141 research outputs found

    Spin-orbit torques acting upon a perpendicularly-magnetized Py layer

    Full text link
    We show that Py, a commonly-used soft ferromagnetic material with weak anisotropy, can become perpendicularly-magnetized while depositing on Ta buffer layer with Hf or Zr insertion layers (ILs) and MgO capping layer. By using two different approaches, namely harmonic voltage measurement and hysteresis loop shift measurement, the dampinglike spin-orbit torque (DL-SOT) efficiencies from Ta/IL/Py/IL/MgO magnetic heterostructures with perpendicular magnetic anisotropy are characterized. We find that though Ta has a significant spin Hall effect, the DL-SOT efficiencies are small in systems with the Ta/Py interface compared to that obtained from the control sample with the traditional Ta/CoFeB interface. Our results indicate that the spin transparency for the Ta/Py interface is much less than that for the Ta/CoFeB interface, which might be related to the variation of spin mixing conductance for different interfaces

    Deep Learning for Spin-Orbit Torque Characterizations with a Projected Vector Field Magnet

    Full text link
    Spin-orbit torque characterizations on magnetic heterostructures with perpendicular anisotropy are demonstrated on a projected vector field magnet via hysteresis loop shift measurement and harmonic Hall measurement with planar Hall correction. Accurate magnetic field calibration of the vector magnet is realized with the help of deep learning models, which are able to capture the nonlinear behavior between the generated magnetic field and the currents applied to the magnet. The trained models can successfully predict the applied current combinations under the circumstances of magnetic field scans, angle scans, and hysteresis loop shift measurements. The validity of the models is further verified, complemented by the comparison of the spin-orbit torque characterization results obtained from the deep-learning-trained vector magnet system with those obtained from a conventional setup comprised of two separated electromagnets. The damping-like spin-orbit torque (DL-SOT) efficiencies (|ξDL\xi_{DL}|) extracted from the vector magnet and the traditional measurement configuration are consistent, where |ξDL\xi_{DL}| \approx 0.22 for amorphous W and |ξDL\xi_{DL}| \approx 0.02 for α\alpha-W. Our work provides an advanced method to meticulously control a vector magnet and to conveniently perform various spin-orbit torque characterizations

    Caffeic Acid Derivatives Inhibit the Growth of Colon Cancer: Involvement of the PI3-K/Akt and AMPK Signaling Pathways

    Get PDF
    The aberrant regulation of phosphatidylinositide 3-kinases (PI3-K)/Akt, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) signaling pathways in cancer has prompted significant interest in the suppression of these pathways to treat cancer. Caffeic acid (CA) has been reported to possess important anti-inflammatory actions. However, the molecular mechanisms by which CA derivatives including caffeic acid phenethyl ester (CAPE) and caffeic acid phenylpropyl ester (CAPPE), exert inhibitory effects on the proliferation of human colorectal cancer (CRC) cells have yet to be elucidated

    Inflammatory response in serrated precursor lesions of the colon classified according to WHO entities, clinical parameters and phenotype-genotype correlation.

    Get PDF
    Studies on traditional serrated adenoma (TSA) and sessile serrated adenoma with dysplasia (SSA-D) are rare due to the low frequency of these lesions, which are well defined by the latest WHO classification. However, introducing new morphological criteria such as intra-epithelial lymphocytes (IELs) might facilitate colorectal polyp diagnoses. Additionally, the phenotype-genotype correlation needs to be updated as the terminology has repeatedly changed. This study analysed 516 polyps, consisting of 118 classical adenomas (CAD), 116 hyperplastic polyps (HPP), 179 SSAs, 41 SSA-Ds, and 62 TSAs. The lesions were analysed in relation to the patients' clinical parameters including gender, age, localisation, and size. The inflammatory background of the polyps was quantified and BRAF and KRAS mutations as well as MLH1 and CDKN2A promoter methylation were assessed. In multivariate analyses, an increase in IELs was an independent and robust new criterion for the diagnosis of SSA-D (p < 0.001). Superficial erosions and acute neutrophil granulocytes led to reactive changes potentially resembling dysplasia. KRAS and BRAF mutations were associated with CAD/TSA and HPP/SSA, respectively. However, almost half of TSAs had a BRAF mutation and were KRAS wild type. CDKN2A seems to precede MLH1 hyper-methylation within the serrated carcinogenesis model. The genotyping of WHO-based entities - and especially SSA - has sharpened in comparison to previously published data. TSAs can be sub-grouped according to their mutation status. Of note, the higher number of IELs in SSA-D reflects their close relationship to colorectal cancers with micro-satellite instability. Therefore, IELs might represent a new diagnostic tool for SSA-D

    Recent Progress in Electrospun Nanofibres: Reinforcement Effect and Mechanical Performance

    Get PDF
    Composite materials are becoming increasingly important as structural materials for aeronautical and space engineering, naval, automotive, and civil engineering, sporting goods, and other consumer products. Fiber-based reinforcement represents one of the most effective manufacturing strategies for enhancing the mechanical strength and other properties of composite materials. Electrospinning has gained widespread interest in the last two decades because of its ability to fabricate continuous ultrafine nanofibers with unique characteristics. The impact of electrospinning on fiber synthesis and processing, characterization, and applications in drug delivery, nanofiltration, tissue scaffolding, and electronics has been extensively studied in the past. In this article, the authors have focused on a comprehensive review of the mechanical performance and properties of electrospun nanofibers as potential reinforcements as well as their advanced nanocomposites
    corecore