreover, TEPP-46 inhibited expression of PD-L1 on macrophages, DCs, and T cells as well as tumor cells in a mouse CT26 cancer model. These findings broaden our understanding of how PKM2 may contribute to tumor progression and may explain the upregulation of PD-L1 in the tumor microenvironment

    Anti-inflammation, longevity and viral tolerance

    Get PDF
    Bats are unique among mammals given their ability to fly, apparent tolerance of deadly viruses and extraordinary longevity. We propose that these traits are linked and driven by adaptations of the innate immune system. To explore this hypothesis we challenged macrophages from the greater mouse-eared bat, Myotis myotis and the house mouse, Mus musculus with Toll Like Receptors (TLRs) ligands, lipopolysaccharides, LPS and polyinosinic-polycytidylic acid, Poly(I:C). Macrophages from both species presented a high level of mRNA induction of inferon ß ( INF-ß) , tumor necrosis factor ( TNF) and interleukin-1ß (Il- ß) . However, in bat macrophages, this antiviral, proinflammatory response was balanced by a sustained high-level transcription of the anti-inflammatory cytokine Il-10, which was not observed in mouse, potentially resulting from adaptive regulation in bats. Additionally, phylogenomic selection tests across the basal divergences in mammals (n = 39) uncovered bat-specific adaptations in six genes involved in antiviral and proinflammatory signalling. Based on this pilot study, we put forward a hypothesis that bats may have evolved unique anti-inflamma tory responses to neutralize proinflammatory stimuli resulting from flight. This in turn may drive their extraordinary longevity and viral tolerance by limiting inflammation driven ageing and infection-induced immunopathology. Further data from other individuals and bat species are required to advance this intriguing hypothesis.European Research CouncilUniversity College Dublinhttp://www.bioone.org/loi/act
    corecore