165 research outputs found

    Tail reconnection in the global magnetospheric context : Vlasiator first results

    Get PDF
    The key dynamics of the magnetotail have been researched for decades and have been associated with either three-dimensional (3-D) plasma instabilities and/or magnetic reconnection. We apply a global hybrid-Vlasov code, Vlasiator, to simulate reconnection self-consistently in the ion kinetic scales in the noon-midnight meridional plane, including both dayside and nightside reconnection regions within the same simulation box. Our simulation represents a numerical experiment, which turns off the 3-D instabilities but models ion-scale reconnection physically accurately in 2-D. We demonstrate that many known tail dynamics are present in the simulation without a full description of 3-D instabilities or without the detailed description of the electrons. While multiple reconnection sites can coexist in the plasma sheet, one reconnection point can start a global reconfiguration process, in which magnetic field lines become detached and a plasmoid is released. As the simulation run features temporally steady solar wind input, this global reconfiguration is not associated with sudden changes in the solar wind. Further, we show that lobe density variations originating from dayside reconnection may play an important role in stabilising tail reconnection.Peer reviewe

    Energy conversion at the Earth's magnetopause using single and multispacecraft methods

    Get PDF
    We present a small statistical data set, where we investigate energy conversion at the magnetopause using Cluster measurements of magnetopause crossings. The Cluster observations of magnetic field, plasma velocity, current density and magnetopause orientation are needed to infer the energy conversion at the magnetopause. These parameters can be inferred either from accurate multispacecraft methods, or by using single-spacecraft methods. Our final aim is a large statistical study, for which only single-spacecraft methods can be applied. The Cluster mission provides an opportunity to examine and validate single-spacecraft methods against the multispacecraft methods. For single-spacecraft methods, we use the Generic Residue Analysis (GRA) and a standard one-dimensional current density method using magnetic field measurements. For multispacecraft methods, we use triangulation (Constant Velocity Approach - CVA) and the curlometer technique. We find that in some cases the single-spacecraft methods yield a different sign for the energy conversion than compared to the multispacecraft methods. These sign ambiguities arise from the orientation of the magnetopause, choosing the interval to be analyzed, large normal current and time offset of the current density inferred from the two methods. By using the Finnish Meteorological Institute global MHD simulation GUMICS-4, we are able to determine which sign is likely to be correct, introducing an opportunity to correct the ambiguous energy conversion values. After correcting the few ambiguous cases, we find that the energy conversion estimated from single-spacecraft methods is generally lower by 70% compared to the multispacecraft methods.Peer reviewe

    Contributions to Loss Across the Magnetopause During an Electron Dropout Event

    Get PDF
    Dropout events are dramatic decreases in radiation belt electron populations that can occur in as little as 30 minutes. Loss to magnetopause due to a combination of magnetopause shadowing and outward radial transport plays a significant role in these events. We examine the dropout of relativistic electron populations during the October 2012 geomagnetic storm using simulated electron phase space density, evaluating the contribution of different processes to losses across the magnetopause. We compare loss contribution from outward transport calculated using a standard empirical radial diffusion model that assumes a dipolar geomagnetic field to an event-specific radial diffusion model evaluated with a non-dipolar geomagnetic field. We additionally evaluate the contribution of Shabansky type 1 particles, which bounce along magnetic field lines with local equatorial maxima, to the loss calculated during this event. We find that the empirical radial diffusion model with a dipolar background field underestimates the contribution of radial diffusion to this dropout event by up to 10% when compared to the event-specific, non-dipolar radial diffusion model. We additionally find that including Shabansky type 1 particles in the initial electron phase space density, that is, allowing some magnetic field lines distorted from the typical single-minima configuration in drift shell construction, increases the calculated loss by an average of 0.75%. This shows that the treatment of the geomagnetic field significantly impacts the calculation of electron losses to the magnetopause during dropout events, with the non-dipolar treatment of radial diffusion being essential to accurately quantify the loss of outer radiation belt populations.Peer reviewe

    Ion Acceleration by Flux Transfer Events in the Terrestrial Magnetosheath

    Get PDF
    We report ion acceleration by flux transfer events in the terrestrial magnetosheath in a global two-dimensional hybrid-Vlasov polar plane simulation of Earth's solar wind interaction. In the model we find that propagating flux transfer events created in magnetic reconnection at the dayside magnetopause drive fast-mode bow waves in the magnetosheath, which accelerate ions in the shocked solar wind flow. The acceleration at the bow waves is caused by a shock drift-like acceleration process under stationary solar wind and interplanetary magnetic field upstream conditions. Thus, the energization is not externally driven but results from plasma dynamics within the magnetosheath. Energetic proton populations reach the energy of 30 keV, and their velocity distributions resemble time-energy dispersive ion injections observed by the Cluster spacecraft in the magnetosheath.Peer reviewe

    Fast plasma sheet flows and X line motion in the Earth's magnetotail: results from a global hybrid-Vlasov simulation

    Get PDF
    Fast plasma flows produced as outflow jets from reconnection sites or X lines are a key feature of the dynamics in the Earth's magnetosphere. We have used a polar plane simulation of the hybrid-Vlasov model Vlasiator, driven by steady southward interplanetary magnetic field and fast solar wind, to study fast plasma sheet ion flows and related magnetic field structures in the Earth's magnetotail. In the simulation, lobe reconnection starts to produce fast flows after the increasing pressure in the lobes has caused the plasma sheet to thin sufficiently. The characteristics of the earthward and tailward fast flows and embedded magnetic field structures produced by multi-point tail reconnection are in general agreement with spacecraft measurements reported in the literature. The structuring of the flows is caused by internal processes: interactions between major X points determine the earthward or tailward direction of the flow, while interactions between minor X points, associated with leading edges of magnetic islands carried by the flow, induce local minima and maxima in the flow speed. Earthward moving flows are stopped and diverted duskward in an oscillatory (bouncing) manner at the transition region between tail-like and dipolar magnetic fields. Increasing and decreasing dynamic pressure of the flows causes the transition region to shift earthward and tailward, respectively. The leading edge of the train of earthward flow bursts is associated with an earthward propagating dipolarization front, while the leading edge of the train of tailward flow bursts is associated with a tailward propagating plasmoid. The impact of the dipolarization front with the dipole field causes magnetic field variations in the Pi2 range. Major X points can move either earthward or tailward, although tailward motion is more common. They are generally not advected by the ambient flow. Instead, their velocity is better described by local parameters, such that an X point moves in the direction of increasing reconnection electric field strength. Our results indicate that ion kinetics might be sufficient to describe the behavior of plasma sheet bulk ion flows produced by tail reconnection in global near-Earth simulations.</p

    Modeling the magnetospheric X-ray emission from solar wind charge exchange with verification from XMM-Newton observations

    Get PDF
    An MHD‐based model of terrestrial solar wind charge exchange (SWCX) is created and compared to 19 case study observations in the 0.5–0.7 keV emission band taken from the European Photon Imaging Cameras on board XMM‐Newton. This model incorporates the Global Unified Magnetosphere‐Ionosphere Coupling Simulation‐4 MHD code and produces an X‐ray emission datacube from O7+ and O8+ emission lines around the Earth using in situ solar wind parameters as the model input. This study details the modeling process and shows that fixing the oxygen abundances to a constant value reduces the variance when comparing to the observations, at the cost of a small accuracy decrease in some cases. Using the ACE oxygen data returns a wide ranging accuracy, providing excellent correlation in a few cases and poor/anticorrelation in others. The sources of error for any user wishing to simulate terrestrial SWCX using an MHD model are described here and include mask position, hydrogen to oxygen ratio in the solar wind, and charge state abundances. A dawn‐dusk asymmetry is also found, similar to the results of empirical modeling. Using constant oxygen parameters, magnitudes approximately double that of the observed count rates are returned. A high accuracy is determined between the model and observations when comparing the count rate difference between enhanced SWCX and quiescent periods

    Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation

    Get PDF
    In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.Peer reviewe
    corecore