137 research outputs found

    Chapter Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism

    Get PDF
    Filter bank multi‐carrier (FBMC) modulation, as a potential candidate for physical data communication in the fifth generation (5G) wireless networks, has been widely investigated. This chapter focuses on the spectral efficiency analysis of FBMC‐based cognitive radio (CR) systems, and spectral efficiency comparison is conducted with another three types of multi‐carrier modulations: orthogonal frequency division multiplexing (OFDM), generalized frequency division multiplexing (GFDM), and universal‐filtered multi‐carrier (UFMC). In order to well evaluate and compare the spectral efficiency, we propose two resource allocation (RA) algorithms for single‐cell and two‐cell CR systems, respectively. In the single‐cell system, the RA algorithm is divided into two sequential steps, which incorporate subcarrier assignment and power allocation. In the two‐cell system, a noncooperative game is formulated and the multiple access channel (MAC) technique assists to solve the RA problem. The channel state information (CSI) between CR users and licensed users cannot be precisely known in practice, and thus, an estimated CSI is considered by defining a prescribed outage probability of licensed systems. Numerical results show that FBMC can achieve the highest channel capacity compared with another three waveforms

    Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism

    Get PDF
    This chapter focuses on the relationship between structural and magnetic properties of cubic spinel ferrite MFe2O4 (M = Mg, Mn, Fe, Co, Ni, Cu and Zn) nanoparticles (NPs). First, a brief overview of the preparation methods yielding well‐developed NPs is given. Then, key parameters of magnetic NPs representing their structural and magnetic properties are summarized with link to the relevant methods of characterization. Peculiar features of magnetism in real systems of the NPs at atomic, single‐particle, and mesoscopic level, respectively, are also discussed. Finally, the significant part of the chapter is devoted to the discussion of the structural and magnetic properties of the NPs in the context of the relevant preparation routes. Future outlooks in the field profiting from tailoring of the NP properties by doping or design of core‐shell spinel‐only particles are given

    New CZE-DAD method for honeybee venom analysis and standardization of the product

    Get PDF
    The aim of this study was to develop a new precise and accurate CZE-DAD method for honeybee venom analysis using cytochrome c as an internal standard. The 64.5 cm total length, 56 cm effective length, 75 Όm ID, and 360 Όm OD uncoated fused-silica capillary was used. The samples were injected into the capillary under a 50-mbar pressure for 7 s. There were 15 kV of electric field across the capillary applied. The current intensity was 26 ΌA. The separation was carried out at 25 °C. The analysis was run with the normal electrode polarity. The following steps and parameters were taken into account for the validation of the developed method: selectivity, precision, accuracy, linearity, limit of detection and limit of quantitation. All steps of the validation procedure proved that the developed analytical procedure was suitable for its intended purpose. Possibly this was the first study in which several honeybee venom components were separated and five of them were identified by capillary zone electrophoresis. In addition, the developed method was applied for quantitative analysis of 38 honeybee venom samples. The content (relative to the dry venom mass) of analyzed peptides in honeybee venom samples collected in 2002–2007 was as follows: apamine from 0.93% to 4.34% (mean, 2.85 ± 0.79%); mast cell degranulating peptide (MCDP) from 1.46% to 4.37% (mean, 2.82 ± 0.64%); phospholipase A2 from 7.41% to 20.25% (mean, 12.95 ± 3.09%); melittin from 25.40% to 60.27%, (mean, 45.91 ± 9.78%). The results were compared with the experimental data obtained for the same venom samples analyzed earlier by the HPLC method. It was stated that HPCE and HPLC data did not differ significantly and that the HPCE method was the alternative for the HPLC method. Moreover, using the results obtained principal component analysis (PCA) was applied to clarify the general distribution patterns or similarities of four major honeybee venom constituents collected from two different bee strains in various months and years. PCA has shown that the strain of bee appears to be the only criteria for bee venom sample classification. Strong correlations between apamine, MCDP, phospholipase A2, and melittin were confirmed. These correlations have to be taken into account in the honeybee venom standardization. The developed method due to its simplicity can be easily automated and incorporated into routine operations both in the bee venom identification, quality control, and standardization of the product

    Fine Tuning of Optical Transition Energy of Twisted Bilayer Graphene via Interlayer Distance Modulation

    Get PDF
    Twisted bilayer graphene (tBLG) represents a family of unique materials with optoelectronic properties tuned by the rotation angle between the two layers. The presented work shows an additional way of tweaking the electronic structure of tBLG: by modifying the interlayer distance, for example by a small uniaxial out-of-plane compression. We have focused on the optical transition energy, which shows a clear dependence on the interlayer distance, both experimentally and theoretically.Comment: accepted to Physical Review B https://journals.aps.org/prb/accepted/dd078Y90H2517b63a1632e870189c8db65254906

    Optomagnetic Nanoplatforms for In Situ Controlled Hyperthermia

    Full text link
    This is the peer reviewed version of the following article: Ortgies, Dirk H., Teran, Francisco J. Rocha, UĂ©slen, Cueva, Leonar de la, Salas, Gorka, cabrera, David, Vanetsev, Alexander S., RĂ€hn, Mikhel, VĂ€ino,Sammelselg, Orlosvkii, Yurii V. and Jaque, Daneil "Optomagnetic nanoplatforms for in situ controlled hyperthermia" Advances Funtcional Materials 28.11 (2018) which has been published in final form at http://doi.org/10.1002/adfm.201704434. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."Magnetic nanoparticles (M:NPs) are unique agents for in vivo thermal therapies due to their multimodal capacity for efficient heat generation under optical and/or magnetic excitation. Nevertheless, their transfer from laboratory to the clinic is hampered by the absence of thermal feedback and by the influence that external conditions (e.g., agglomeration and biological matrix interactions) have on their heating efficiency. Overcoming these limitations requires, first, the implementation of strategies providing thermal sensing to M:NPs in order to obtain in situ thermal feedback during thermal therapies. At the same time, M:NPs should be modified so that their heating efficiency will be maintained independently of the environment and the added capability for thermometry. In this work, optomagnetic hybrid nanostructures (OMHSs) that simultaneously satisfy these two conditions are presented. Polymeric encapsulation of M:NPs with neodymium-doped nanoparticles results in a hybrid structure capable of subtissue thermal feedback while making the heating efficiency of M:NPs independent of the medium. The potential application of the OMHSs herein developed for fully controlled thermal therapies is demonstrated by an ex vivo endoscope-assisted controlled intracoronary heating experimentThis work was supported by the Spanish Ministry of Economy and Competitiveness under Projects # MAT2016-75362-C3-1-R, # MAT2015-71806-R and # MAT2013-47395-C4-3-R, the Comunidad de Madrid (NANOFRONTMAG-CM, S2013/MIT-2850), and through the Instituto de Salud Carlos III under Project # PI16/00812. This work has also received funding from European Union’s H2020 and FP7 programme (NOCANTHER, GA 685795). D.H.O. is grateful to the Spanish Ministry of Economy and Competitiveness for a Juan de la Cierva scholarship (FJCI-2014-21101) and F.J.T. for a Ramon y Cajal fellowship (RYC-2011-09617). COST Actions CM1403 and TD1402 (RADIOMAG) are also acknowledged. The synthesis and preliminary testing of the ïŹ‚uorescence properties of the LaF3:Nd(3%) NPs was supported by Project # 16-12-10077 of the Russian Science Foundation. NonïŹ‚uorescent characterization of the OMHSs was supported by projects IUT2-24 and IUT20-54 of the Estonian Ministry of Education and Researc

    Genotoxic Effect of Chronic Exposure to DDT on Lymphocytes, Oral Mucosa and Breast Cells of Female Rats

    Get PDF
    The genotoxicity of some environmental contaminants may affect human health directly by damaging genetic material and thus plays an important role in cancer development. Xenoestrogens are one kind of environmental pollutants that may alter hormonal routes or directly affect DNA. The number of available biomarkers used to assess genetic risk and cancer is very extensive. The present study evaluated genotoxicity produced by the pesticide DDT on systemic and mammary gland cells obtained from adult female Wistar rats. Oral mucosa cells micronuclei were assessed; the comet assay in peripheral blood-isolated lymphocytes and mammary epithelial cells was also carried out. Additionally, oxidative stress was studied in mammary tissue through a lipid peroxidation assay. Our data showed an increase in lipid peroxidation, product of an increase in free oxygen radical levels, which leads to an oxidative stress status. Our results suggest that DDT is genotoxic, not only for lymphocytes but also to mammary epithelial cells

    Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles

    Get PDF
    Magnetic nanoparticles (MNPs) have become increasingly important in biomedical applications like magnetic imaging and hyperthermia based cancer treatment. Understanding their magnetic spin configurations is important for optimizing these applications. The measured magnetization of MNPs can be significantly lower than bulk counterparts, often due to canted spins. This has previously been presumed to be a surface effect, where reduced exchange allows spins closest to the nanoparticle surface to deviate locally from collinear structures. We demonstrate that intraparticle effects can induce spin canting throughout a MNP via the Dzyaloshinskii-Moriya interaction (DMI). We study ~7.4 nm diameter, core/shell Fe3O4/MnxFe3−xO4 MNPs with a 0.5 nm Mn-ferrite shell. Mössbauer spectroscopy, x-ray absorption spectroscopy and x-ray magnetic circular dichroism are used to determine chemical structure of core and shell. Polarized small angle neutron scattering shows parallel and perpendicular magnetic correlations, suggesting multiparticle coherent spin canting in an applied field. Atomistic simulations reveal the underlying mechanism of the observed spin canting. These show that strong DMI can lead to magnetic frustration within the shell and cause canting of the net particle moment. These results illuminate how core/shell nanoparticle systems can be engineered for spin canting across the whole of the particle, rather than solely at the surface
    • 

    corecore