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REV IEW AND

SYNTHES IS Global patterns in the impact of marine herbivores on benthic

primary producers

Alistair G. B. Poore,1 Alexandra H.

Campbell,1,2 Ross A. Coleman,3

Graham J. Edgar,4 Veijo

Jormalainen,5 Pamela L. Reynolds,6

Erik E. Sotka,7 John J. Stachowicz,8

Richard B. Taylor,9 Mathew A.

Vanderklift10 and J. Emmett

Duffy6

Abstract
Despite the importance of consumers in structuring communities, and the widespread assumption that

consumption is strongest at low latitudes, empirical tests for global scale patterns in the magnitude of

consumer impacts are limited. In marine systems, the long tradition of experimentally excluding herbivores

in their natural environments allows consumer impacts to be quantified on global scales using consistent

methodology. We present a quantitative synthesis of 613 marine herbivore exclusion experiments to test

the influence of consumer traits, producer traits and the environment on the strength of herbivore impacts

on benthic producers. Across the globe, marine herbivores profoundly reduced producer abundance (by

68% on average), with strongest effects in rocky intertidal habitats and the weakest effects on habitats

dominated by vascular plants. Unexpectedly, we found little or no influence of latitude or mean annual

water temperature. Instead, herbivore impacts differed most consistently among producer taxonomic and

morphological groups. Our results show that grazing impacts on plant abundance are better predicted

by producer traits than by large-scale variation in habitat or mean temperature, and that there is a previ-

ously unrecognised degree of phylogenetic conservatism in producer susceptibility to consumption.

Keywords
Coral reef, crustacean, grazing, herbivory, latitudinal gradient, macroalgae, marine, meta-analysis, mollusc,

plant-animal interaction, primary production, rocky reef, sea urchin, seagrass.

Ecology Letters (2012) 15: 912–922

INTRODUCTION

Consumers have a profound influence on community structure and

ecosystem processes, and understanding variation in the strength of

consumer impacts, relative to resource availability, has been a pri-

mary goal of community ecology (Hairston et al. 1960; Gruner et al.

2008). Predator control of prey populations and herbivore control

of primary producers are spatially and temporally variable, and this

variation underpins models explaining global gradients in biodiver-

sity (Moles et al. 2011). Specifically, over evolutionary time, stronger

biotic interactions at low latitudes are thought to contribute to high

tropical biodiversity due to increased speciation rates (Dobzhansky

1950; Vermeij 1978; Mittelbach et al. 2007), and by promoting

reduced niche breadth that allows greater species coexistence

(Janzen 1970). Despite the long history of these theories, however,

the relationship between latitude and the intensity of biotic interac-

tions remains largely unresolved due to limited empirical support

(Moles et al. 2011). Few studies have used consistent methodology

on the large scales needed to test this hypothesis (Pennings & Silli-

man 2005; Freestone et al. 2011), and a recent review called for

comparative studies spanning global latitudinal gradients in the mag-

nitude of biotic interactions using consistent methodology (Schem-

ske et al. 2009).

Herbivory is a key process in all ecosystems as it results in the

transfer of primary production to higher trophic levels and affects

the physical structure and productivity of vegetated habitats. Critical

to understanding the role of consumer control in ecosystems is

quantifying the strength of herbivore impacts on primary producers

and relating these impacts to mechanisms and traits that can explain

variation in interaction strengths. These include rates of primary

and secondary production (which vary on global scales), producer

nutritional quality, producer resistance and tolerance to grazing, her-

bivore feeding behaviour and the stoichiometric match between

producer and herbivore tissues (Cebrian et al. 2009). From the gra-

zer perspective, differences in abundance, feeding efficiency, size,

taxonomy, mobility, metabolism and predator regulation of herbi-
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vore populations can all contribute to variation in the rate at which

primary production is removed by herbivores (Borer et al. 2005).

A key impediment to evaluating how environmental and biologi-

cal variation among systems mediate general patterns in the strength

of top-down control is inconsistency in methodology among studies

(Borer et al. 2005). Laboratory and enclosure experiments can over-

estimate consumer impacts by confining prey with consumers, alter-

ing foraging behaviour and removing natural predators (Skelly 2002;

Hillebrand 2009). The relatively poor understanding of top-down

control in terrestrial systems is, in part, due to the difficulties in

experimentally manipulating some vertebrate consumers in the field

and the long time scale of terrestrial vegetation responses (Duffy

2002; Gruner et al. 2008; Allen & Crawley 2011).

In benthic marine habitats, there is a long tradition of experi-

ments that manipulate consumers in field conditions where the

response times of primary producers more closely align with the

duration of the experiments. Macroalgae and seagrasses are founda-

tion species that facilitate whole communities (providing habitat and

food), and their dominance often depends on grazing (Steneck et al.

2002; Valentine & Duffy 2006). Knowing how benthic primary pro-

ducers are controlled is crucial for understanding how marine eco-

systems function and how anthropogenic impacts may ripple

through marine ecosystems via indirect effects. In turn, the pro-

ducer-herbivore relationship likely varies as a function of herbivore

taxon and habitat. However, while many manipulative experiments

have demonstrated important roles of marine herbivores, fewer

have contrasted different groups of grazers (e.g. Carpenter 1986),

compared habitats, or were conducted on the scales needed to test

theories of large-scale gradients in the strength of herbivory (see

Pennings & Silliman 2005 for an exception).

Although latitudinal gradients in the intensity of interactions have

been proposed, at any given place the outcomes of interactions

depend not only on abiotic environmental factors but also on the

traits of the consumers and their prey. Morphologically based func-

tional groups of algae have been proposed in models that seek to

predict these outcomes (Littler & Littler 1980; Steneck & Watling

1982; Steneck & Dethier 1994). These models use the traits of thal-

lus morphology, size and toughness to predict responses to herbiv-

ory, with larger, tougher algae and crustose forms tending to be

more resistant to herbivores (Steneck & Watling 1982). These mod-

els have been tested experimentally, but no synthesis of global pat-

terns in the relationship between functional groups and herbivory

has yet been produced.

Here, we present a global quantitative synthesis of herbivore

impacts on marine benthic producers by analysing the results of 613

exclusion experiments conducted since 1969. We test the commonly

held prediction that grazing impacts are highest at low latitudes, and

test whether variation in grazer impacts on producer abundance is

best explained by consumer traits, producer traits or environmental

influences. The exclusion of consumers in situ is one of the most

powerful techniques to identify their ecological roles (Paine 1980;

Wootton & Emmerson 2005). By considering only exclusion experi-

ments, we have the advantage of using data from a large number of

experiments with consistent methodology – exclusion of herbivores

in their natural environments, at ambient and naturally variable den-

sities – across most of the global range of marine and estuarine sys-

tems, latitudes and producer and consumer taxa. In contrast,

previous reviews of marine herbivory have been qualitative (e.g.

Lubchenco & Gaines 1981), or have considered subsets of available

producers (e.g. periphyton, Hillebrand 2009) or interactions (e.g.

grazer interactions with nutrient supply, Gruner et al. 2008).

We found no evidence that herbivore impacts on producer abun-

dance are stronger in tropical seas, and demonstrate that producer

traits (i.e. algal identity) explain substantially more variation in herbi-

vore impacts than consumer traits or large-scale variation in habitat,

temperature or nutrient availability.

MATERIAL AND METHODS

Data collection

We compiled literature on marine grazer exclusion experiments by

searching the ISI Web of Science database (1900–2009) using the

following systematic search criteria: (graz* or herbiv*) and (exclud*
or exclus* or fenc* or cage* or remov*) and (macrophyte* or alga*
or seagrass* or eelgrass* or seaweed*). The results from this search

were supplemented by studies included in published reviews on

marine herbivory (Lubchenco & Gaines 1981; John et al. 1992;

Connell & Vanderklift 2007), seagrass ecology (Jernakoff et al. 1996;

Valentine & Duffy 2006), mesograzers (Brawley 1992) and previous

meta-analyses of top-down vs. bottom-up control in marine ecosys-

tems (Hughes et al. 2004; Burkepile & Hay 2006; Gruner et al. 2008;

Hillebrand 2009).

Experiments included in the review were those that featured the

exclusion of any marine herbivore at natural densities in situ using

physical barriers (i.e. cages or fences), removal by hand or methods

of chemical deterrence (i.e. biocides or borders of copper-based

paints). Inclusion experiments were not considered as these designs

do not allow the natural spatial and/or temporal variation in herbi-

vore abundances observed under natural conditions, and are known

to overestimate the impact of grazer effects on primary producers

(Bigger & Marvier 1998; Hillebrand 2009). Where additional experi-

mental manipulations were made (e.g. shading or nutrient additions),

we considered only the treatment that manipulated herbivores under

ambient conditions and the relevant control. We included only

experiments that were replicated, included spatially interspersed

exclusion and control plots, and were not confounded by other

known variables.

Experiments were included in the review if they presented data on

the quantity (biomass, cover, density or length) of benthic primary

producers (macroalgae, cyanobacteria, seagrasses or saltmarshes) in

both ungrazed (exclusion) and grazed (control) plots. We included

only studies that presented the means, sample sizes and measures of

variance (all converted to standard deviations) for each of the treat-

ments at the end of the experiment. When procedural controls were

present (e.g. half cages to test effects of cages in the presence of

grazers), data were also collected from this third treatment. Data

were extracted from digital versions of the publications (pdf format)

using the measuring tool in Adobe Acrobat 9 or DataThief.

Our search yielded 193 publications that met our criteria (Appen-

dix S1 in Supporting Information). If the publication included her-

bivore exclusions conducted in different regions, at different sites,

times or depths, these were treated as separate experiments in the

meta-analysis provided each possessed an independent set of un-

manipulated controls. When multiple exclusion treatments shared

a control, they were considered as separate measures within the

same experiment. From each experiment, data from all primary pro-

ducers measured were recorded.

© 2012 Blackwell Publishing Ltd/CNRS
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When measures of primary producers were presented from multi-

ple times during the exclusion experiment, we collected data from

the time in which there was the greatest absolute difference

between exclusion and control treatments (i.e. the time of maximum

grazer impact) and at the end of the experiment. For these experi-

ments with time series data, the effect sizes measured at the end of

the experiment were a very good predictor of the highest effect

sizes observed during the experiment (linear mixed model with

maximum effect size as response variable, final effect size as predic-

tor and experiment as a random factor, P < 0.001). The slope of

this relationship (0.96) did not differ significantly from a slope of 1

(95% confidence interval: 0.91–1.0), and thus all subsequent analy-

ses used data from the final measurement time only. The final data

set yielded 3608 measures of primary producers from 22 104 repli-

cate plots in 613 exclusion experiments.

Quantifying grazer impacts

To quantify the effect of removing grazers from marine habitats

in situ, we used the log response ratio, LRR = ln (Xe/Xc) where Xe

is the mean of the producer variable from the exclusion (ungrazed)

treatment and Xc is the mean of the producer variable from the

control (grazed) treatment (Coleman et al. 2006). The log response

ratio measures the proportional change due to the experimental

manipulation such that LRR is greater than zero when herbivore

presence reduces primary producer abundance, is less than zero

when herbivore presence increases primary producer abundance,

and equal to zero when herbivore presence has no effect (i.e. the

grazed and ungrazed treatments are equivalent). If the mean values

of either treatment were zero (e.g. no algae present in grazed plots),

we substituted zero with the minimum value that was likely to be

detected with the sampling method used (e.g. a count of 1 when

numbers of individuals per plot was measured, 1% cover when per-

centage cover was measured).

Response and predictor variables

Primary producer variables were categorised by the types of mea-

sures taken (count, cover, biomass and size), and by whether the

measures were taken from single species, groups of taxa, or from all

primary producers present in each plot (totals). Primary producers

were categorised by the functional groups defined by Steneck &

Dethier (1994), and whether they were macrophytes, periphyton or

epiphytes. When species were identified, variables were classified by

phylum and order using currently accepted published taxonomy for

algae and marine vascular plants (www.algaebase.org).

For each experiment, we recorded depth or height on the shore

(in metres), the latitude and longitude (to nearest degree) and bio-

geographical region (the 12 realms defined by Spalding et al. 2007).

The global distribution of experiments is shown in Fig. 1a. There

was no interaction between hemisphere and absolute latitude for

the magnitude of the effect size (linear mixed model, F1,419 = 0.15,

P = 0.70), hence, all analyses were conducted with absolute latitude

only. For each experimental site (one degree latitude by one degree

longitude), we obtained sea surface temperature data from the

Global Ocean Surface Temperature data set (HadISST_1.1_SST)

available from the British Atmospheric Data Centre (http://badc.

nerc.ac.uk/data/hadisst/, Rayner et al. 2003). We calculated the

mean, maximum and minimum of the 12 monthly temperatures for

the year in which the experiment finished. Estimates of sea surface

nutrient concentrations were taken from the World Ocean Atlas

2009 available from the National Oceanographic Data Center

(http://www.nodc.noaa.gov/OC5/WOD/pr_wod.html, Garcia et al.

2010). We extracted annual nitrate and phosphate estimates (lmol.

L�1) for surface waters from each experimental site (one degree lati-

tude by one degree longitude).

Each experiment was categorised into broad habitat types (inter-

tidal rocky reefs, subtidal rocky reefs, coral reefs, seagrass beds, salt-

marshes, intertidal soft sediments and subtidal soft sediments). The

groups of marine herbivores excluded in each experiment were cate-

gorised by major taxonomic groups (gastropods, urchins, fish, crus-

taceans, mammals, birds, reptiles and polychaetes) and by size

(macrograzer vs. mesograzer). Mesograzers were defined as small

(less than 2.5 cm) mobile herbivores, such as amphipods, isopods

and gastropods (Brawley 1992).

We recorded the duration of each experiment (days), the season

in which the experiment ended, the size of experimental plots (m2)

and categorised the experimental methodology using the method of

exclusion (cages, physical removals or chemical deterrence) and the

substratum conditions at the start of the experiment (existing cover

of primary producers or bare substrate following experimental

clearing).
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Figure 1 The global distribution of the 613 experiments that excluded marine

grazers in situ (a) and the frequency histogram of the effect sizes (b). The effect

size was quantified by the log response ratio, ln(Xe/Xc), where Xe is the mean of

the exclusion (ungrazed) treatment and Xc is the mean of the control (grazed)

treatment. The X-axis above displays the percentage change in producer

variables between control and exclusion plots.
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Statistical analyses

The degree to which variation in the effect size, LRR, was explained

by categorical and continuous predictor variables was tested using

linear mixed models in the PROC MIXED procedure in SAS 9.2,

with predictors as fixed factors and experiment as a random factor

to account for the non-independence of multiple measures of pri-

mary production taken from each experiment. The significance of

fixed effects was tested using Type III F tests effects and Kenward-

Roger adjusted degrees of freedom. REML estimates of fixed

effects and their 95% confidence intervals were derived from the

linear mixed models and used in all figures. Estimates of R2 for the

fixed effects were derived from the methods of Edwards et al.

(2008). The assumptions of normality and homogeneity of variances

were tested by examining frequency histograms of residuals, and

scatterplots of residuals vs. means respectively.

Given the geographical clustering of experiments, we also consid-

ered the possibility that observations are linked by spatial proximity

at spatial scales larger than the experiment. We analysed effect size

vs. absolute latitude, mean sea surface temperature and nitrate and

phosphate availability with location (each of the 111 unique 1° of

latitude 9 1° degree of longitude blocks) as a random factor, and

experiment as a random factor nested within location.

We assessed which predictor variables most strongly associated

with herbivore effects using ‘best’ model selection following univari-

ate multiple regression (Anderson et al. 2008). This approach

assesses all possible combinations of predictor variables and selects

the best models based on commonly used criteria (AIC, BIC,

Adjusted R2). High multi-collinearity among continuous predictor

variables, and missing combinations of levels of categorical factors

prevented the use of all predictor variables, and we conducted two

sets of analyses based on a subset of important predictors. First, we

did a global scale analysis of the continuous, abiotic variables that

were present for all experiments (absolute latitude, mean sea surface

temperature, phosphate concentration, nitrate concentration, experi-

mental duration and plot size). Second, for intertidal and subtidal

rocky reefs, we analysed mean sea surface temperature (as the proxy

for latitude and other temperature variables), phosphate concentra-

tion, grazer type, producer order, starting conditions, plot size and

duration). Tests were run in the DISTLM procedure in Primer V6

(further detailed in Appendix 2).

The funnel plot of effect sizes vs. sample size did not indicate

any publication biases as would be expected if non-significant

results with low replication were unlikely to be published (Møller &

Jennions 2001). Like several recent meta-analyses (Gruner et al.

2008; Mooney et al. 2010), we took the conservative approach of

not weighting effect sizes by their variance as we considered most

variation among the experiments to result from biological differ-

ences over a wide range of systems rather than the variation in sam-

pling error expected with increasing numbers of replicate plots

conducted in otherwise equal conditions.

RESULTS

Large scale patterns in grazer impacts

Removing natural densities of marine grazers in situ resulted, on

average, in a 3.1-fold increase in the abundance of primary produc-

ers (biomass, cover or density) in contrast with control plots acces-

sible to herbivores (mean log response ratio, LRR = 1.14, 95%

confidence interval: 0.82–1.45). This is equivalent to grazers reduc-

ing producer abundance by 68%. There was wide variation in effect

sizes with 20% of observations featuring reductions of more than

90% (Fig. 1b).

Grazer impact increased slightly with distance from the equator

(latitude) although this relationship explained very little of the vari-

ance in effect sizes (Fig. 2a, F1,474 = 26.77, P < 0.001, R2 = 0.02).

Given the uneven distribution of habitats among latitudes, we esti-

mated contrasts with latitude separately for each of the four major

habitats in the data set (intertidal rocky reefs, subtidal rocky reefs,

coral reefs and seagrass beds). Grazer impact increased significantly

with latitude for intertidal rocky reefs (where the average interaction

strength increased from 0 to over 89% reduction from the equator

to 60° from the equator), coral reefs and seagrass beds, but not in

subtidal rocky reefs (Figure S1, Table S2).

Given that latitude itself is unlikely to causally influence grazing,

we tested whether grazer impacts vary with mean sea surface tem-

peratures and nutrient availability, each of which varied consistently

with latitude. Across all habitats, grazer impacts decreased under

warmer mean sea surface temperatures, but the relationship

explained little of the variance in effect sizes (Fig. 2b,

F1,600 = 30.29, P < 0.001, R2 = 0.05). A similar decline in impact

with temperature was observed using the temperature data from

the coldest or warmest month in the year of the experiment

(Table S2). Effect sizes decreased with mean sea surface tempera-

ture in intertidal rocky reefs and seagrass beds, but not in coral

reefs or subtidal rocky reefs (Table S2). Mean sea surface tempera-

tures also interacted with the season in which the experiments

ended (Figure S2). Effect sizes declined with increasing tempera-

tures when the experiments finished in the winter and spring, there

was no relationship with temperature for experiments that finished

in summer or autumn (Figure S2, Table S2). Nitrate and phosphate

availability in surface waters were both positively correlated with

effect sizes (Fig. 2c, nitrate, F1,611 = 9.57, P = 0.002; phosphate,

F1,611 = 14.78, P < 0.001, Table S2). Nutrient availability increased

with distance from the equator (nitrate, F1,605 = 479, P < 0.001,

R2 = 0.44; phosphate, F1,605 = 938, P < 0.001, R2 = 0.61) and

declined with mean sea surface temperature (nitrate, F1,605 = 667.5,

P < 0.001, R2 = 0.52; phosphate, F1,605 = 1526, P < 0.001,

R2 = 0.72).

Multiple regression modelling using a subset of abiotic, continu-

ous variables across global scales (latitude, mean sea surface temper-

ature, nitrate and phosphate concentration, experimental duration

and plot size) demonstrated that each of these variables explained

only a low proportion of the variance (all < 4%), and failed to iden-

tify any models simpler than that using the full set of variables

(Table S3).

The weak pattern of stronger grazer impacts at high latitudes

might be explained by higher levels of producer abundance in tem-

perate regions with greater nutrient availability, and consequently

a greater scope for change between control and exclusion plots.

Consistent with this hypothesis, percentage cover in the exclusion

plots increased with distance from the equator (F1,235 = 18.7,

P < 0.001) (although the relationship was highly variable,

R2 = 0.07), whereas percentage cover in the grazed plots declined

with distance from the equator (F1,152 = 15.42, P < 0.001).

The effect of removing herbivores on producer abundance dif-

fered strongly among habitats (Fig. 2d, F6,707 = 9.70, P < 0.001),

© 2012 Blackwell Publishing Ltd/CNRS
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and was greatest in intertidal rocky reefs (Fig. 2d). On average,

exclusion of herbivores had no effect on the abundance of primary

producers in seagrass beds, salt marshes or the soft sediment habi-

tats (95% confidence intervals overlapping zero, Fig. 2d), habitats

that were less well represented in this analysis.

The large scale patterns were largely unaffected by the spatial

clustering of experiments within locations. The observed variation

in effect size with the predictor variables of latitude, temperature

and phosphate availability all remained unchanged by consider-

ation of location (each 1° of latitude by 1° of longitude block)

and experiment (nested within location) as random factors in the

linear mixed models (absolute latitude: slope = 0.02, F1,10 = 6.74,

P = 0.01; mean sea surface temperature: slope = �0.04,

F1,119 = 8.0, P = 0.006; phosphate: slope = 0.54, F1,121 = 4.58,

P = 0.03). The relationship between effect size and nitrate avail-

ability became non-significant (slope = 0.13, F1,128 = 2.91,

P = 0.09). When grouping the experiments at even larger spatial

scales, average grazer impacts varied among biogeographical

regions only for intertidal rocky reefs (7 realms contrasted,

F6,361 = 5.71, P < 0.001) where the difference was due to low

grazer impact in the two tropical regions (Central Indo-Pacific

and Tropical Eastern Pacific). There were no differences among

regions for subtidal rocky reefs (5 realms contrasted, F4,54 = 0.27,

P = 0.89), coral reefs (4 realms contrasted, F3,175 = 2.21,

P = 0.09) or seagrass beds (3 realms contrasted, F2,25 = 0.72,

P = 0.50).

Variation in impacts with grazer type and size

Given the uneven distribution of herbivore taxa among habitats, we

contrasted taxa within the four major habitats represented (i.e. those

for which there were > 5 experiments per grazer type) (Table S2).

On intertidal rocky reefs, molluscs had the highest grazing impacts

(Fig. 3a, F2,294 = 8.74, P = 0.002), with these impacts not differing

significantly from urchins, but higher than experiments that

excluded multiple groups. Molluscs and urchins had the highest

impacts on subtidal rocky reefs (Fig. 3a, F3,100 = 3.66, P = 0.02).

On coral reefs, the highest effect sizes were observed for experi-

ments that excluded fish and multiple taxa (Fig. 3a, F2,170 = 5.60,

P = 0.004), whereas no differences among herbivore taxa were

observed in seagrass beds (Fig. 3a. F3,11 = 0.76, P = 0.54).

We contrasted the impacts of macrograzers (fishes, urchins and

large molluscs) with those of the smaller mesograzers (amphipods,

isopods and small molluscs) to test whether mesograzers can signifi-

cantly impact marine vegetation. Macrograzers more strongly

impacted producer abundance than mesograzers (F1,745 = 15.42,

P < 0.001), with the pattern largely explained by differences among

mollusc size classes (Fig. 3b). Quantitative comparison with the

grazing effects of macrograzers, however, is complicated by the fact

that the small mesh sizes needed to exclude mesograzers in caging

experiments will also exclude local macrograzers if present. In

experiments aimed at excluding mesograzers, the abundance of pri-

mary producers was significantly increased by grazer exclusion in all
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habitats examined (Fig. 3b, mean LRR = 0.64, equivalent to plots

exposed to mesograzers having 47% of the producer abundance of

exclusion plots, on average).

Variation in grazer impact with primary producer traits

Strong variation was evident among functional groups of primary

producers (Fig. 4a, F9,863 = 16.69, P < 0.001). Grazers had strong-

est effects on leathery macrophytes and foliose algae. On average,

filamentous, corticated foliose and micro-algae all declined with gra-

zer presence, whereas calcareous algae (crustose and articulated),

corticated macrophytes, seagrasses and salt marsh vegetation were

not significantly affected by grazers (Fig. 4a).

Among experiments that reported the identity of primary produc-

ers, herbivores most strongly depressed brown and green algae, with

significantly lower impacts on red algae, seagrasses and cyanobacte-

ria (Fig. 5a, F4,752 = 19.3, P < 0.001). At a finer level of taxonomic

resolution, grazing impacts varied strongly among orders of primary

producers (Fig. 4b, F17,726 = 10.22, P < 0.001). Across all habitats,

algae from the orders Fucales, Laminariales, Palmariales, Dasycla-

dales, Ulvales, Cladophorales and Dictyotales were most impacted

(negatively) by grazers (Fig. 4b). The remaining orders were, on

average, unaffected by the exclusion of herbivores with the excep-

tion of cyanobacteria in the order Nostocales, which increased in

the presence of herbivores (Fig. 4b).

Given the uneven distribution of producer functional groups,

phyla and orders across habitats, we contrasted groups separately

within each habitat using only those with more than five replicate

observations per group. Strong differences among functional groups

remained within intertidal (F6,537 = 21.62, P < 0.001) and subtidal

(F6,153 = 2.76, P = 0.01) rocky reefs, with the strongest grazing

impacts on leathery macrophytes. There were strong differences in

grazer impacts among producer phyla (excluding seagrasses) in

intertidal rocky reefs, subtidal rocky reefs and coral reefs (Fig. 5a,

Table S2). The strong differences observed among algal orders

across all habitats (Fig. 4b) were also present within habitats

(Fig. 5b, Table S2). Impacts were strongest on algae from the

orders Fucales and Ulvales on intertidal rocky reefs (F8,396 = 18.24,

P < 0.001), and on Fucales, Ulvales and Laminariales on subtidal

rocky reefs (F9,144 = 5.09, P < 0.001). On coral reefs, grazer

impacts were highest on algae from the Fucales (Fig. 5b,

F3,252 = 15.57, P < 0.001).

Multiple regression modelling using a subset of variables within

intertidal and subtidal rocky reefs (mean sea surface temperature,

phosphate concentration, grazer type, producer order, starting con-

ditions, experimental duration and plot size) demonstrated that pro-

ducer order was associated with a higher proportion of the

variation (43% intertidal, 31% subtidal) than any other variables

(all others < 13%) (Table S3). The most strongly supported models

selected differed little from the model with all terms, thus failing to

isolate a more parsimonious selection of predictor variables

(Table S3).

Grazers are often hypothesised to benefit macrophytes by remov-

ing epiphytes. Only nine experiments measured both epiphytes and

macrophytes, and among these, there was no evidence for differ-

ences in impacts between epiphytes and macrophytes (paired t-test,

t8 = 1.25, P = 0.25). From the 16 experiments that presented data

on the abundance of epiphytic algae, the removal of grazers did

increase epiphytes 2.3-fold (mean LRR = 0.84, 95% confidence

interval: 0.12–1.55) and we found no difference between mesogra-

zers and macrograzers in effectiveness of epiphyte removal

(t14 = 0.14, P = 0.89).

Influence of experimental method

We conducted a series of additional tests to confirm that the results

obtained were not confounded by differences in experimental

methods (fully detailed in the Appendix 3 in the Supporting

Information and Table S2). Effect sizes increased weakly with plot

size (Figure S4, F1,386 = 5.17, P = 0.02, R2 = 0.01), and only dif-
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fered among methods of exclusion for molluscs (Figure S3b, Table

S2). Effect sizes increased with experimental duration for measures

of total producer abundance (Figure S6a, F1,280 = 51.45, P < 0.001),

but not, on average, for measures of single species (Figure S6b,

F1,260 = 0.03, P = 0.86).

DISCUSSION

Our analysis of over 600 controlled field experiments presents the

largest and most coherent synthesis of experimentally measured

herbivore impacts in nature. Across the global range of environ-

ments, herbivore impact on marine benthic primary producers is

intense, reducing producer abundance by 68% on average, com-

pared with 49–59% estimated from previous analyses of aquatic

systems (Gruner et al. 2008; Hillebrand 2009), and consistently

higher than estimates from terrestrial vegetation (Cebrian 1999).

Our results, thus confirm that consumers exert strong control on

benthic producers throughout the world’s oceans. These impacts

are exerted not only by large herbivores, such as fishes and urch-

ins, but also by mesograzers (small crustaceans and molluscs)

whose role has been rarely recognised (Duffy & Hay 2000; Poore

et al. 2009) with the exception of gastropods in the rocky inter-

tidal. Unexpectedly, we found little influence of latitude, mean

annual water temperature, nutrient availability or major herbivore

taxon on grazing impacts, which were also similar among the

major habitat types (except for particularly intense herbivory on

intertidal rocky reefs) and largely consistent among different bio-

geographical regions (except for limited grazing impacts on tropi-

cal intertidal rocky reefs). Instead, impacts differed most

consistently among producer taxa (orders) and morphologically

based functional groups, suggesting stronger control by phylogeny

and morphology than by environment, and a previously unrecogn-

ised degree of phylogenetic conservatism in algal susceptibility to

consumption.

Long-standing arguments that consumer pressure is higher in the

tropics (Gaines & Lubchenco 1981) are supported by limited exper-

imental evidence (e.g. Coley & Barrone 1996; Pennings & Silliman

2005), stronger defences of some taxa at lower latitudes (Bolser &

Hay 1996; Rassmann & Agrawal 2011; Pearse & Hipp 2012), and

the paucity of herbivorous vertebrates at higher latitudes (Floeter

et al. 2005). However, we found no evidence that potentially stron-

ger herbivory translates to stronger impacts on aggregate abundance

of tropical marine producers. The generality of latitudinal gradients

in biotic interactions has remained unresolved due to few studies

being conducted on appropriate scales, and a wide variety of met-

rics used to quantify interaction strengths. Our analysis overcomes

these limitations by focusing on a common, rigorous methodology

that directly measures consumer impacts at natural densities in the

field, across a broad range of habitats, herbivores and producers.

The lack of stronger herbivore impacts in the tropics, or on coral

reefs, was unexpected but is consistent with recent meta-analyses

across marine and terrestrial environments that similarly found no

or variable latitudinal gradients in consumer effects on primary pro-

ducer abundance (Gruner et al. 2008; Hillebrand 2009; Moles et al.

2011).

Herbivore impact in field experiments is measured as the differ-

ence in abundance (standing biomass or cover) of a multi-species

producer assemblage between an exclusion treatment (E) and a

control (C) exposed to herbivores (summarised in our analysis as ln

[E/C] (Coleman et al. 2006). Abundance, in turn, reflects the out-

come of production, interaction among producer species, and

removal by herbivores (and other losses). Thus, high rates of her-

bivory may not necessarily translate to changes in aggregate pro-

ducer abundance. Moreover, all these processes may be influenced

by the environment and traits of both producers and herbivores.

Despite the well-known variation in feeding behaviour among

species within a taxonomic group (e.g. Poore et al. 2008), our

analyses identified variation among major taxa and size classes of
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herbivores, with particularly intense herbivory recorded from mol-

luscs on intertidal rocky reefs. It should be noted, however, that the

field exclusion experiments in this data set record population-level

impacts (i.e. integrating naturally occurring variation in herbivore

abundance, composition, body size distributions and per-capita graz-

ing rates) and are not always able to partition impacts among herbi-

vore taxa (e.g. the ‘multiple’ category when more than one taxon is

excluded). Our contrasts among herbivore taxa assume that the ori-

ginal experiments manipulated the taxa they intended to. This will

certainly be true in the 28% of observations that come from experi-

ments where the investigators manually removed herbivores of

known identity, as well as those caging experiments where taxa

other than those manipulated are absent or deemed unimportant (e.g.

caging experiments in high latitude kelp forests manipulating urch-

ins, where herbivorous fishes are largely absent). In cases where

multiple taxa are excluded simultaneously, alternative experimental

designs (e.g. enclosure experiments with known grazers) are needed

to better partition impacts among herbivore taxa (e.g. Burkepile &

Hay 2008). Below, we consider how global patterns in herbivore

impact may be mediated by temperature, nutrients, producer traits

and cascading impacts of higher predators.

Temperature is a fundamental driver of biological processes and

varies systematically with latitude. Both photosynthesis and respira-

tion increase with temperature, resulting in both faster plant growth

and higher consumption by herbivores, on average, at warmer tem-

peratures and at lower latitudes. As consumption tends to increase

with temperature faster than does photosynthesis (Allen et al. 2005),

herbivore control might be expected to be stronger at warmer tem-

peratures. However, faster plant growth may also enhance tolerance

to grazing (Wise & Abrahamson 2007). Consistent with both these

hypotheses, tropical coral reefs have very low algal biomass, yet are

highly productive, evidently because herbivores can crop nearly all

daily production and maintain the dominant filamentous algae in a

state of rapid growth free of resource limitation (Carpenter 1986).

Given the expectations of more intense herbivory in the tropics,

and known positive relationships between grazing rates and temper-

ature (e.g. aquatic grazing on periphyton, Hillebrand 2009), why

then does herbivore exclusion not cause large increases in algal bio-

mass there relative to temperate regions? One contributor may be

the latitudinal gradients in nutrient availability. Stratification of the

warmer water column at low latitudes maintains generally lower

nutrient availability in tropical surface waters. Perhaps in part for

this reason, large nutrient-hungry kelps (Laminariales and Fucales)

are less common in the tropics, and tropical algae tend to be smal-

ler than temperate algae. If producers typically reach higher biomass

in exclusion plots in nutrient-rich temperate waters, this may trans-

late to a greater scope for increase in algal abundance when herbi-

vores are removed in temperate areas, counteracting any trend

driven by stronger herbivory in the tropics. This hypothesis is sup-

ported by our findings that the percentage cover of producers in

the exclusion plots (i.e. potential standing biomass) increases with

distance from the equator and increasing nutrient availability. Simi-

larly, effect sizes of grazer impacts on aquatic periphyton correlate

positively with standing biomass (Hillebrand 2009). The weak posi-

tive correlations between grazing effect sizes and nutrient availability

observed in our data contrast with previous large scale syntheses

that have found either no variation in top-down control (Borer et al.

2005; Hillebrand 2009), or declines in marine herbivore impacts

(Burkepile & Hay 2006) with increasing ecosystem productivity.

Alternatively, the most impacted orders of algae (Fucales, Ulvales,

Laminariales) may have few tropical representatives precisely

because these species suffer most from herbivory and herbivory is

more intense in the tropics. Thus, it is possible that strong selection

by herbivores has eliminated many susceptible species from the tro-

pics or prevented their invasion from temperate regions. In this

case, the lack of impact of latitude on present day impact of herbi-

vores on producer abundance could be thought of as the ‘ghost of

herbivory past’.

For intertidal species, contrasts across gradients in productivity, and

simple predictions of increased per capita grazing rates with increased

water temperature, are complicated by the variation in thermal and

desiccation stresses. For tropical intertidal species that live close to
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their thermal maxima (Somero 2011), grazing activity may be more

strongly limited by air temperatures than by water temperatures. This

hypothesis is consistent with our finding of low grazer impacts, on

average, for tropical, intertidal rocky shores (the only habitat in which

effect sizes varied among biogeographical regions).

The most striking feature of our analysis was strong and consis-

tent variation among producer groups in vulnerability to herbi-

vores. The strong variation among producer orders implies that

major patterns in vulnerability were established early in the evolu-

tion of producer taxa and have persisted despite hundreds of mil-

lions of years of dynamic consumer-prey interactions. Notably,

herbivore impacts were especially low in salt marshes and seagrass

beds, which are dominated by vascular plants that are less nutri-

tious than algae (Cebrian et al. 2009) and generally little grazed.

There was, however, relatively little available data from field exclusion

experiments on the importance of grazing of epiphytes and benthic

microalgae in those plant-dominated systems. Superimposed on the

taxonomic pattern is one of strong variance among morphologically

based functional groups. Our results, however, differed from the pre-

dictions of classical models of algal functional group vulnerability

(Steneck & Dethier 1994). For example, leathery macrophytes were

among the most strongly impacted by herbivory, even when com-

pared with microalgal and filamentous groups which are expected to

be more palatable (Fig. 4). This contrasts with arguments that grazing

favours fast-growing ‘weedy’ species (Gruner et al. 2008), and a previ-

ous meta-analysis that found upright algae are only moderately grazed

in temperate systems (Burkepile & Hay 2006). Our results may reflect

the fact that kelps are often controlled by heavy grazing at small life

history stages whereas filamentous taxa continue to grow rapidly and

produce under heavy grazing. Although the experiments with kelps

that we reviewed were generally conducted over long time scales

(mean = 525 days), and thus should have allowed grazing on all life

stages, measurements of kelp populations are dominated by adult

stages. Thus, our data are unable to confirm whether the observed

high grazer impacts on this functional group persist beyond the early

life stages.

The high resistance of crustose algae to herbivory, as predicted

by functional form models and extensive field data (Steneck &

Dethier 1994), is confirmed by our analyses. Our only evidence for

herbivores facilitating the abundance of producer taxa is for the

abundance of crustose algae to increase under fish and urchin graz-

ing – the well-known phase shift between kelp forests and crustose

dominated ‘barrens’. The few other examples of grazers facilitating

producer groups were grazing by crustaceans benefitting seagrasses

(Figure S3, assumed to result from grazers removing epiphytes) and

grazing increasing the abundance of the chemically defended cyano-

bacteria (Fig. 4b). The fact that certain producer taxa are unaffected,

or benefit from, grazing is also evident from the increasing variance

in effect sizes (both positive and negative) with experimental dura-

tion when measures of single species are analysed (Figure S7). In

addition to structural defences, herbivory is strongly influenced by

algal chemical defences (Paul et al. 2001), and higher rates of metab-

olism, evolution and herbivory in the tropics may generate stronger,

diffuse coevolution between consumers and prey defences in tropi-

cal regions (Strauss et al. 2005). If chemical defences are indeed

stronger in the tropics (as evident in some systems, e.g. Bolser &

Hay 1996; but not others, Moles et al. 2011), they could offset the

greater numbers or activity of herbivores there. On the other hand,

tropical herbivores could have evolved greater tolerance for seaweed

defences than temperate herbivores, and thus, there is no straight-

forward prediction from the evolutionary history of strong plant-

herbivore interactions on the current interaction strength.

Finally, in addition to these bottom-up effects, spatial variation in

predation intensity might also help explain the weak relationships

with latitude, temperature and nutrients, and our findings of the

strongest herbivore impacts in the intertidal. The grazed (control)

plots in most field experiments allow predator access, potentially

inhibiting herbivore activity such that the log response ratio under-

estimates potential grazing impacts. Thus, we suspect that the char-

acteristically strong trophic cascades in aquatic communities (Shurin

et al. 2002; Estes et al. 2011) may contribute to some of our find-

ings. The strong seasonality in temperate latitudes can generate up

to 100-fold fluctuations in herbivore densities (e.g. Korpinen et al.

2010), which typically peak in autumn after summer recruitment,

and may promote periodic escapes from predator control as preda-

tor responses lag behind those of herbivores. This may explain our

finding that the increasing effect of herbivores with latitude is

strongest for experiments concluded in winter, which would have

thus experienced greater herbivory during autumn. Our finding of

highest herbivore impacts in the intertidal may also be explained by

relaxed predation if predators are less tolerant than herbivores of

the physiologically stressful intertidal environment as envisioned in

the consumer stress model (Menge & Olson 1990).

Our results confirm the central importance of herbivores in mar-

ine benthic ecosystems and provide the strongest test yet in any sys-

tem of latitudinal and environmental variation in the impact of

herbivory on producers on a global scale. The data strongly contra-

dict the commonly accepted notion that herbivores have stronger

impacts on producer biomass in tropical regions, and demonstrate

that producer traits (i.e. algal identity) explain substantially more

variation in herbivore impacts than consumer identity or large-scale

variation in habitat, temperature or nutrient availability. Challenges

for future research include (1) better clarifying the mechanistic bases

for the strong variance in vulnerability among orders and functional

groups of producers and (2) understanding how large-scale variance

in environmental forcing and the strength of biotic interactions

mediates expression of herbivore and producer functional traits,

both at the physiological level and over the long span of evolution-

ary time. From the perspective of conservation and management,

our finding of consistently strong top-down impacts throughout the

world’s oceans provide further support that alterations of marine

food webs through fishing and exotic invasions can be expected to

ripple through marine ecosystems and influence the base of the

food web and the biogeochemical processes mediated by primary

producers.
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