89 research outputs found

    Towards a portable platform integrated with multi-spectral non-contact probes for delineating normal and breast cancer tissue based on near-infrared spectroscopy

    Get PDF
    Currently, the confirmation of diagnosis of breast cancer is made by microscopic examination of an ultra-thin slice of a needle biopsy specimen. This slice is conventionally formalin-fixed and stained with hematoxylin-eosin and visually examined under a light microscope. This process is labor-intensive and requires highly skilled doctors (pathologists). In this paper, we report a novel tool based on near-infrared spectroscopy (Spectral-IRDx) which is a portable, non-contact, and cost-effective system and could provide a rapid and accurate diagnosis of cancer. The Spectral-IRDx tool performs absorption spectroscopy at near-infrared (NIR) wavelengths of 850 nm, 935 nm, and 1060 nm. We measure normalized detected voltage (Vdn) with the tool in 10 deparaffinized breast biopsy tissue samples, 5 of which were cancer (C) and 5 were normal (N) tissues. The difference in Vdn at 935 nm and 1060 nm between cancer and normal tissues is statistically significant with p-values of 0.0038 and 0.0022 respectively. Absorption contrast factor (N/C) of 1.303, 1.551, and 1.45 are observed for 850 nm, 935 nm, and 1060 nm respectively. The volume fraction contrast (N/C) of lipids and collagens are reported as 1.28 and 1.10 respectively. Higher absorption contrast factor (N/C) and volume fraction contrast (N/C) signifies higher concentration of lipids in normal tissues as compared to cancerous tissues, a basis for delineation. These preliminary results support the envisioned concept for non-invasive and non-carcinogenic NIR-based breast cancer diagnostic platform, which will be tested using a larger number of samples

    Thermo-optic measurements and their inter-dependencies for delineating cancerous breast biopsy tissue from adjacent normal

    Get PDF
    The histopathological diagnosis of cancer is the current gold standard to differentiate normal from cancerous tissues. We propose a portable platform prototype to characterize the tissue's thermal and optical properties, and their inter-dependencies to potentially aid the pathologist in making an informed decision. The measurements were performed on 10 samples from five subjects, where the cancerous and adjacent normal were extracted from the same patient. It was observed that thermal conductivity (k) and reduced-scattering-coefficient (μ's) for both the cancerous and normal tissues reduced with the rise in tissue temperature. Comparing cancerous and adjacent normal tissue, the difference in k and μ's (at 940 nm) were statistically significant (p = 7.94e-3), while combining k and μ's achieved the highest statistical significance (6.74e-4). These preliminary results promise and support testing on a large number of samples for rapidly differentiating cancerous from adjacent normal tissues

    Fabrication and characterization of Eri silk fibers-based sponges for biomedical application

    Get PDF
    Cocoon-derived semi-domesticated Eri silk fibers still lack exploitation for tissue engineering applications due to their poor solubility using conventional methods. The present work explores the ability to process cocoon fibers of non-mulberry Eri silk (Samia/Philosamia ricini) into sponges through a green approach using ionic liquid (IL) â 1-buthyl-imidazolium acetate as a solvent. The formation of β-sheet structures during Eri silk/IL gelation was acquired by exposing the Eri silk/IL gels to a saturated atmosphere composed of two different solvents: (i) isopropanol/ethanol (physical stabilization) and (ii) genipin, a natural crosslinker, dissolved in ethanol (chemical crosslinking). The sponges were then obtained by freeze-drying. This approach promotes the formation of both stable and ordered non-crosslinked Eri silk fibroin matrices. Moreover, genipin-crosslinked silk fibroin sponges presenting high height recovery capacity after compression, high swelling degree and suitable mechanical properties for tissue engineering applications were produced. The incorporation of a model drug â ibuprofen â and the corresponding release study from the loaded sponges demonstrated the potential of using these matrices as effective drug delivery systems. The assessment of the biological performance of ATDC5 chondrocyte-like cells in contact with the developed sponges showed the promotion of cell adhesion and proliferation, as well as extracellular matrix production within two weeks of culture. Spongesâ intrinsic properties and biological findings open up their potential use for biomedical applications.The authors SSS, DSC, MBO, NMO acknowledge financial support from Portuguese Foundation for Science and Technology – FCT (Grants SFRH/BPD/45307/2008, SFRH/BPD/85790/2012, SFRH/BD/71396/2010 and SFRH/BD/73172/2010, respectively), ‘‘Fundo Social Europeu” – FSE, and ‘‘Programa Diferencial de Potencial Humano POPH”. This work is also financially supported by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n REGPOT-CT2012-316331-POLARIS and from Fundação para a Ciência e Tecnologia (FCT) through the project ENIGMA – PTDC/EQU-EPR/121491/2010. The laboratory work of SCK is supported by Department of Biotechnology and Indian Council of Medical Research, Govt of India. SCK and RLR acknowledge their short visits either Institutes. SCK is also grateful to 3B´ s Research Group- Biomaterials, Biodegradables and Biomimetics, University of Minho, Portugal for providing facilities during his short visit

    Effective Theory and Breakdown of Conformal Symmetry in a Long-Range Quantum Chain

    Get PDF
    We deal with the problem of studying the symmetries and the effective theories of long-range models around their critical points. A prominent issue is to determine whether they possess (or not) conformal symmetry (CS) at criticality and how the presence of CS depends on the range of the interactions. To have a model, both simple to treat and interesting, where to investigate these questions, we focus on the Kitaev chain with long-range pairings decaying with distance as power-law with exponent alpha. This is a quadratic solvable model, yet displaying non-trivial quantum phase transitions. Two critical lines are found, occurring respectively at a positive and a negative chemical potential. Focusing first on the critical line at positive chemical potential, by means of a renormalization group approach we derive its effective theory close to criticality. Our main result is that the effective action is the sum of two terms: a Dirac action S-D, found in the short-range Ising universality class, and an "anomalous" CS breaking term SAN. While SD originates from low-energy excitations in the spectrum, SAN originates from the higher energy modes where singularities develop, due to the long-range nature of the model. At criticality SAN flows to zero for alpha > 2, while for alpha infinity the ELI is restored. In order to test the validity of the determined effective theory, we compared the two-fermion static correlation functions and the von Neumann entropy obtained from them with the ones calculated on the lattice, finding agreement. These results explain two observed features characteristic of long-range models, the hybrid decay of static correlation functions within gapped phases and the area-law violation for the von Neumann entropy. The proposed scenario is expected to hold in other long-range models displaying quasiparticle excitations in ballistic regime. From the effective theory one can also see that new phases emerge for alpha infinity) model, are not altered. This also shows that the long-range paired Kitaev chain provides an example of a long-range model in which the value of a where the CS is broken does not coincide with the value at which the critical exponents start to differ from the ones of the corresponding short-range model. At variance, for the second critical line, having negative chemical potential, only SAN (So) is present for 1 2). Close to this line, where the minimum of the spectrum coincides with the momentum where singularities develop, the critical exponents change where CS is broken. \ua9 2016 Elsevier Inc

    SHIV-162P3 Infection of Rhesus Macaques Given Maraviroc Gel Vaginally Does Not Involve Resistant Viruses

    Get PDF
    Maraviroc (MVC) gels are effective at protecting rhesus macaques from vaginal SHIV transmission, but breakthrough infections can occur. To determine the effects of a vaginal MVC gel on infecting SHIV populations in a macaque model, we analyzed plasma samples from three rhesus macaques that received a MVC vaginal gel (day 0) but became infected after high-dose SHIV-162P3 vaginal challenge. Two infected macaques that received a placebo gel served as controls. The infecting SHIV-162P3 stock had an overall mean genetic distance of 0.294±0.027%; limited entropy changes were noted across the envelope (gp160). No envelope mutations were observed consistently in viruses isolated from infected macaques at days 14–21, the time of first detectable viremia, nor selected at later time points, days 42–70. No statistically significant differences in MVC susceptibilities were observed between the SHIV inoculum (50% inhibitory concentration [IC50] 1.87 nM) and virus isolated from the three MVC-treated macaques (MVC IC50 1.18 nM, 1.69 nM, and 1.53 nM, respectively). Highlighter plot analyses suggested that infection was established in each MVC-treated animal by one founder virus genotype. The expected Poisson distribution of pairwise Hamming Distance frequency counts was observed and a phylogenetic analysis did not identify infections with distinct lineages from the challenge stock. These data suggest that breakthrough infections most likely result from incomplete viral inhibition and not the selection of MVC-resistant variants

    Differential effects of dietary protein sources on postprandial low-grade inflammation after a single high fat meal in obese non-diabetic subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity is a state of chronic low-grade inflammation. Chronic low-grade inflammation is associated with the pathophysiology of both type-2 diabetes and atherosclerosis. Prevention or reduction of chronic low-grade inflammation may be advantageous in relation to obesity related co-morbidity. In this study we investigated the acute effect of dietary protein sources on postprandial low-grade inflammatory markers after a high-fat meal in obese non-diabetic subjects.</p> <p>Methods</p> <p>We conducted a randomized, acute clinical intervention study in a crossover design. We supplemented a fat rich mixed meal with one of four dietary proteins - cod protein, whey isolate, gluten or casein. 11 obese non-diabetic subjects (age: 40-68, BMI: 30.3-42.0 kg/m2) participated and blood samples were drawn in the 4 h postprandial period. Adiponectin was estimated by ELISA methods and cytokines were analyzed by multiplex assay.</p> <p>Results</p> <p>MCP-1 and CCL5/RANTES displayed significant postprandial dynamics. CCL5/RANTES initially increased after all meals, but overall CCL5/RANTES incremental area under the curve (iAUC) was significantly lower after the whey meal compared with the cod and casein meals (<it>P </it>= 0.0053). MCP-1 was initially suppressed after all protein meals. However, the iAUC was significantly higher after whey meal compared to the cod and gluten meals (<it>P </it>= 0.04).</p> <p>Conclusion</p> <p>We have demonstrated acute differential effects on postprandial low grade inflammation of four dietary proteins in obese non-diabetic subjects. CCL5/RANTES initially increased after all meals but the smallest overall postprandial increase was observed after the whey meal. MCP-1 was initially suppressed after all 4 protein meals and the whey meal caused the smallest overall postprandial suppression.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov ID: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00863564">NCT00863564</a></p

    Microfluidic Paper-Based Analytical Devices (μPADs) and Micro Total Analysis Systems (μTAS): Development, Applications and Future Trends

    Get PDF

    Calcium-alleviated salt tolerance in indica rice (Oryza sativa L. spp. indica): Physiological and morphological changes

    No full text
    Abstract Calcium (Ca) is a signaling molecule that plays an active role in regulating various mechanisms involved in recognition and response to abiotic stresses in plants. However, not much has been done to evaluate its role in regulating physiological and biochemical process in response to salt-induced stress. Two rice genotypes, Pokkali salt tolerant and IR29 salt susceptible, grown on liquid Murashige and Skoog medium (MS) supplied by 1.98 mM CaCl 2 (control) were compared to 2 (3.96 mM), 4 (7.92 mM) and 8 (15.84 mM) folds exogenous CaCl 2 pretreatment subsequently exposed to 200 mM NaCl salt stress. Thus, the present investigation evaluated the potential of exogenous calcium chloride (CaCl 2 ) supply in improving the growth performance and photosynthetic ability in salt stressed rice. In IR29 salt susceptible rice, leaf area of salt-stressed seedling was significantly recovered by exogenous application of 7.92 mM CaCl 2 , which was greater by 1.38-folds over that in 1.98 mM CaCl 2 application. Exogenous CaCl 2 (7.92 mM) enhanced proline accumulation in both Pokkali (3.26 mol g -1 FW) and IR29 (4.37 mol g -1 FW) genotypes, and reduced relative electrolyte leakage thereby indicating its positive role in membrane stability. Treatment of 7.92 mM CaCl 2 significantly enhanced the photosynthetic abilities, including maximum quantum yield of PSII (F v /F m ), photon yield of PSII ( PSII ), photochemical quenching (qP) and net photosynthetic rate (P n ), in two genotypes of salt-stressed rice seedlings, especially in salt susceptible IR29 genotypes. The study concludes that an exogenous application of 7.92mM CaCl 2 significantly enhanced the photosynthetic abilities and overall growth performances in the photoautotrophic growth of salt-stressed rice seedlings. Exogenous calcium in the culture media may absorb by root tissues, transfer to whole plant and function as salt defense mechanisms including calcium signaling in the abscisic acid (ABA) regulation system and calcium sensing in stomatal closure when plant subjected to salt stress. Keywords: calcium, salinity alleviation, leaf area, photosynthetic abilities, salt stress. Abbreviations:CaCl 2 _calcium chloride; Chl a _chlorophyll a; Chl b _chlorophyll b; F v /F m _maximum quantum yield of PSII; MS_Murashige and Skoog; P n _net photosynthetic rate; qP_photochemical quenching; PSII _photon yield of PSII; PPFD_photosynthetic photon flux density; REL_relative electrolyte leakage; C x+c _total carotenoid

    Physio-biochemical and morphological characters of halophyte legume shrub, Acacia ampliceps seedlings in response to salt stress under greenhouse

    Get PDF
    Acacia ampliceps (salt wattle), a leguminous shrub, has been introduced in salt-affected areas in northeast of Thailand for remediation of saline soils. However, the defense mechanisms underlying salt tolerance A. ampliceps are unknown. We investigated various physio-biochemical and morphological attributes of A. ampliceps in response to varying levels of salt treatment (200 to 600 mM NaCl). Seedlings of A. ampliceps (252 cm in plant height) raised from seeds were treated with 200 mM (mild stress), 400 and 600 mM (extreme stress) of salt treatment (NaCl) under greenhouse conditions. Na+ and Ca2+ contents in the leaf tissues increased significantly under salt treatment, whereas K+ content declined in salt-stressed plants. Free proline and soluble sugar contents in plant grown under extreme salt stress (600 mM NaCl) for 9 days significantly increased by 28.7 (53.33 mol g1 FW) and 3.2 (42.11 mg g1 DW) folds, respectively over the control, thereby playing a major role as osmotic adjustment. Na+ enrichment in the phyllode tissues of salt-stressed seedlings positively related to total chlorophyll degradation (R2=0.72). Photosynthetic pigments and chlorophyll fluorescence in salt-stressed plants increased under mild salt stress (200 mM NaCl). However, these declined under high level of salinity (400-600 mM NaCl), consequently resulting in reduced net photosynthetic rate (R2=0.81) and plant dry weight (R2= 0.91). The study concludes that A. ampliceps has an osmotic adjustment and Na+ compartmentation as effective salt defense mechanisms, and thus it could be an excellent species to grow in salt-affected soils
    corecore