373 research outputs found

    Polymorphisms in the α4 Integrin of Neotropical Primates: Insights for Binding of Natural Ligands and HIV-1 gp120 to the Human α4β7

    Get PDF
    The α4 integrin subunit associates with β7 and β1 and plays important roles in immune function and cell trafficking. The gut-homing receptor α4β7 has been recently described as a new receptor for HIV. Here, we describe polymorphisms of ITGA4 gene in New World primates (NWP), and tested their impact on the binding to monoclonal antibodies, natural ligands (MAdCAM and VCAM), and several gp120 HIV-1 envelope proteins. Genomic DNA of NWP specimens comprising all genera of the group had their exons 5 and 6 (encoding the region of binding to the ligands studied) analyzed. The polymorphisms found were introduced into an ITGA4 cDNA clone encoding the human α4 subunit. Mutant α4 proteins were co-expressed with β7 and were tested for binding of mAbs, MAdCAM, VCAM and gp120 of HIV-1, which was compared to the wild-type (human) α4. Mutant α4 proteins harboring the K201E/I/N substitution had reduced binding of all ligands tested, including HIV-1 gp120 envelopes. The mAbs found with reduced biding included one from which a clinically-approved drug for the treatment of neurological disorders has been derived. α4 polymorphisms in other primate species may influence outcomes in the development and treatment of infectious and autoimmune diseases in humans and in non-human primates

    Highly homologous eEF1A1 and eEF1A2 exhibit differential post-translational modification with significant enrichment around localised sites of sequence variation

    Get PDF
    Translation elongation factors eEF1A1 and eEF1A2 are 92% identical but exhibit non-overlapping expression patterns. While the two proteins are predicted to have similar tertiary structures, it is notable that the minor variations between their sequences are highly localised within their modelled structures. We used recently available high-throughput “omics” data to assess the spatial location of post-translational modifications and discovered that they are highly enriched on those surface regions of the protein that correspond to the clusters of sequence variation. This observation suggests how these two isoforms could be differentially regulated allowing them to perform distinct functions. REVIEWERS: This article was reviewed by Frank Eisenhaber and Ramanathan Sowdhamini

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Phylogeographic Analysis of HIV-1 Subtype C Dissemination in Southern Brazil

    Get PDF
    The HIV-1 subtype C has spread efficiently in the southern states of Brazil (Rio Grande do Sul, Santa Catarina and Paraná). Phylogeographic studies indicate that the subtype C epidemic in southern Brazil was initiated by the introduction of a single founder virus population at some time point between 1960 and 1980, but little is known about the spatial dynamics of viral spread. A total of 135 Brazilian HIV-1 subtype C pol sequences collected from 1992 to 2009 at the three southern state capitals (Porto Alegre, Florianópolis and Curitiba) were analyzed. Maximum-likelihood and Bayesian methods were used to explore the degree of phylogenetic mixing of subtype C sequences from different cities and to reconstruct the geographical pattern of viral spread in this country region. Phylogeographic analyses supported the monophyletic origin of the HIV-1 subtype C clade circulating in southern Brazil and placed the root of that clade in Curitiba (Paraná state). This analysis further suggested that Florianópolis (Santa Catarina state) is an important staging post in the subtype C dissemination displaying high viral migration rates from and to the other cities, while viral flux between Curitiba and Porto Alegre (Rio Grande do Sul state) is very low. We found a positive correlation (r2 = 0.64) between routine travel and viral migration rates among localities. Despite the intense viral movement, phylogenetic intermixing of subtype C sequences from different Brazilian cities is lower than expected by chance. Notably, a high proportion (67%) of subtype C sequences from Porto Alegre branched within a single local monophyletic sub-cluster. These results suggest that the HIV-1 subtype C epidemic in southern Brazil has been shaped by both frequent viral migration among states and in situ dissemination of local clades

    The Antiviral Spectra of TRIM5α Orthologues and Human TRIM Family Proteins against Lentiviral Production

    Get PDF
    Rhesus monkey TRIM5α (TRIM5αrh) recognizes the incoming HIV-1 core through its C-terminal B30.2(PRYSPRY) domain and promotes its premature disassembly or degradation before reverse transcription. Previously, we have shown that TRIM5αrh blocks HIV-1 production through the N-terminal RBCC domain by the recognition of Gag polyproteins. Although all TRIM family proteins have RBCC domains, it remains elusive whether they possess similar late-restriction activities.We examined the antiviral spectra of TRIM5α orthologues and human TRIM family members which have a genetic locus proximal to human TRIM5α (TRIM5αhu), against primate lentiviral production. When HIV-1 virus-like particles (VLPs) were generated in the presence of TRIM5α proteins, rhesus, African green and cynomolgus monkey TRIM5α (TRIM5αag and TRIM5αcy), but not TRIM5αhu, were efficiently incorporated into VLPs, suggesting an interaction between HIV-1 Gag and TRIM5α proteins. TRIM5αrh potently restricted the viral production of HIV-1 groups M and O and HIV-2, but not simian lentiviruses including SIV(MAC)1A11, SIV(AGM)Tan-1 or SIV(AGM)SAB-1. TRIM5αhu did not show notable late restriction activities against these lentiviruses. TRIM5αag and TRIM5αcy showed intermediate restriction phenotypes against HIV-1 and HIV-2, but showed no restriction activity against SIV production. A series of chimeric TRIM5α constructs indicated that the N-terminal region of TRIM5αag and TRIM5αcy are essential for the late restriction activity, while the C-terminal region of TRIM5αcy negatively regulates the late restriction activity against HIV-1. When select human TRIM family proteins were examined, TRIM21 and 22 were efficiently incorporated into HIV-1 VLPs, while only TRIM22 reduced HIV-1 titers up to 5-fold. The antiviral activities and encapsidation efficiencies did not correlate with their relative expression levels in the producer cells.Our results demonstrated the variations in the late restriction activities among closely related TRIM5α orthologues and a subset of human TRIM family proteins, providing further insights into the late restriction activities of TRIM proteins
    corecore