65 research outputs found

    Schémas d’incisions et de fracture des différents morphotypes de dents adaptés au recueil de pulpes dentaires et à l’analyse d’ADN

    Get PDF
    Les facteurs de risques de contaminations croisées des échantillons de tissus destinés à l’étude de l’ADN ancien sont nombreux. La pulpe dentaire étant mieux protégée mais en faible quantité, nous avons mis au point une technique de fracture des différents morphotypes de dents qui nous permet de recueillir la totalité de la pulpe dans des conditions aseptiques.There are numerous risk factors for cross-contamination of tissue samples for DNA. As dental pulp is better protected but small in amount, we have developed a fracture technique for the different dental morphotypes which allows the total recovery of the pulp in aseptic conditions

    Lower-risk gambling limits : linked analyses across eight countries

    Get PDF
    The Lower Risk Gambling Guidelines project was funded by a grant to the Canadian Centre on Substance Use and Addiction from Mise sur Tois a now defunct, independent, not-for-profit organization that received an annual contribution to conduct safer gambling initiatives from the Quebec crown corporation in charge of conducting and managing gambling in the province of Quebec, Canada. Publisher Copyright: © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.A common public health initiative in many jurisdictions is provision of advice to people to limit gambling to reduce the risk of gambling-related harm. The purpose of this study is to use consistent methodology with existing population-based prevalence surveys of gambling and related harms from different countries to identify quantitative limits for lower risk gambling. Risk curve analyses were conducted with eleven high quality data sets from eight Western countries. Gambling indicators were monthly expenditure, percentage of income spent on gambling, monthly frequency, and number of different types of gambling. Harm indicators included financial, emotional, health, and relationship impacts. Contributing data sets produced limit ranges for each gambling indicator and each harm indicator, which were compared. Gender differences in limit ranges were minor. Modal analysis, an assessment of the mean of the upper and lower range limits, indicated that the risk of harm increases if an individual gambles at these levels or greater: 60to60 to 120 CAD monthly, five to eight times monthly, spends more than 1 to 3% of gross monthly income or plays three to four different gambling types. This study provides further evidence that lower-risk gambling guidelines can be based upon empirically derived limits.Peer reviewe

    The Athena X-ray Integral Field Unit (X-IFU)

    Get PDF
    The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5' equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV up to 7 keV on similar to 5 '' pixels. The X-IFU is based on a large format array of super-conducting molybdenum-gold Transition Edge Sensors cooled at similar to 90 mK, each coupled with an absorber made of gold and bismuth with a pitch of 249 mu m. A cryogenic anti-coincidence detector located underneath the prime TES array enables the non X-ray background to be reduced. A bath temperature of similar to 50 mK is obtained by a series of mechanical coolers combining 15K Pulse Tubes, 4K and 2K Joule-Thomson coolers which pre-cool a sub Kelvin cooler made of a He-3 sorption cooler coupled with an Adiabatic Demagnetization Refrigerator. Frequency domain multiplexing enables to read out 40 pixels in one single channel. A photon interacting with an absorber leads to a current pulse, amplified by the readout electronics and whose shape is reconstructed on board to recover its energy with high accuracy. The defocusing capability offered by the Athena movable mirror assembly enables the X-IFU to observe the brightest X-ray sources of the sky (up to Crab-like intensities) by spreading the telescope point spread function over hundreds of pixels. Thus the X-IFU delivers low pile-up, high throughput (> 50%), and typically 10 eV spectral resolution at 1 Crab intensities, i.e. a factor of 10 or more better than Silicon based X-ray detectors. In this paper, the current X-IFU baseline is presented, together with an assessment of its anticipated performance in terms of spectral resolution, background, and count rate capability. The X-IFU baseline configuration will be subject to a preliminary requirement review that is scheduled at the end of 2018. The X-IFU will be provided by an international consortium led by France, the Netherlands and Italy, with further ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Ireland, Poland, Spain, Switzerland and contributions from Japan and the United States.Peer reviewe

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻¹⁶ W/√Hz

    Detection chain and electronic readout of the QUBIC instrument

    Get PDF
    The Q and U Bolometric Interferometer for Cosmology (QUBIC) Technical Demonstrator (TD) aiming to shows the feasibility of the combination of interferometry and bolometric detection. The electronic readout system is based on an array of 128 NbSi Transition Edge Sensors cooled at 350mK readout with 128 SQUIDs at 1K controlled and amplified by an Application Specific Integrated Circuit at 40K. This readout design allows a 128:1 Time Domain Multiplexing. We report the design and the performance of the detection chain in this paper. The technological demonstrator unwent a campaign of test in the lab. Evaluation of the QUBIC bolometers and readout electronics includes the measurement of I-V curves, time constant and the Noise Equivalent Power. Currently the mean Noise Equivalent Power is ~ 2 x 10⁻¹⁶ W/√Hz

    Planck 2013 results. I. Overview of products and scientific results

    Get PDF

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Full text link
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer, studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory, a versatile observatory designed to address the Hot and Energetic Universe science theme, selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), it aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over an hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR, browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters. Finally we briefly discuss on the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, and touch on communication and outreach activities, the consortium organisation, and finally on the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. (abridged).Comment: 48 pages, 29 figures, Accepted for publication in Experimental Astronomy with minor editin

    The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase

    Get PDF
    The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.The French contribution to X-IFU is funded by CNES, CNRS and CEA. This work has been also supported by ASI (Italian Space Agency) through the Contract 2019-27-HH.0, and by the ESA (European Space Agency) Core Technology Program (CTP) Contract No. 4000114932/15/NL/BW and the AREMBES - ESA CTP No.4000116655/16/NL/BW. This publication is part of grant RTI2018-096686-B-C21 funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”. This publication is part of grant RTI2018-096686-B-C21 and PID2020-115325GB-C31 funded by MCIN/AEI/10.13039/501100011033

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    La photosynthèse et la photoprotection chez Tisochrysis lutea, de la synthèse à l'extraction de fucoxanthine

    No full text
    Fucoxanthin is the most abundant carotenoid in the oceans. It is produced by brown algae, the best producers being microalgae. Among them, the haptophyte microalga Tisochrysis lutea is known for its high fucoxanthin content. In mammalian cells, this pigment has anti-cancer, anti-diabetic, anti- inflammatory, etc. properties. The potential of fucoxanthin as a nutraceutical and as a bioactive molecule in pharmacology is therefore interesting. This thesis initially focuses on the experimental study of the light-harvesting antenna and the photosynthesis and photoprotection genes in T. lutea. Then, the influence of irradiance and nutrients on the bioproduction of fucoxanthin were studied at different scales. Finally, an approach of extraction and purification techniques for the recovery of biomolecules has been proposed, respecting the principles of green chemistry and eco-design. The last part of the thesis integrates the production of biomass with the development of a method for the extraction of pigments from T. lutea with a green solvent, followed by the fractionation and purification of fucoxanthin by centrifugal partition chromatography to achieve a high recovery and purity (>99%) of fucoxanthinLa fucoxanthine est le caroténoïde le plus abondant dans les océans. Elle est produite par les algues brunes, les meilleures productrices étant les microalgues. Parmi eux, la microalgue haptophyte Tisochrysis lutea est connue pour sa forte teneur en fucoxanthine. Dans les cellules de mammifères, ce pigment a des propriétés anticancéreuses, antidiabétiques, anti-inflammatoires, etc. Le potentiel de la fucoxanthine en tant que nutraceutique et en tant que molécule bioactive en pharmacologie est donc intéressant. Cette thèse porte dans un premier temps sur l’étude expérimentale de l’antenne collectrice de lumière et des gènes de la photosynthèse et de la photoprotection chez T. lutea. Puis, l’influence de l'irradiance et des nutriments sur la bioproduction de fucoxanthine ont été étudiés à différentes échelles. Enfin, une approche des techniques d'extraction et de purification pour la récupération des biomolécules a été proposée, dans le respect des principes de la chimie verte et d'éco- conception. La dernière partie de la thèse intègre à la production de biomasse le développement d'une méthode d'extraction de pigments de T. lutea avec un solvant vert, suivie du fractionnement et de la purification de la fucoxanthine par chromatographie de partage centrifuge pour atteindre une récupération et une pureté (>99%) élevées de la fucoxanthin
    corecore