400 research outputs found
6D supergravity without tensor multiplets
We systematically investigate the finite set of possible gauge groups and
matter content for N = 1 supergravity theories in six dimensions with no tensor
multiplets, focusing on nonabelian gauge groups which are a product of SU(N)
factors. We identify a number of models which obey all known low-energy
consistency conditions, but which have no known string theory realization. Many
of these models contain novel matter representations, suggesting possible new
string theory constructions. Many of the most exotic matter structures arise in
models which precisely saturate the gravitational anomaly bound on the number
of hypermultiplets. Such models have a rigid symmetry structure, in the sense
that there are no moduli which leave the full gauge group unbroken.Comment: 31 pages, latex; v2, v3: minor corrections, references adde
Phenotypic Variation and Bistable Switching in Bacteria
Microbial research generally focuses on clonal populations. However, bacterial cells with identical genotypes frequently display different phenotypes under identical conditions. This microbial cell individuality is receiving increasing attention in the literature because of its impact on cellular differentiation, survival under selective conditions, and the interaction of pathogens with their hosts. It is becoming clear that stochasticity in gene expression in conjunction with the architecture of the gene network that underlies the cellular processes can generate phenotypic variation. An important regulatory mechanism is the so-called positive feedback, in which a system reinforces its own response, for instance by stimulating the production of an activator. Bistability is an interesting and relevant phenomenon, in which two distinct subpopulations of cells showing discrete levels of gene expression coexist in a single culture. In this chapter, we address techniques and approaches used to establish phenotypic variation, and relate three well-characterized examples of bistability to the molecular mechanisms that govern these processes, with a focus on positive feedback.
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Epigenome-wide meta-analysis of blood DNA methylation and its association with subcortical volumes:findings from the ENIGMA Epigenetics Working Group
DNA methylation, which is modulated by both genetic factors and environmental exposures, may offer a unique opportunity to discover novel biomarkers of disease-related brain phenotypes, even when measured in other tissues than brain, such as blood. A few studies of small sample sizes have revealed associations between blood DNA methylation and neuropsychopathology, however, large-scale epigenome-wide association studies (EWAS) are needed to investigate the utility of DNA methylation profiling as a peripheral marker for the brain. Here, in an analysis of eleven international cohorts, totalling 3337 individuals, we report epigenome-wide meta-analyses of blood DNA methylation with volumes of the hippocampus, thalamus and nucleus accumbens (NAcc)-three subcortical regions selected for their associations with disease and heritability and volumetric variability. Analyses of individual CpGs revealed genome-wide significant associations with hippocampal volume at two loci. No significant associations were found for analyses of thalamus and nucleus accumbens volumes. Cluster-based analyses revealed additional differentially methylated regions (DMRs) associated with hippocampal volume. DNA methylation at these loci affected expression of proximal genes involved in learning and memory, stem cell maintenance and differentiation, fatty acid metabolism and type-2 diabetes. These DNA methylation marks, their interaction with genetic variants and their impact on gene expression offer new insights into the relationship between epigenetic variation and brain structure and may provide the basis for biomarker discovery in neurodegeneration and neuropsychiatric conditions
Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa
In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN
A Precision Measurement of the Lambda_c Baryon Mass
The baryon mass is measured using and decays reconstructed in 232
fb of data collected with the BaBar detector at the PEP-II
asymmetric-energy storage ring. The mass is measured to
be . The dominant systematic uncertainties
arise from the amount of material in the tracking volume and from the magnetic
field strength.Comment: 14 pages, 8 postscript figures, submitted to Phys. Rev.
Measurement of branching fractions and resonance contributions for B-0 ->(D)over-bar(0)K(+)pi(-) and search for B-0 ->(DK+)-K-0 pi(-) decays
Using 226x10(6) Upsilon(4S)-> B (B) over bar events collected with the BABAR detector at the PEP-II e(+)e(-) storage ring at the Stanford Linear Accelerator Center, we measure the branching fraction for B-0->(D) over bar (0)K(+)pi(-), excluding B-0-> D*-K+, to be B(B-0->(0)K(+)pi(-))=(88 +/- 15 +/- 9)x10(-6). We observe B-0->(D) over bar K-0(*)(892)(0) and B-0-> D-2(*)(2460)K--(+) contributions. The ratio of branching fractions B(B-0-> D*-K+)/B(B-0-> D(*-)pi(+))=(7.76 +/- 0.34 +/- 0.29)% is measured separately. The branching fraction for the suppressed mode B-0-> D(0)K(+)pi(-) is B(B-0-> D(0)K(+)pi(-))< 19x10(-6) at the 90% confidence level
Observation of CP violation in B ->eta/K-0 decays
We present measurements of the time-dependent CP-violation parameters S and C in B-0 -> eta K-'(0) decays. The data sample corresponds to 384 x 10(6) B (B) over bar pairs produced by e(+)e(-) annihilation at the Upsilon(4S). The results are S = 0.58 +/- 0.10 +/- 0.03 and C = -0.16 +/- 0.07 +/- 0.03. We observe mixing-induced CP violation with a significance of 5.5 standard deviations in this b -> s penguin dominated mode
Measurement of the CP asymmetry and branching fraction of B-0 ->rho K-0(0)
We present a measurement of the branching fraction and time-dependent CP asymmetry of B-0 -> POKO. The results are obtained from a data sample of 227 x 10(6) Y(4S) -> BB decays collected with the BABAR detector at the PEP-II asymmetric-energy B factory at Stanford Linear Accelerator Center. From a time-dependent maximum likelihood fit yielding 111 +/- 19 signal events, we find B(B-0 -> rho K-0(0)) = (4.9 +/- 0.8 +/- 0.9) x 10(-6), where the first error is statistical and the second systematic. We report the measurement of the CP parameters S-rho 0KS0 = 0.20 +/- 0.52 +/- 0.24 and C-rho 0KS0 = 0.64 +/- 0.41 +/- 0.20
Measurements of branching fractions and dalitz distributions for B-0 ->(DK0)-K-(*)+/-pi(-/+) decays
We present measurments of the branching fractions for the three-body decays B-0 -> D((*) -/+)K(0)pi(+/-) and their resonant submodes B0 -> D(*)K-/+*(+/-) usinga sample of approximately 88 x 10(6) B (B) over bar pairs collected by the BABER detector at the SLAC PEP-II assymetric energy storage ring. We measure: B(B-0-> D(-/+)K(0)pi(+/-)) = (4.9 +/- 0.7(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*(-/+)K(0)pi(+/-)) = (3.0 +/- 0.7(stat) +/- 0.3(syst)) x 10(-4), B(B-0 -> D-/+K*(+/-)) = (4.6 +/- 0.6(stat) +/- 0.5(syst)) x 10(-4), B(B-0 -> D*K-/+*(+/-) = (3.2 +/- 0.6(stat) +/- 0.3(syst)) x 10(-4). From these measurements we determine the fractions of resonant events to be f(B0 -> D+/-K*(-/+)) = 0.63 +/- 0.08(stat) +/- 0.04(syst) and f(B-0 -> D*K-/+*(+/-)) = 0.72 +/- 0.14(stat) +/- 0.05(syst)
- …