108 research outputs found

    The Potential for Evolutionary Responses to Cell-Lineage Selection on Growth Form and Its Plasticity in a Red Seaweed

    Get PDF
    Despite much theoretical discussion on the evolutionary significance of intraclonal genetic variation, particularly for modular organisms whose lack of germ-soma segregation allows for variants arising in clonal growth to contribute to evolutionary change, the potential of this variation to fuel adaptation remains surprisingly untested. Given intraclonal variation, mitotic cell lineages, rather than sexual offspring, may frequently act as units of selection. Here, we applied artificial selection to such lineages in the branching red seaweed Asparagopsis armata, targeting aspects of clonal growth form and growth-form plasticity that enhance light acquisition on patchy subtidal reefs and predicting that a genetic basis to intraclonal variation may promote significant responses that cannot accompany phenotypic variation alone. Cell-lineage selection increased variation in branch proliferation among A. armata genets and successfully altered its plasticity to light. Correlated responses in the plasticity of branch elongation, moreover, showed that cell-lineage selection may be transmitted among the plasticities of growth-form traits in A. armata via pleiotropy. By demonstrating significant responses to cell-lineage selection on growth-form plasticity in this seaweed, our study lends support to the notion that intraclonal genetic variation may potentially help clonal organisms to evolve adaptively in the absence of sex and thereby prove surprisingly resilient to environmental change

    Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae

    Get PDF
    Macroalgae are the major habitat-forming organisms in many coastal temperate and subtropical marine systems. Although climate change has been identified as a major threat to the persistence of macroalgal beds, the combined effects of ocean warming and ocean acidification on algal performance are poorly understood. Here we investigate the effects of increased temperature and acidification on the growth, calcification and nutritional content of 6 common subtropical macroalgae; Sargassum linearifolium, Ulva sp., Amphiroa anceps, Corallina officinalis, Delisea pulchra and Laurencia decussata. Algae were reared in a factorial cross of 3 temperatures (23°C [ambient], 26°C and 28°C) and 3 pH levels (8.1 [ambient], 7.8 and 7.6) for 2 wk. The highest (28°C) temperature decreased the growth of all 6 macroalgal species, irrespective of the pH levels. In contrast, the effect of decreased pH on growth was variable. The growth of Ulva sp. and C. officinalis increased, L. decussata decreased, while the remaining 3 species were unaffected. Interestingly, the differential responses of macroalgae to ocean acidification were unrelated to whether or not a species was a calcifying alga, or their carbon-uptake mechanism—2 processes that are predicted to be sensitive to decreased pH. The growth of the calcifying algae (C. officinalis and A. anceps) was not affected by reduced pH but calcification of these 2 algae was reduced when exposed to a combination of reduced pH and elevated temperature. The 3 species capable of uptake of bicarbonate, S. linearifolium, L. decussata and Ulva sp., displayed positive, negative and neutral changes in growth, respectively, in response to reduced pH. The C:N ratio for 5 of the 6 species was unaffected by either pH or temperature. The consistent and predictable negative effects of temperature on the growth and calcification of subtropical macroalgae suggests that this stressor poses a greater threat to the persistence of subtropical macroalgal populations than ocean acidification under ongoing and future climate change

    The unusual occurrence of green algal balls of <i>Chaetomorpha linum</i> on a beach in Sydney, Australia.

    Get PDF
    In spring 2014, thousands of green algal balls were washed up at Dee Why Beach, Sydney, New South Wales, Australia. Reports of algal balls are uncommon in marine systems, and mass strandings on beaches are even more rare, sparking both public and scientific interest. We identified the algal masses as Chaetomorpha linum by using light microscopy and DNA sequencing. We characterize the size and composition of the balls from Dee Why Beach and compare them to previous records of marine algal balls. We describe the environmental conditions that could explain their appearance, given the ecophysiology of C. linum

    Global patterns in the impact of marine herbivores on benthic primary producers

    Get PDF
    Despite the importance of consumers in structuring communities, and the widespread assumption that consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores in their natural environments allows consumer impacts to be quantified on global scales using consistent methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by 68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and morphological groups. Our results show that grazing impacts on plant abundance are better predicted by producer traits than by large‐scale variation in habitat or mean temperature, and that there is a previously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption

    Scientific collaboration for early detection of invaders results in a significant update on estimated range: lessons from Stenothoe georgiana Bynum & Fox 1977

    Get PDF
    Detection of new non-indigenous species is often delayed when taxonomically challenging taxa are involved, such as small-sized marine organisms. The present study highlights the relevance of scientific cooperation in the early detection of the invader amphipod Stenothoe georgiana. Originally described from North Carolina (USA), the species was recently found in Chile and the Western Mediterranean. Here, we provide the first record of the species in Macaronesia, Atlantic coasts of continental Europe, North Africa and Australia, and extend its known distribution along the Mediterranean coast. Just like other small crustaceans, shipping (including recreational boating) and aquaculture are probably the main vectors of introduction and secondary spread for this amphipod species. This case of S. georgiana sheds light on the importance of promoting taxonomical knowledge, and building multidisciplinary expertise networks that ensure an effective spread of alien species information. We also encourage the implementation of standardized monitoring methodologies to facilitate early detection of small mobile invaders

    Is Australia weird? A cross-continental comparison of biological, geological and climatological features

    Get PDF
    Australia’s distinctive biogeography means that it is sometimes considered an ecologically unique continent with biological and abiotic features that are not comparable to those observed in the rest of the world. This leaves some researchers unclear as to whether findings from Australia apply to systems elsewhere (or vice-versa), which has consequences for the development of ecological theory and the application of ecological management principles. We analyzed 594,612 observations spanning 85 variables describing global climate, soil, geochemistry, plants, animals, and ecosystem function to test if Australia is broadly different to the other continents and compare how different each continent is from the global mean. We found significant differences between Australian and global means for none of 15 climate variables, only seven of 25 geochemistry variables, three of 16 soil variables, five of 12 plant trait variables, four of 11 animal variables, and one of five ecosystem function variables. Seven of these differences remained significant when we adjusted for multiple hypothesis testing: high soil pH, high soil concentrations of sodium and strontium, a high proportion of nitrogen-fixing plants, low plant leaf nitrogen concentration, low annual production rate to birth in mammals, and low marine productivity. Our analyses reveal numerous similarities between Australia and Africa and highlight dissimilarities between continents in the northern vs. southern hemispheres Australia ranked the most distinctive continent for 26 variables, more often than Europe (15 variables), Africa (13 variables), Asia (12 variables each), South America (11 variables) or North America (8 variables). Australia was distinctive in a range of soil conditions and plant traits, and a few bird and mammal traits, tending to sit at a more extreme end of variation for some variables related to resource availability. However, combined analyses revealed that, overall, Australia is not significantly more different to the global mean than Africa, South America, or Europe. In conclusion, while Australia does have some unique and distinctive features, this is also true for each of the other continents, and the data do not support the idea that Australia is an overall outlier in its biotic or abiotic characteristics

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe

    Habitat configuration affects colonisation of epifauna in a marine algal bed

    No full text
    Habitat fragmentation is a threat to the preservation of both terrestrial and marine biodiversity. While terrestrial systems have been well studied, relatively few studies have considered how changes to the spatial arrangement of habitats affect fauna in marine systems. In this study, sampling and manipulative experiments examined the effects of varying the size and isolation of habitat patches on the abundance of mobile invertebrates inhabiting an algal dominated rocky reef. Variation in the size of naturally occurring patches of the brown alga Sargassum linearifolium did not impact upon the abundance of any taxonomic groups, with the exception of polychaete worms, which were most abundant in small patches. When habitat patch size and isolation were manipulated, the abundance of colonising isopods increased with increasing isolation from contiguous habitat. Amphipods and ostracods colonised small patches to greater numbers than large patches. Sampling of the matrix was undertaken to examine the rarely tested assumption that the area between habitat patches is not a potential source of colonists to the habitat in question. The matrix was found to support a strikingly different community of invertebrates than did the algal habitats and thus was unlikely to be a source of colonists to isolated algal patches. The increased abundance on small and isolated patches for some taxa are inconsistent with traditional predictions of the effects of reduced habitat patch sizes and indicate that patchy landscapes should not necessarily be considered poor habitats. The variation in responses among taxonomic groups suggests that a range of patch sizes may be necessary to maintain species diversity
    • 

    corecore