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Abstract

Background: The aberrant regulation of phosphatidylinositide 3-kinases (PI3-K)/Akt, AMP-activated protein kinase (AMPK)
and mammalian target of rapamycin (m-TOR) signaling pathways in cancer has prompted significant interest in the
suppression of these pathways to treat cancer. Caffeic acid (CA) has been reported to possess important anti-inflammatory
actions. However, the molecular mechanisms by which CA derivatives including caffeic acid phenethyl ester (CAPE) and
caffeic acid phenylpropyl ester (CAPPE), exert inhibitory effects on the proliferation of human colorectal cancer (CRC) cells
have yet to be elucidated.

Methodology/Principal Findings: CAPE and CAPPE were evaluated for their ability to modulate these signaling pathways
and suppress the proliferation of CRC cells both in vitro and in vivo. Anti-cancer effects of these CA derivatives were
measured by using proliferation assays, cell cycle analysis, western blotting assay, reporter gene assay and
immunohistochemical (IHC) staining assays both in vitro and in vivo. This study demonstrates that CAPE and CAPPE
exhibit a dose-dependent inhibition of proliferation and survival of CRC cells through the induction of G0/G1 cell cycle arrest
and augmentation of apoptotic pathways. Consumption of CAPE and CAPPE significantly inhibited the growth of colorectal
tumors in a mouse xenograft model. The mechanisms of action included a modulation of PI3-K/Akt, AMPK and m-TOR
signaling cascades both in vitro and in vivo. In conclusion, the results demonstrate novel anti-cancer mechanisms of CA
derivatives against the growth of human CRC cells.

Conclusions: CA derivatives are potent anti-cancer agents that augment AMPK activation and promote apoptosis in human
CRC cells. The structure of CA derivatives can be used for the rational design of novel inhibitors that target human CRC cells.
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Introduction

Colorectal cancer (CRC) is one of the leading causes of cancer

and cancer mortality in many countries [1,2]. In the United States

alone, approximately 50,000 deaths are attributed to this cancer

annually [1,2]. Many studies have indicated that mutations of the

phosphatidylinositide 3-kinase (PI3-K)/Akt and mitogen-activated

protein kinase (MAPK)/extracellular-signal-regulated kinase

(ERK) molecules are commonly observed in various types of

cancer [3,4]. For example, oncogenic activation of PI3-K/Akt

molecules enhances cell proliferation by increasing the cyclin D1

level [5,6]. It is well known that the aberrant expression of the

cyclin D1 and Cdk4 proteins is involved in the proliferation of

CRC cells [7]. Suppression of the PI3-K/Akt and MAPK/ERK

PLOS ONE | www.plosone.org 1 June 2014 | Volume 9 | Issue 6 | e99631

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0099631&domain=pdf


signaling pathways leads to the blockade of cell proliferation and

demonstrates the importance of these signaling cascades in the

control of both cell cycle progression and cell growth during

cancer development [4,8]. Therefore, the PI3-K/Akt and MAPK/

ERK signaling pathways play predominant roles in determining

the fate of tumor growth. Malignant cancer cells detach from the

primary tumor and migrate across structural barriers, including

basement membranes and the surrounding stromal extracellular

matrix (ECM) [9]. Tumor invasion and metastasis both require an

increase in the expression of matrix metalloproteinases (MMPs)

and the degradation of ECM [9,10]. MMPs are zinc-dependent

endopeptidases capable of degrading ECM components [11].

Enzymes such as MMP-9 degrade ECM and create a microen-

vironment that maintains tumor development [10,11].

AMP-activated protein kinase (AMPK) is a fuel-sensing

molecule that functions as a regulator of energy balance [12].

AMPK has been shown to be ubiquitously expressed in

mammalian cells and to be involved in energy homeostasis [13].

An increased adenosine monophosphate (AMP)/adenosine tri-

phosphate (ATP) ratio, reflecting a decrease in the cell’s energy

state, leads to the activation of the AMPK protein by phosphor-

ylation [14]. The augmentation of AMPK activation is thought to

be inversely correlated with cancer risk [15]. Recent studies have

further suggested that the activation of the PI3-K/Akt and

MAPK/ERK signaling molecules is associated with a decreased

level of phosphorylated (activated) AMPK in the course of tumor

progression [16,17]. Additional studies concluded that AMPK

agonists are effective in the treatment of cancer [15,18], while

other studies showed that the lipogenic enzyme fatty acid synthase

(FASN) is regulated by energy intake and plays a crucial role in

carcinogenesis [19]. One recent study reported that FASN

expression is correlated with the growth and progression of

CRC [20]. The phosphorylation (i.e. activation) of Akt was shown

to induce the expression of FASN and to trigger aggressive

malignancy in cancer cells [21]. In contrast, treatment with an

AMPK agonist, leading to the activation of AMPK, suppressed the

expression of FASN and blocked the growth of colorectal tumor

[22–24]. Moreover, epidemiological studies further indicated that

AMPK (PRKAG2) single-nucleotide polymorphism (SNP) is

associated with risk of human CRC [25]. Thus, AMPK-mediated

energy homeostasis has attracted interest in this pathway as a

means of treating human colon cancer.

Many studies have demonstrated that phenolic acid compounds

function as potent antioxidants [26]. Among them, caffeic acid

(CA) is a non-vitamin phenolic compound found largely in

vegetables and fruit. In addition to its antioxidant activity, CA

exerts anti-inflammatory effects in several kinds of cells [27,28].

Recent studies indicated that caffeic acid phenethyl ester (CAPE),

a CA derivative naturally isolated from honeybee propolis, also

exerts its beneficial effects through antioxidant and anti-inflam-

matory activities [29,30]. Furthermore, it has been demonstrated

that CAPE inhibits the proliferation of cancer cells and act as a

potential anti-cancer agent [31,32]. However, there is no report of

the inhibitory effects of CA derivatives on the AMPK pathway

and/or FASN expression during the progression of CRC.

Moreover, the lack of consistent results across numerous studies

and the failure to determine the mechanism of action of the CA

derivatives may explain the difficulty in demonstrating the in vivo

benefits of CA derivative supplementation against CRC. We

investigated, therefore, the inhibitory effects of various CA

derivatives on human CRC cells both in vitro and in vivo. The

results demonstrated that CA derivatives such as CAPE and caffeic

acid phenylpropyl ester (CAPPE) significantly inhibited cellular

proliferation in human CRC cells. CAPE and CAPPE induced cell

cycle arrest through the suppression of the PI3-K/Akt and mTOR

signaling pathways. Furthermore, CA derivatives reduced cellular

ATP levels and suppressed FASN expression. The mechanism of

action was associated in part with an augmentation of the AMPK

pathway. The results of this study suggest that CA derivatives act

as chemopreventive agents against human CRC by modulating

the PI3-K/Akt, mTOR and AMPK signaling pathways both in

vitro and in vivo.

Materials and Methods

Reagents and antibodies
Human colon cancer cells HCT-116 and SW-480 were

purchased from American Type Culture Collection (Walkersville,

MD). The following monoclonal antibodies were purchased from

Cell Signaling Technology, Inc.: Anti- N-cadherin (#4061),

PTEN (#9559), anti-phosphorylation PDK1 (Ser241; #3061),

total-PDK1(#3062), anti-phosphorylation Akt (S473; #4060),

total-Akt (#9272), anti-phosphorylation GSK3a (S21; #9327),

total- GSK3a (4337), anti-phosphorylation GSK3b (S9; #9323),

total- GSK3b (#9315), anti-phosphorylation FOXO3 (T32;

#9464), total- FOXO3 (#12829), total- TSC1 (#6935), total-

TSC2 (#3990), total- LKB1 (#3047), total- 14-3-3 (#8312),anti-

phosphorylation ERK 1/2 (T202/Y204; #9101), total-ERK 1/2

(#9102), anti-phosphorylation AMPKa (T172; #2535), total-

AMPKa (#5832), anti-phosphorylation m-TOR (S2448; #5536),

total-m-TOR (2983), anti-FASN(#3180), anti-NF-kB (p65)

(#3033), anti-Cdk4(#2906), anti-p21waf/cip1(#2947), anti-cyclin

E(#4132), anti-cyclin D1(#2978), anti-c-myc (#9402) and anti-

Lamin A (#2032) (Danvers, MA). The anti- b-actin (# A2066)

antibody and compound C (specific inhibitor of AMPK) were

purchased from Sigma (St Louis, MO). The active Akt (Myr-Akt1,

Addgene plasmid # 9008) and control empty vector (pcDNA3,

Addgene plasmid # 10792) were obtained from Addgene. The

tumor necrosis factor- a (TNF-a) recombinant protein was from

R&D System (Minneapolis, MN). The nuclear Protein Extract

Reagent Kit was purchased from Pierce Biotechnology Inc.

(Lackford, IL). The luminescence ATP detection assay kit (ATPlite

kit) was purchased from Perkin Elmer Life Science (Boston, MA).

The NF-kB response element (NF-kB-RE) plasmid and Dual-

Luciferase Reporter Assay kit were purchased from Promega

(Madison, WI). PI (propidium Iodine) and anti- proliferating cell

nuclear antigen (PCNA) (#610664) monoclonal antibodies were

purchased from BD Biosciences Inc. (Franklin Lakes, NJ). CA

derivatives, including CAPE and CAPPE (Figure 1) were provided

by Dr. Y. H. Kuo (China Medical University). These CA

derivatives were dissolved in dimethyl sulfoxide (DMSO) at a

concentration of 200 mM stock solution and stored at 220uC.

Immediately before the experiment, the stock solution was added

to the cell culture medium, as described previously.

Cell culture
Briefly, human CRC cells were cultured in a 37uC humidified

incubator with 5% CO2 and grown to confluency using fetal

bovine serum (FBS) supplemented RPMI-1640 media. The cells

used in the different experiments have the same passage number.

RPMI-1640 medium was supplemented with 10% heat-inactivat-

ed FBS, 2 mM L-glutamine and 1.5 g/L sodium bicarbonate.

Supplementation with CA derivatives
Human CRC cells were incubated with different concentrations

(0, 5, 10, 20, 50, and 100 mM) of the CA derivatives for 2 h or

24 h. For efficient uptake of the CA derivatives by human colon

cancer cells, these compounds were incorporated into FBS for
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30 min and mixed with the medium. In control groups, cells were

incubated with an equivalent volume of solvent DMSO (final

concentration: 0.05% v/v) as a carrier vehicle.

Assessment of cell proliferation
The MTT (3-[4,5-dimethhylthiaoly]- 2,5-diphenyltetrazolium

bromide) assay was conducted to detect the cell proliferation.

Human CRC cells were seeded in 24-well plates, each well

containing 16105 cells. After 24 h, the culture medium was

replaced by media containing CA derivatives at one of five

concentrations (i.e.,0, 5, 10, 20, 50 and 100 mM) in the presence or

absence of compound C. Transfections of constitutively active Akt

(Myr-Akt1, Addgene plasmid 9008) and empty vector (pcDNA3,

Addgene plasmid 10792) were conducted by using Lipofectamine

LTX transfection reagent. Each concentration was tested in

triplicate. At the end of the experiment, one of the plates was taken

out and fresh MTT (final concentration 0.5 mg/mL in PBS) was

added to each well. After 2 hr incubation, the culture media were

discarded, 200 mL of acidic isopropanol were added to each well

and vibrated to dissolve the depositor. The optical density was

measured at 570 nm with a microplate reader.

Quantitative analysis of cell cycle by flow cytometry
Human colon cancer CRC cells were cultured into 6-well plates

at a density of 16106 cells per well. Before the experiment, cells

were synchronized by culturing them in 0.05% FBS supplemented

RPMI-1640 media overnight until CAPE or CAPPE treatment.

To measure the distribution of the cell cycle, cells were treated

with CAPE or CAPPE (0, 10, 50, 100 mM) for an additional 24 h.

Cells were harvested after treatment with a solution of trypsin and

ethylenediaminetetraacetic acid (EDTA) and suspended with the

binding buffer (16105 cells/mL). Human CRC cells were stained

with PI and analyzed following the manufacturer’s protocol.

Briefly, five microliters of PI were added to the suspended cells and

incubated at room temperature in the dark and analyzed by BD

FACSCanto flow cytometry (BD Biosciences Inc., Franklin Lakes,

NJ). The PI-stained cells were analyzed using accessory software.

Xenograft implanation of tumor cells
To establish the mouse xenograft model, subconfluent cultures

of colon cancer HCT-116 cells were given fresh medium 24 h

before being harvested by a brief treatment with 0.25% trypsin

and 0.02% EDTA. Trypsinization was stopped with medium

containing 10% FBS, and the cells were washed twice and

resuspended in serum-free RPMI 1640 medium. Only single-cell

suspensions with a viability of .90% were used for the injections.

Animals, Diet and CA Derivative Supplementation
Adult (3–4 week old) BALB/C AnN-Foxn1 nude mice (19–22 g)

were obtained from the National Laboratory Animal Center

(Taipei, Taiwan). Mice were maintained under specific pathogen-

free conditions in facilities approved by the National Laboratory

Animal Center in accordance with current regulations and

standards (animal protocol no. 102-142-N). The animal use

protocol listed above has been reviewed and approved by the

Institutional Animal Care and Use Committee at China Medical

University. The animal study was conducted according to the

national guideline and the approved animal protocol in order to

maintain animal welfare and ameliorate suffering in the experi-

mental animals. During the entire experimental period, mice were

fed a standard Lab 5010 Diet purchased from LabDiet Inc. (St.

Louis, MO, USA). The standard diet contains crude fat (13.5%

total dietary energy), protein (27.5%) and carbohydrate (59%), and

had no detectable CA derivatives, as indicated by the supplier.

Mice that had been anesthetized with an inhalation of isofluorane

were placed in a supine position. The mice were subcutaneously

(s.c.) injected with human colon cancer HCT-116 cells (16106/

0.1 ml medium) into the right flank of each BALB/C AnN-Foxn1

nude mouse. A well-localized bleb was considered to be a sign of a

technically satisfactory injection.

After the inoculation, mice were divided into three subgroups

(n = 6 per group). CA derivatives were given to the experimental

animals by gavage once a day at a total volume 0.15 mL. The

CAPE and CAPPE groups each received a daily oral dose of CA

derivatives dissolved in corn oil (4% w/w) at 50 nmol/kg of BW

once per day. The tumor control group received corn oil (4% w/

w) once per day only. Normal mice without tumor- inoculation

were used as the negative control. Tumor volume was calculated

Figure 1. Chemical structure of the CA derivatives. The CA derivatives are depicted in Fig. 1. (A) CAPE and (B) CAPPE differ in the elongation of
the alkyl side chain of the caffeic acid ester.
doi:10.1371/journal.pone.0099631.g001
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by the following formula: 0.524 L1(L2)2, where L1and L2

represent the long and short axis of the tumor, respectively. BW

was determined once weekly. No significant differences of food

intake or body weight were found in this study. At the end of the

experimental period, the animals were euthanized by CO2

inhalation; tumor tissues were then excised, weighed, and frozen

immediately. These tumor tissues were sectioned and stained with

Mayer’s hematoxilin– eosin (H&E) for examination by light

Figure 2. CA derivatives significantly inhibited the proliferation of human CRC HCT-116 cells in vitro. (A) Human CRC HCT-116 cells were
cultured in RPMI-1640 medium with CAPE and CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in the presence or absence of compound C
(10 mM) for 24 h. Transfections of constitutively active Akt (Myr-Akt1) and empty vector (pcDNA3) were conducted before the treatment of CA
derivatives. The cell proliferation was measured by MTT assay as described in Materials and Methods. Data are the mean 6 SD (standard deviation) of
three independent experiments. The different symbols (??? for CAPE and n for CAPPE) represent a statistically significant difference compared to the
CA derivative -untreated control group in each group, respectively, at P,0.05. The different symbols (# for CAPE_Akt, 1 for CAPE_compound C, m for
CAPPE_Akt, and & for CAPPE_compound C) represent a statistically significant difference compared to each corresponding CA derivative- treated
control group in each dosage subgroup, respectively, at P,0.05. (B–C) Cytoplasmic proteins were prepared for Western blotting analysis using
monoclonal antibodies against anti-phosphorylation Akt (S473), total-Akt, anti-phosphorylation AMPKa (T172) and total-AMPKa.
doi:10.1371/journal.pone.0099631.g002
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Figure 3. CA derivatives significantly inhibited the proliferation of human CRC SW-480 cells in vitro. (A) Human CRC SW-480 cells were
cultured in RPMI-1640 medium with CAPE and CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in the presence or absence of compound C
(10 mM) for 24 h. Transfections of constitutively active Akt (Myr-Akt1) and empty vector (pcDNA3) were conducted before the treatment of CA
derivatives. The cell proliferation was measured by MTT assay as described in Materials and Methods. Data are the mean 6 SD (standard deviation) of
three independent experiments. The different symbols (??? for CAPE and n for CAPPE) represent a statistically significant difference compared to the
CA derivative -untreated control group in each group, respectively, at P,0.05. The different symbols (# for CAPE_Akt, 1 for CAPE_compound C, m for
CAPPE_Akt, and & for CAPPE_compound C) represent a statistically significant difference compared to each corresponding CA derivative- treated
control group in each dosage subgroup, respectively, at P,0.05. (B–C) Cytoplasmic proteins were prepared for Western blotting analysis using
monoclonal antibodies against anti-phosphorylation Akt (S473), total-Akt, anti-phosphorylation AMPKa (T172) and total-AMPKa.
doi:10.1371/journal.pone.0099631.g003
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Figure 4. CAPE and CAPPE each induced G0/G1 cell cycle arrest in CRC cells. Human CRC cells were synchronized in RPMI-1640 medium
with 0.05% FBS in tissue culture dishes overnight. To measure the distribution of the cell cycle, cell were cultured in the presence or absence of CAPE
and CAPPE (0, 10, 50 and 100 mM) cultured in 10% FBS RPMI-1640 medium for another 24 h. (A) The measurement of the cell population at different
cell cycle phases was performed using flow cytometry analysis, as described under Materials and Methods. The data indicate the (B) HCT-116 cell (C)
SW-480 cell population percentage at different cell phases under the treatment of CAPE or CAPPE in human CRC cells. Human CRC (D) HCT-116 cells
(E) SW-480 cells were treated with either CAPE or CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in 10% FBS RPMI-1640 for 24 h. Nuclear
proteins were prepared for Western blotting analysis using monoclonal antibodies against cyclin D1, Cdk4, PCNA, and lamin A antibodies, as
described under Materials and Methods. The levels of detection represent the amounts of cyclin D1, Cdk4 and PCNA in the nuclei of human CRC cells.
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microscopy. The remaining tissues of the liver, lung, spleen,

pancreas and intestine were also excised, weighed and frozen for

further experiments. Blood samples were collected from the heart

in a 1-ml vacutainer tube in the presence or absence of heparin

and centrifuged for 10 min at 1000 g to obtain plasma or serum,

respectively.

Histopathological and immunohistochemical staining of
tumor tissues

Frozen tumor tissues were cut in 5 mm sections and immediately

fixed with 4% paraformaldehyde. Sections were stained with

Meyer’s Hematoxylin-Eosin (H&E) for light microscopy. Negative

controls did not exhibit any staining. Three hot spots were

examined in a blinded manner per tumor section (high power field

2006) from six different tumors in each group. For immunohis-

tochemical staining, frozen tissue sections were treated with 0.3%

hydrogen peroxide to block the endogenous peroxide activity.

Non-specific protein binding was blocked with 10% normal goat

serum (NGS) for 1 hr followed by incubation with either anti-

FASN or anti-PCNA primary antibodies (1:300). Tissue sections

were washed with 0.1 M phosphate buffer saline (PBS) and

incubated with biotinyated immunoglobin G (1:300 secondary

antibody) at room temperature for 1 hr. Tissue sections were

stained with Avidin-Biotin complex (ABC), diaminobenzidine

(DAB) and hydrogen peroxide. Cell nuclei were stained with

hematoxylin. Imaging was performed at 2006 magnifications.

Images of tumor sections were acquired on an Olympus BX-51

microscope using an Olympus DP-71 digital camera and imaging

system (Olympus, Tokyo, Japan).

Preparation of protein extraction
Human CRC HCT-116 cells were cultured in 10% FBS culture

media in the presence of CAPE or CAPPE for 2 h or 24 h. Cell

lysates (cytoplasmic and nuclear proteins) from colon cancer cells

were prepared using the Nuclear Protein Extract Reagent Kit

containing a protease inhibitor and phosphatase inhibitors

according to the manufacturer’s instructions. After centrifugation

for 10 minutes at 12,0006g to remove cell debris, the supernatants

were retained as a cytoplasmic extract. Cross contamination

between nuclear and cytoplasma fractions was not detected (data

not shown).

Detection of Plasma MMP-9 by Enzyme-Linked
Immunosorbent Assay (ELISA)

The MMP-9 plasma level was measured by ELISA according to

the manufacturer’s instructions (R&D Systems Inc.). Briefly, a

100 mL diluted plasma sample (1:8 dilution) from each group was

added to each well and analyzed. Upon completion of the ELISA

process, the plate was read at 450/570 nm wavelength using a

microplate reader (Tecan Inc., Mannedorf, Switzerland).

Analysis of cellular ATP levels
Human CRC cells were cultured for 24 h in 96-well plates, each

well containing 16104 cells in the presence of CAPE or CAPPE.

Measurements of cellular ATP were analyzed following the

manufacturer’s protocol. Briefly, cell lysates were prepared using

cell lysis buffer directly. Total cell lysate (100 mL) were mixed with

substrate solution and vibrated to dissolve the deposits according

to the manufacturer’s instructions. The optical density was

measured with a Synergy HT Multi-Mode Microplate Reader

(BioTek, Winooski, VT).

Western Blotting Analysis
Cellular proteins (70 mg) were fractionated on 10% SDS-PAGE,

transferred to a nitrocellulose membrane, blotted with anti-

phosphorylation Akt monoclonal antibody, and performed with

chemiluminescence based assay. Protein phosphorylation of PDK1,

phosphorylation of GSK3a, phosphorylation of GSK3b,phosphor-

ylation of FOXO3, phosphorylation of AMPK, phosphorylation of

m-TOR, PTEN, N-cadherin, PDK1, Akt, GSK3a, GSK3b,

FOXO3, TSC1, TSC2, mTOR, LKB1, 14-3-3, AMPK, FASN,

NF-kB (p-65), cyclin D1, Cdk4, PCNA, p21CIP1/WAF1, cyclin E and

c-myc in the cell lysates were measured using the same procedure

described above. The blots were stripped and reprobed with either

b-actin or lamin A antibodies as the loading control.

Reporter gene assay
Transfection of NF-kB response element (NF-kB-RE) plasmid

was carried out in human CRC HCT-116 and SW-480 cells

according to the manufacturer’s instruction. Human CRC HCT-

116 and SW-480 cells were then plated at a density of 26105 cells

per well in 12-well plates in 2 mL of media and incubated

overnight. Cells were treated with either CAPE or CAPPE at

different concentrations for 24 h before the analysis of reporter

gene activities. The reporter gene assay was performed by using

Dual- Luciferase Reporter Assay kit. Luciferase intensities were

measured using with a Synergy HT Multi-Mode Microplate

Reader (BioTek, Winooski, VT).

Statistical analysis
A quantitative methodology was used to determine whether

there was any significant difference in the cell viability as well as

protein expression between experimental sets and control sets of

colon cancer cells. In brief, statistical analyses of the differences in

cell viability among triplicate sets of the experimental conditions

were performed using SYSTAT software. Confirmation of a

difference in cell viability as significant requires rejection of the

null hypothesis of no difference between the mean indices

obtained from the replicate sets of experimental and control

groups at the P = 0.05 level, utilizing the one way ANOVA model.

The Bonferroni post hoc test was used to determine differences

among the different groups.

Results

CA derivatives significantly inhibited the proliferation of
human CRC cells in vitro

The inhibitory effects of CA derivatives on the proliferation of

human CRC cells (HCT-116 and SW-480 cells) were investigated

in vitro. As shown in Figure 2–3, CA derivatives (at the

concentrations of 5, 10, 20, 50 and 100 mM) significantly inhibited

the proliferation of human CRC HCT-116 and SW-480 cells. At

the concentrations of 5, 10, 20, 50 and 100 mM, CAPE and

CAPPE each significantly suppressed the proliferation of human

CRC HCT-116 cells, respectively. (Inhibitory effects of CAPE: 4,

The results (mean 6 SD) represent the folds change of control group and are representative of three different experiments. The immunoreactive
bands are noted with an arrow. The mean integrated densities of these proteins adjusted with the internal control lamin A protein are shown in
bottom row. The standard deviation (SD) of each measured protein was indicated in the parenthesis. A single asterisk indicates a significant
difference compared to the CAPE- or CAPPE-untreated control group, respectively (P,0.05).
doi:10.1371/journal.pone.0099631.g004
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31, 47, 54, and 58%; CAPPE: 5, 45, 56, 59 and 64%) (Figure 2A).

The IC50s for CAPE and CAPPE in human CRC HCT-116 cells

are 44.2 mM and 32.7 mM, respectively. At the concentrations of

5, 10, 20, 50 and 100 mM, CAPE and CAPPE significantly

suppressed the proliferation of human CRC SW-480 cells,

respectively. (Inhibitory effects of CAPE: 0.5, 8.9, 14, 19 and

32%; CAPPE: 6, 15, 22, 26 and 47%) (Figure 3A). The IC50s for

CAPE and CAPPE in human CRC SW-480 cells are 132.3 mM

and 130.7 mM, respectively. These results demonstrate that CAPE

and CAPPE are each able to significantly inhibit the proliferation

of human CRC cells in a dose-dependent manner. CAPPE seems

to inhibit the proliferation of human CRC HCT-116 cells more

effectively than CAPE. For this reason, CAPE and CAPPE were

selected for further study of their potential anti-cancer effects on

human CRC cells. The role of signalling molecules on cell

proliferation in human CRC cells treated with CA derivatives was

investigated. In these cells, Akt was either over-expressed by

transfection with a constitutively active Myr-Akt1 plasmid, or

AMPK activity was inhibited by compound C. As shown in

Figure 2A, both over-expression of Akt and suppression of AMPK

activity rescued cell proliferation inhibited by CAPE or CAPPE

treatments in human CRC HCT-116 cells. The effects of Akt

over-expression or reduced AMPK activity on rescuing cell

proliferation were less significant, however, in SW-480 cells

treated with CA-derivative (Figure 3A). Expression levels of p-

Akt and t-Akt proteins by the overexpression of a constitutively

active form of Akt in human CRC HCT-116 and SW-480 cells

were shown in Figure 2B and Figure 3B, respectively. Expression

levels of p-AMPK and t-AMPK proteins by the treatment of

compound C in human CRC HCT-116 and SW-480 cells were

shown in Figure 2C and Figure 3C, respectively. The results

suggested that CA derivatives act as chemopreventive agents

against human CRC through a modulation of the PI3-K/Akt and

AMPK signaling pathways

CAPE and CAPPE each induced G0/G1 cell cycle arrest in
CRC cells

To determine whether CA derivative-mediated suppression of

cell proliferation was due to an arrest at a certain stage of the cell

cycle, the effects of CAPE and CAPPE were studied further in

HCT-116 and SW-480 cells. Cells treated with CAPE or CAPPE

were subjected to flow cytometric analysis after their DNA was

stained with PI. Histograms of the flow cytometric data are shown

in Figure 4A. CAPE and CAPPE significantly induced cell cycle

arrest at the G0/G1 phase in a dose-dependent manner (P,0.05).

At a concentration of 50 mM, CAPE and CAPPE significantly

increased cell cycle arrest of HCT-116 cells during the G0/G1

phase by up to 56% and 61%, respectively, whereas in the control

group the percentage of cells in the G0/G1 phase was only 34%

(Figure 4B). At a concentration of 50 mM, CAPE and CAPPE

significantly increased cell cycle arrest of SW-480 cells during the

G0/G1 phase by up to 44% and 57%, respectively, whereas in the

control group the percentage of cells in the G0/G1 phase was only

37% (Figure 4C). These increases in G0/G1 arrest were mostly at

the expense of the S and G2/M phase cell populations. CAPPE

seems to induce G0/G1 cell cycle arrest more effectively than

CAPE in human CRC cells. Thus, it is plausible that CAPE and

CAPPE inhibited cell proliferation of human CRC cells through a

cell cycle arrest at the G0/G1 phase.

To determine the molecular mechanisms underlying these

effects, we further investigated the chemopreventive effects of CA

derivatives on human CRC cells. A previous study had indicated

that the cell cycle progression through G1 phase is primarily

regulated by cyclinD1/Cdk4 proteins [33]. To investigate the

possible inhibitory effects of CA derivatives on cell cycle regulatory

proteins, HCT-116 and SW-480 cells were treated with the

aforementioned concentrations of CAPE and CAPPE and the

expression of nuclear proteins were measure by western blot

analysis. As shown in Figure 4D (HCT-116 cells) and 4E (SW-480

cells), CAPE and CAPPE each significantly inhibited the

expression of the cyclin D1 protein in a dose-dependent manner.

CAPE and CAPPE also suppressed the expression of proliferating

cell nuclear antigen (PCNA) protein in CRC cells. These results

indicated that CAPE and CAPPE significantly induced cell cycle

arrest of CRC cells at the G0/G1 phase through suppression of the

nuclear cyclin D1 and PCNA proteins.

CAPE and CAPPE inhibited the proliferation of human
CRC cells through the modulation of the PI3K/Akt, AMPK
and mTOR signaling pathways

Previous studies indicated that the PI3-K/Akt, mTOR and

AMPK signaling pathways play important roles in the growth and

progression of human CRC [18,34–37]. To explore the molecular

mechanisms by which inhibition of signaling cascades might

induce cell cycle arrest, we investigated the inhibitory effects of

CAPE and CAPPE on the PI3-K/Akt, mTOR and AMPK

signaling pathways. As shown in Figure 5 (HCT-116 cells) and 6

(SW-480 cells), CAPE and CAPPE significantly inhibited the

phosphorylation of the PDK1, Akt and mTOR signaling

molecules compared to untreated control cells. Moreover,

treatment with CAPE or CAPPE significantly augmented the

expression of the 14-3-3 protein and the phosphorylation of the

FOXO3 proteins. Previous studies showed that the upregulation of

N-cadherin is associated with the progression of carcinoma cells

[38]. Here, the results demonstrated that CAPPE significantly

inhibited the expression of N-cadherin in CRC cells. These results

suggested that CAPE and CAPPE each significantly inhibited cell

proliferation and progression through the modulation of PI-3K/

Akt and mTOR cascades, as well as the downstream target

molecules, in HCT-116 cells.

Figure 5. CAPE and CAPPE inhibited the proliferation of human CRC HCT-116 cells through the modulation of the PI3K/Akt, AMPK
and mTOR signaling pathways. Human CRC HCT-116 cells were treated with either CAPE or CAPPE (at concentrations of 0, 5, 10, 20, 50 and
100 mM) in 10% FBS RPMI-1640 for 24 h. (A) Cytoplasmic proteins were prepared for Western blotting analysis using monoclonal antibodies against
N-cadherin, PTEN, anti-phosphorylation PDK1 (S241), total-PDK1, anti-phosphorylation Akt (S473), total-Akt, anti-phosphorylation GSK3a (S21), total-
GSK3a, anti-phosphorylation GSK3b (S9), total- GSK3b, anti-phosphorylation FOXO3 (T32), total- FOXO3, total- TSC1, total- TSC2, total- LKB1, total- 14-
3-3, anti-phosphorylation AMPKa (T172), total-AMPKa, anti-phosphorylation m-TOR (S2448), total-m-TOR, anti-FASN and b-actin as described under
Materials and Methods. The levels of detection represent the amounts of each protein in the cytoplasm of HCT-116 cells. The results (mean 6 SD)
represent the folds change of control group and are representative of three different experiments. The immunoreactive bands are noted with an
arrow. The mean integrated densities of these proteins adjusted with the control protein are shown in bottom row. The standard deviation (SD) of
each measured protein was indicated in the parenthesis. A single asterisk indicates a significant difference compared to the CAPE- or CAPPE-
untreated control group, respectively (P,0.05). (B) The measurement of cellular ATP was performed as described under Materials and Methods. Data
represent the percentage of cellular ATP levels in the CAPE- or CAPPE-treated human CRC HCT-116 cells. A single or double asterisk indicates a
significant difference compared to the CAPE- or CAPPE-untreated control group, respectively (P,0.05).
doi:10.1371/journal.pone.0099631.g005
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Recent studies suggested that the AMPK signaling pathway is

involved in FASN expression and the progression of human CRC

cells via crosstalk with the PI3-K/Akt signaling cascades [21–24].

Therefore, we further examined the effects of CAPE and CAPPE

on the AMPK signaling pathway. As shown in Figure 5A and 6A,

CAPE and CAPPE each significantly augmented the phosphor-

ylation (i.e. activation) of AMPK molecule in CRC cells.

Moreover, the results also showed that CAPPE- mediated

activation of AMPK pathway is associated with the suppression

of FASN expression (Figure 5A and 6A) and decreased ATP levels

in CRC cells (Figure 5B and 6B). The results suggested that CAPE

and CAPPE suppressed the expression of FASN in human CRC

cells, in part through the augmentation of AMPK signaling

molecules. These results further suggest that CAPPE inhibits the

PI3-K/Akt, AMPK and mTOR signaling pathways in CRC cells

more effectively than CAPE (Figure 5A and 6A). Moreover, the

inhibitory effect of CAPPE on the cellular ATP levels is also more

significant than CAPE in CRC cells (Figure 5B and 6B).

CAPE and CAPPE inhibited the proliferation of CRC cells
independently of NF-kB signaling pathway

Previous study showed that CAPE is a well know NF-kB

inhibitor in U937 cells [39]. To investigated whether CAPE and

CAPPE inhibited the proliferation of human CRC cells through

NF-kB pathway, the expression of NF-kB (p65; RelA) by Western

blotting assay and reporter gene assay were performed in this

study. The results demonstrated that CAPE or CAPPE moderately

inhibited the expression of NF-kB (p65; RelA) protein in HCT-

116 cells at 2 h time point (Figure 7A). Moreover, the expression

of NF-kB (p65) protein was only inhibited by the treatment of

CAPPE rather than CAPE in SW-480 cells at 2 h time point

(Figure 7B). However, CAPE and CAPPE did not suppress the

reporter gene activities of NF-kB response element (NF-kB-RE) in

HCT-116 (Figure 7C) or SW-480 cells (Figure 7D) at 24 h time

point. To determine whether NF-kB inhibition is important for

cell proliferation, tumor necrosis factor-a (TNF-a; a NF-kB

activator) was utilized in this study. The results showed that CAPE

and CAPPE had differential effects on the suppression of cell

growth in HCT-116 (Figure 7E) or SW-480 cells (Figure 7F) in the

presence of TNF-a (1 ng/mL). These results suggested that CAPE

and CAPPE mediated-suppression of cell growth was independent

of NF-kB pathway in human CRC cells.

Consumption of CAPE or CAPPE suppressed the growth
of colorectal tumor in a mouse xenograft model

To verify these in vitro findings, we further examined the

respective effects of CAPE and CAPPE on the growth of human

colon cancer HCT-116 cells in a mouse xenograft model. As

shown in Figure 8A, consumption of CAPE and CAPPE (at

dosages of 50 nmol/kg of BW per day) significantly inhibited the

growth of colorectal tumors in a mouse xenograft model (P,0.05).

By the end of the 6-week study period, CAPE or CAPPE

significantly reduced tumor weights (P,0.05) compared to the

tumor control group (Figure 8B). Histopathological staining results

indicated that consumption of either CAPE or CAPPE inhibited

the growth of colorectal tumor in these experimental animals

(Figure 8C). Moreover, consumption of CAPE or CAPPE also

suppressed the expression of malignant biomarker proteins, such

as PCNA (Figure 8 D) and FASN in tumor tissues (Figure 8 E).

Previous studies had suggested that the expression of MMP-9 was

associated with tumor invasion and progression of CRC [11,40].

In the current study, we investigated whether consumption of

CAPE or CAPPE modulated the expression of plasma MMP-9

proteins in these experimental animals. By the end of the study,

the basal MMP-9 plasma levels in the tumor-free mice were

approximately 11.3 ng/mL. Mice inoculated with colon cancer

HCT-116 cells had high plasma levels of MMP-9 (mean 6 SD :

125.6614 ng/mL). The consumption of CAPE or CAPPE,

however, significantly decreased the MMP-9 plasma level in these

tumor-bearing mice. The MMP-9 plasma levels decreased from

125.6 ng/mL in the tumor control group to 43.1 ng/mL and

32.8 ng/mL in the CAPE and CAPPE–fed groups, respectively

(Figure 8F). No hepatoxicity was induced by CAPE or CAPPE at

doses of 50 nmol/kg of BW in this study (data not shown). These

results show that consumption of CAPE or CAPPE significantly

inhibited tumor growth of CRC in a mouse xenograft model. The

chemopreventive effects of CAPE and CAPPE were in part

associated with the suppression of the PCNA, FASN and MMP-9

proteins in these tumor-bearing animals.

CAPE- or CAPPE-mediated suppression of tumor growth
was associated with the modulation of the PI3-K/Akt,
AMPK and mTOR signaling pathways in experimental
animals

The results described above clearly show the inhibitory effects of

CAPE and CAPPE on the growth of CRC cells in a mouse

xenograft model. We also demonstrated the molecular mecha-

nisms of action of the CA derivatives in vitro. To verify these

mechanistic findings, we further examined the molecular effects of

CAPE and CAPPE in these tumor-bearing mice. As shown in

Figure 9A, CAPE and CAPPE consumption each significantly

inhibited the expression of cyclin D1, Cdk4, cyclin E and c-myc

proteins in vivo. Moreover, the in vivo chemopreventive effects of

CAPE and CAPPE were associated with the upregulation of the

p21CIP1/WAF1 protein.

It is well known that the PI3-K/Akt and MAPK/ERK signaling

cascades play an important role in tumor growth and progression

[4,41]. Suppression of the PI3-K/Akt and MAPK/ERK signaling

cascades leads to down-regulation of downstream target proteins

such as cyclin D1/Cdk4 and a blockade of the cell cycle [4,36,41–

Figure 6. CAPE and CAPPE inhibited the proliferation of human CRC SW-480 cells through the modulation of the PI3K/Akt, AMPK
and mTOR signaling pathways. Human CRC SW-480 cells were treated with either CAPE or CAPPE (at concentrations of 0, 5, 10, 20, 50 and
100 mM) in 10% FBS RPMI-1640 for 24 h. (A) Cytoplasmic proteins were prepared for Western blotting analysis using monoclonal antibodies against
N-cadherin, PTEN, anti-phosphorylation PDK1 (S241), total-PDK1, anti-phosphorylation Akt (S473), total-Akt, anti-phosphorylation GSK3a (S21), total-
GSK3a, anti-phosphorylation GSK3b (S9), total- GSK3b, anti-phosphorylation FOXO3 (T32), total- FOXO3, total- TSC1, total- TSC2, total- LKB1, total- 14-
3-3, anti-phosphorylation AMPKa (T172), total-AMPKa, anti-phosphorylation m-TOR (S2448), total-m-TOR, anti-FASN and b-actin as described under
Materials and Methods. The levels of detection represent the amounts of each protein in the cytoplasm of HCT-116 cells. The results (mean 6 SD)
represent the folds change of control group and are representative of three different experiments. The immunoreactive bands are noted with an
arrow. The mean integrated densities of these proteins adjusted with the control protein are shown in bottom row. The standard deviation (SD) of
each measured protein was indicated in the parenthesis. A single asterisk indicates a significant difference compared to the CAPE- or CAPPE-
untreated control group, respectively (P,0.05). (B) The measurement of cellular ATP was performed as described under Materials and Methods. Data
represent the percentage of cellular ATP levels in the CAPE- or CAPPE-treated human CRC SW-480 cells. A single or double asterisk indicates a
significant difference compared to the CAPE- or CAPPE-untreated control group, respectively (P,0.05).
doi:10.1371/journal.pone.0099631.g006
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45]. Therefore, we further investigated the inhibitory effects of

CAPE and CAPPE on the PI3-K/Akt and MAPK/ERK signaling

pathways. As shown in Figure 9B, consumption of CAPE or

CAPPE effectively inhibited the activation of the Akt, mTOR and

ERK 1/2 signaling molecules. CA derivative-mediated suppres-

sion of the Akt, mTOR and ERK 1/2 signaling cascades was

associated with an up-regulation of E-cadherin as well as a

suppression of N-cadherin. Moreover, CAPE and CAPPE -

Figure 7. CAPE and CAPPE inhibited the proliferation of CRC cells independently of NF-kB signaling pathway. (A–B) Human CRC cells
were treated with either CAPE or CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in 10% FBS RPMI-1640 for 2 h. Nuclear proteins were
prepared for Western blotting analysis using monoclonal antibodies against NF-kB (p65) and lamin A as described under Materials and Methods. The
levels of detection represent the amounts of each protein in the nuclei of HCT-116 cells (A) or SW-480 cells (B). The results (mean 6 SD) represent the
folds change of control group. The mean integrated densities of these proteins adjusted with the control protein are shown in bottom row. The
standard deviation (SD) of each measured protein was indicated in the parenthesis. Human CRC HCT-116 cells (C) or SW-480 cells (D) were transfected
with NF-kB-RE plasmid and then treated with either CAPE or CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in 10% FBS RPMI-1640 for 24 h.
The relative light units (R.L.U) were measured by the manufacturer’s instruction as described under Materials and Methods. A single or double asterisk
indicates a significant difference compared to the CAPE- or CAPPE-untreated control group, respectively (P,0.05). Human CRC HCT-116 cells (E) or
SW-480 cells (F) were cultured in RPMI-1640 medium with CAPE and CAPPE (at concentrations of 0, 5, 10, 20, 50 and 100 mM) in the presence or
absence of TNF-a (1 ng/mL) for 24 h. The cell proliferation was measured by MTT assay as described in Materials and Methods. Data are the mean 6
SD (standard deviation) of three independent experiments. The different symbols (??? for CAPE and n for CAPPE) represent a statistically significant
difference compared to the CA derivative -untreated control group in each group, respectively, at P,0.05. The different symbols (m for CAPE_TNF-a
and & for CAPPE_TNF-a) represent a statistically significant difference compared to each corresponding CA derivative- treated control group in each
dosage subgroup, respectively, at P,0.05.
doi:10.1371/journal.pone.0099631.g007
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Figure 8. Consumption of CAPE or CAPPE suppressed the growth of colorectal tumor in a mouse xenograft model. Xenograft nude
mice (n = 6 for each group) were divided into three groups (the tumor group, tumor with CAPE, tumor with CAPPE) and given CAPE or CAPPE (at a
dosage of 50 nmol/kg of body weight (BW)/day) for 6 weeks. Data (mean 6 SD) represent the change in the tumor volume (A) or tumor weight (B)
among the tumor group (i.e. the control group), tumor with CAPE and tumor with CAPPE. The different letters at the same time point represent a
statistically significant difference, (P,0.05). Tumor tissues were formalin-fixed, embedded in paraffin, sectioned and subjected to hematoxylin-eosin
(H&E) staining (C) as described under Materials and Methods. Blue spots represent the nuclei stained with hematoxylin. The red spots represent
cytoplasm stained with eosin. For immunohistochemical (IHC) staining, tumor tissues (at week 6) were frozen, sectioned and subjected to either anti-
PCNA (D) or anti-FASN (E) antibodies. The intense dark brown color indicates the distribution of the PCNA or FASN proteins in HCT-116 cells stained
with a monoclonal antibody. The blue area represents the localization of the cell nuclei. Imaging was documented at 2006magnification. (F) The
plasma levels of MMP-9 were determined using an ELISA Kit (R&D systems). Upon completion of the ELISA process, fluorescence intensities were read
using a wavelength of 450/570 nm. The results presented are representative of six different experiments and are presented as plasma MMP-9 levels.
The different letters represent a significant difference in a comparison of normal mice, tumor control mice, CAPE-treat mice and CAPPE-treated mice,
P,0.05.
doi:10.1371/journal.pone.0099631.g008
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mediated suppression of FASN protein was associated with the

augmentation of the AMPK cascade in tumor-bearing mice

(Figure 9B). These results show that CAPE or CAPPE-mediated

suppression of PI3-K/Akt and MAPK/ERK signaling cascades, as

well as an augmentation of the AMPK signaling pathway is

associated with the suppression of tumor growth at least in small

laboratory animals.

Discussion

Previous studies suggest that CAPE has potential as a

chemopreventive and therapeutic agents [46–49]. Many studies

demonstrated that CAPE could inhibit tumor angiogenesis and

suppress the growth of several types of cancer [47–52]. The

aberrant PI3K/Akt pathway has been shown to be the predom-

inant pathway in the tumorigenesis of many types of cancer

including colon cancer [53]. Studies suggested that suppression of

the PI3K/Akt and integrin-mediated signaling pathways by CAPE

could effectively inhibit the tumor growth [50,54]. To date, the

effects of CAPPE on the proliferation and survival of human CRC

cells have not been convincingly demonstrated. In the current

study, we demonstrate the inhibitory effects of CA derivatives

(CAPE and CAPPE) on the proliferation of human colon cancer

cells both in vitro and in vivo. The results show that CAPE and

CAPPE each effectively suppressed the proliferation of human

colon cancer cells in a dose-dependent manner. CAPE and

CAPPE effectively suppressed the proliferation of human CRC

cells through the induction of cell cycle arrest at the G0/G1 phase.

Previous studies suggested that the overexpression of cell cycle-

related proteins, such as D1 and Cdk4, is correlated with the

proliferation of human cancer cells [33]. In this study, the results

showed that CAPE or CAPPE significantly inhibited the

expression of cyclin D1 protein. Recently, cyclin D1 was identified

as a target of the PI3-K/Akt pathways in CRC cells [44]. We

further confirmed that the molecular effects of CAPE and CAPPE

were carried out through the inhibition of the PI3-K/Akt and

mTOR signaling pathways in human CRC cells. Moreover,

CAPE and CAPPE inhibited the expression of FASN through an

augmentation of the AMPK cascade. A recent study reports that

the activation of AMPK is associated with an increased cellular

AMP/ATP ratio [55]. A low energy status leads to the

phosphorylation (i.e. activation) of AMPK and the suppression

of mTOR activity through the effect on the LKB1 protein [55].

The current study suggested than CAPPE may suppress the

activity of mTOR protein in a LKB-independent manner. In

contrast, CAPPE-mediated activation of the AMPK molecule was

more significantly correlated with the decreased ATP levels in

CRC cells. Therefore, it is probable that the respective CAPE- and

CAPPE- mediated augmentation of the AMPK cascade and

suppression of mTOR protein are in part associated with a

decreased level of ATP in these CRC cells. There are several

possible scenarios to explain why CAPPE is a more effective anti-

cancer compound than CAPE. One explanation might be that

CAPPE has a cell membrane solubility higher than that of CAPE.

This possibility is consistent with the findings of an earlier toxicity

study [56]. Previous studies demonstrated that the inhibitory effect

of CA derivatives on nitric oxide (NO) production is correlated

with the increasing length of the alkyl chain (i.e. CAPPE.CAPE)

[56]. A recent study showed that the L-arginine -mediated NO

reaction is also associated with AMPK activation [57]. These

findings suggest that the upregulation of AMPK activation is

dependent on the increasing length of the CA derivatives. It is to

be expected, therefore, that CAPPE would be more effective in

AMPK activation than CAPE. This may explain why CAPPE is a

more effective regulator of AMPK activation and the suppression

of cell proliferation than CAPE. The anti-proliferation effect of

CAPPE could be achieved by increasing the dosage levels of

CAPE (Figure 2,3). The current study also showed an inverse

correlation between AMPK and mTOR activity in vivo. These

results are consistent with AMPK -mediated downregulation of

mTOR activity [22,23]. This suggests that CAPE and CAPPE

may act through this pathway as effective anti-cancer agents

against human CRC cells. Moreover, the results suggested that

CAPE and CAPPE mediated- suppression of cell proliferation was

independent of NF-kB pathway in human CRC cells.

To verify these in vitro findings, we further examined the

respective inhibitory effects of CAPE and CAPPE on the growth of

colorectal tumor in a xenograft mouse model. As shown in

Figure 8, consumption of CAPE or CAPPE significantly inhibited

tumor growth in vivo. We also examined the actions of these

bioactive compounds on multiple signaling pathways including

PI3-K/Akt, MAPK/ERK and AMPK signaling cascades

(Figure 9). The results demonstrated that CAPE and CAPPE also

effectively induced the activation of the AMPK cascade and

suppressed the activation of both the PI3-K/Akt and MAPK/

ERK signaling cascades. CAPE and CAPPE further significantly

inhibited the expression of FASN, cyclin D1, cyclin E, Cdk4 and

c-myc proteins of tumor tissues in an in vivo animal study. We

further examined whether the consumption of CAPE or CAPPE

would help prevent tumor progression in tumor-bearing mice. The

results demonstrated that CAPE or CAPPE significantly inhibited

the expression of plasma MMP-9 in vivo (Figure 8F). These results

are consistent with the in vitro findings.

In conclusion, this is the first demonstration of the inhibitory

effects of CA derivatives (CAPE and CAPPE) on the proliferation

of human colon cancer cells both in vitro and in vivo. The directional

changes in protein expression produced by CAPE and CAPPE are

in relevant pathways and consistent with the properties of a

chemopreventive agent. Whether CAPPE is a more potent

chemopreventive agent than CAPE will require further preclinical

studies.

Figure 9. CAPE- or CAPPE-mediated suppression of tumor growth was associated with the modulation of the PI3-K/Akt, AMPK and
mTOR signaling pathways in the experimental animals. (A) Nuclear proteins from tumor tissues were prepared for Western blotting analysis
using monoclonal antibodies against p21CIP1/WAF1, cyclin D1, cyclin E, Cdk4 and c-myc as described under Materials and Methods. The results (mean
6 SD) represent the folds change of control group and are representative of three different experiments. The immunoreactive bands are noted with
an arrow. The levels of detection represent the amount of these proteins in the nuclei of CRC cells in the experimental animals. The mean integrated
densities of these proteins are adjusted with the control protein and shown in bottom row. The standard deviation (SD) of each measured protein
was indicated in the parenthesis. A single asterisk represent a statistically significant difference compared to the control group, P,0.05. (B)
Cytoplasmic proteins from tumor tissues were prepared for Western blotting analysis using monoclonal antibodies against E-cadherin, N-cadherin, p-
Akt, p-mTOR, p-ERK 1/2, p-AMPK, FASN and actin, as described under Materials and Methods. The results (mean 6 SD) represent the folds change of
control group and are representative of three different experiments. The levels of detection represent the amount of these proteins in the cytoplasm
of CRC cells in the experimental animals. The mean integrated densities of these proteins are adjusted with the control protein and shown in bottom
row. The standard deviation (SD) of each measured protein was indicated in the parenthesis. A single asterisk represent a statistically significant
difference compared to the control group, P,0.05.
doi:10.1371/journal.pone.0099631.g009
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