273 research outputs found

    Electrotransfer of Single-Stranded or Double-Stranded DNA Induces Complete Regression of Palpable B16.F10 Mouse Melanomas

    Get PDF
    Enhanced tumor delivery of plasmid DNA with electric pulses in vivo has been confirmed in many preclinical models. Intratumor electrotransfer of plasmids encoding therapeutic molecules has reached Phase II clinical trials. In multiple preclinical studies, a reduction in tumor growth, increased survival or complete tumor regression have been observed in control groups in which vector or backbone plasmid DNA electrotransfer was performed. This study explores factors that could produce this antitumor effect. The specific electrotransfer pulse protocol employed significantly potentiated the regression. Tumor regression was observed after delivery of single-stranded or double-stranded DNA with or without CpG motifs in both immunocompetent and immunodeficient mice, indicating the involvement of the innate immune system in response to DNA. In conclusion, this study demonstrated that the observed antitumor effects are not due to a single factor, but to a combination of factors

    Noise Management by Molecular Networks

    Get PDF
    Fluctuations in the copy number of key regulatory macromolecules (“noise”) may cause physiological heterogeneity in populations of (isogenic) cells. The kinetics of processes and their wiring in molecular networks can modulate this molecular noise. Here we present a theoretical framework to study the principles of noise management by the molecular networks in living cells. The theory makes use of the natural, hierarchical organization of those networks and makes their noise management more understandable in terms of network structure. Principles governing noise management by ultrasensitive systems, signaling cascades, gene networks and feedback circuitry are discovered using this approach. For a few frequently occurring network motifs we show how they manage noise. We derive simple and intuitive equations for noise in molecule copy numbers as a determinant of physiological heterogeneity. We show how noise levels and signal sensitivity can be set independently in molecular networks, but often changes in signal sensitivity affect noise propagation. Using theory and simulations, we show that negative feedback can both enhance and reduce noise. We identify a trade-off; noise reduction in one molecular intermediate by negative feedback is at the expense of increased noise in the levels of other molecules along the feedback loop. The reactants of the processes that are strongly (cooperatively) regulated, so as to allow for negative feedback with a high strength, will display enhanced noise

    MDA-5 Recognition of a Murine Norovirus

    Get PDF
    Noroviruses are important human pathogens responsible for most cases of viral epidemic gastroenteritis worldwide. Murine norovirus-1 (MNV-1) is one of several murine noroviruses isolated from research mouse facilities and has been used as a model of human norovirus infection. MNV-1 infection has been shown to require components of innate and adaptive immunity for clearance; however, the initial host protein that recognizes MNV-1 infection is unknown. Because noroviruses are RNA viruses, we investigated whether MDA5 and TLR3, cellular sensors that recognize dsRNA, are important for the host response to MNV-1. We demonstrate that MDA5−/− dendritic cells(DC) have a defect in cytokine response to MNV-1. In addition, MNV-1 replicates to higher levels in MDA5−/− DCs as well as in MDA5−/− mice in vivo. Interestingly, TLR3−/− DCs do not have a defect in vitro, but TLR3−/− mice have a slight increase in viral titers. This is the first demonstration of an innate immune sensor for norovirus and shows that MDA5 is required for the control of MNV-1 infection. Knowledge of the host response to MNV-1 may provide keys for prevention and treatment of the human disease

    On the spontaneous stochastic dynamics of a single gene: complexity of the molecular interplay at the promoter

    Get PDF
    International audienceBACKGROUND: Gene promoters can be in various epigenetic states and undergo interactions with many molecules in a highly transient, probabilistic and combinatorial way, resulting in a complex global dynamics as observed experimentally. However, models of stochastic gene expression commonly consider promoter activity as a two-state on/off system. We consider here a model of single-gene stochastic expression that can represent arbitrary prokaryotic or eukaryotic promoters, based on the combinatorial interplay between molecules and epigenetic factors, including energy-dependent remodeling and enzymatic activities. RESULTS: We show that, considering the mere molecular interplay at the promoter, a single-gene can demonstrate an elaborate spontaneous stochastic activity (eg. multi-periodic multi-relaxation dynamics), similar to what is known to occur at the gene-network level. Characterizing this generic model with indicators of dynamic and steady-state properties (including power spectra and distributions), we reveal the potential activity of any promoter and its influence on gene expression. In particular, we can reproduce, based on biologically relevant mechanisms, the strongly periodic patterns of promoter occupancy by transcription factors (TF) and chromatin remodeling as observed experimentally on eukaryotic promoters. Moreover, we link several of its characteristics to properties of the underlying biochemical system. The model can also be used to identify behaviors of interest (eg. stochasticity induced by high TF concentration) on minimal systems and to test their relevance in larger and more realistic systems. We finally show that TF concentrations can regulate many aspects of the stochastic activity with a considerable flexibility and complexity. CONCLUSIONS: This tight promoter-mediated control of stochasticity may constitute a powerful asset for the cell. Remarkably, a strongly periodic activity that demonstrates a complex TF concentration-dependent control is obtained when molecular interactions have typical characteristics observed on eukaryotic promoters (high mobility, functional redundancy, many alternate states/pathways). We also show that this regime results in a direct and indirect energetic cost. Finally, this model can constitute a framework for unifying various experimental approaches. Collectively, our results show that a gene - the basic building block of complex regulatory networks - can itself demonstrate a significantly complex behavior

    Chronic kidney disease after liver, cardiac, lung, heart–lung, and hematopoietic stem cell transplant

    Get PDF
    Patient survival after cardiac, liver, and hematopoietic stem cell transplant (HSCT) is improving; however, this survival is limited by substantial pretransplant and treatment-related toxicities. A major cause of morbidity and mortality after transplant is chronic kidney disease (CKD). Although the majority of CKD after transplant is attributed to the use of calcineurin inhibitors, various other conditions such as thrombotic microangiopathy, nephrotic syndrome, and focal segmental glomerulosclerosis have been described. Though the immunosuppression used for each of the transplant types, cardiac, liver and HSCT is similar, the risk factors for developing CKD and the CKD severity described in patients after transplant vary. As the indications for transplant and the long-term survival improves for these children, so will the burden of CKD. Nephrologists should be involved early in the pretransplant workup of these patients. Transplant physicians and nephrologists will need to work together to identify those patients at risk of developing CKD early to prevent its development and progression to end-stage renal disease

    Pattern recognition receptors in immune disorders affecting the skin.

    Get PDF
    Contains fulltext : 109004.pdf (publisher's version ) (Open Access)Pattern recognition receptors (PRRs) evolved to protect organisms against pathogens, but excessive signaling can induce immune responses that are harmful to the host. Putative PRR dysfunction is associated with numerous immune disorders that affect the skin, such as systemic lupus erythematosus, cryopyrin-associated periodic syndrome, and primary inflammatory skin diseases including psoriasis and atopic dermatitis. As yet, the evidence is often confined to genetic association studies without additional proof of a causal relationship. However, insight into the role of PRRs in the pathophysiology of some disorders has already resulted in new therapeutic approaches based on immunomodulation of PRRs

    First measurement of the |t|-dependence of coherent J/ψ photonuclear production

    Get PDF
    The first measurement of the cross section for coherent J/ψ photoproduction as a function of |t|, the square of the momentum transferred between the incoming and outgoing target nucleus, is presented. The data were measured with the ALICE detector in ultra-peripheral Pb–Pb collisions at a centre-of-mass energy per nucleon pair sNN=5.02TeV with the J/ψ produced in the central rapidity region |y|<0.8, which corresponds to the small Bjorken-x range (0.3−1.4)×10−3. The measured |t|-dependence is not described by computations based only on the Pb nuclear form factor, while the photonuclear cross section is better reproduced by models including shadowing according to the leading-twist approximation, or gluon-saturation effects from the impact-parameter dependent Balitsky–Kovchegov equation. These new results are therefore a valid tool to constrain the relevant model parameters and to investigate the transverse gluonic structure at very low Bjorken-x.publishedVersio

    First measurement of coherent ρ0 photoproduction in ultra-peripheral Xe–Xe collisions at √sNN = 5.44 TeV

    Get PDF
    The first measurement of the coherent photoproduction of ρ0 vector mesons in ultra-peripheral Xe–Xe collisions at sNN=5.44 TeV is presented. This result, together with previous HERA Îłp data and γ–Pb measurements from ALICE, describes the atomic number (A) dependence of this process, which is particularly sensitive to nuclear shadowing effects and to the approach to the black-disc limit of QCD at a semi-hard scale. The cross section of the Xe+Xe→ρ0+Xe+Xe process, measured at midrapidity through the decay channel ρ0→π+π−, is found to be dσ/dy=131.5±5.6(stat.)−16.9+17.5(syst.) mb. The ratio of the continuum to resonant contributions for the production of pion pairs is also measured. In addition, the fraction of events accompanied by electromagnetic dissociation of either one or both colliding nuclei is reported. The dependence on A of cross section for the coherent ρ0 photoproduction at a centre-of-mass energy per nucleon of the ÎłA system of WÎłA,n=65 GeV is found to be consistent with a power-law behaviour σ(ÎłA→ρ0A)∝Aα with a slope α=0.96±0.02(syst.). This slope signals important shadowing effects, but it is still far from the behaviour expected in the black-disc limit.publishedVersio
    • 

    corecore