4,060 research outputs found
Energy Distribution in disordered elastic Networks
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed
Biological synthesis of fluorescent nanoparticles by cadmium and tellurite resistant Antarctic bacteria: exploring novel natural nanofactories
Indexación: Web of ScienceBackground: Fluorescent nanoparticles or quantum dots (QDs) have been intensely studied for basic and applied research due to their unique size-dependent properties. There is an increasing interest in developing ecofriendly methods to synthesize these nanoparticles since they improve biocompatibility and avoid the generation of toxic byproducts. The use of biological systems, particularly prokaryotes, has emerged as a promising alternative. Recent studies indicate that QDs biosynthesis is related to factors such as cellular redox status and antioxidant defenses. Based on this, the mixture of extreme conditions of Antarctica would allow the development of natural QDs producing bacteria.
Results: In this study we isolated and characterized cadmium and tellurite resistant Antarctic bacteria capable of synthesizing CdS and CdTe QDs when exposed to these oxidizing heavy metals. A time dependent change in fluorescence emission color, moving from green to red, was determined on bacterial cells exposed to metals. Biosynthesis was observed in cells grown at different temperatures and high metal concentrations. Electron microscopy analysis of treated cells revealed nanometric electron-dense elements and structures resembling membrane vesicles mostly associated to periplasmic space. Purified biosynthesized QDs displayed broad absorption and emission spectra characteristic of biogenic Cd nanoparticles.
Conclusions: Our work presents a novel and simple biological approach to produce QDs at room temperature by using heavy metal resistant Antarctic bacteria, highlighting the unique properties of these microorganisms as potent natural producers of nano-scale materials and promising candidates for bioremediation purposes.http://microbialcellfactories.biomedcentral.com/articles/10.1186/s12934-016-0477-
Some Remarks on the Model Theory of Epistemic Plausibility Models
Classical logics of knowledge and belief are usually interpreted on Kripke
models, for which a mathematically well-developed model theory is available.
However, such models are inadequate to capture dynamic phenomena. Therefore,
epistemic plausibility models have been introduced. Because these are much
richer structures than Kripke models, they do not straightforwardly inherit the
model-theoretical results of modal logic. Therefore, while epistemic
plausibility structures are well-suited for modeling purposes, an extensive
investigation of their model theory has been lacking so far. The aim of the
present paper is to fill exactly this gap, by initiating a systematic
exploration of the model theory of epistemic plausibility models. Like in
'ordinary' modal logic, the focus will be on the notion of bisimulation. We
define various notions of bisimulations (parametrized by a language L) and show
that L-bisimilarity implies L-equivalence. We prove a Hennesy-Milner type
result, and also two undefinability results. However, our main point is a
negative one, viz. that bisimulations cannot straightforwardly be generalized
to epistemic plausibility models if conditional belief is taken into account.
We present two ways of coping with this issue: (i) adding a modality to the
language, and (ii) putting extra constraints on the models. Finally, we make
some remarks about the interaction between bisimulation and dynamic model
changes.Comment: 19 pages, 3 figure
Ressenyes
Obra ressenyada: José ORTEGA VALCÁRCEL, Los horizontes de la geografía. Teoría de la geografía. Barcelona: Ariel, 2000
Endmember extraction algorithms from hyperspectral images
During the last years, several high-resolution sensors have been developed for hyperspectral remote sensing applications.
Some of these sensors are already available on space-borne devices. Space-borne sensors are currently
acquiring a continual stream of hyperspectral data, and new efficient unsupervised algorithms are required to
analyze the great amount of data produced by these instruments. The identification of image endmembers is a
crucial task in hyperspectral data exploitation. Once the individual endmembers have been identified, several
methods can be used to map their spatial distribution, associations and abundances. This paper reviews the Pixel
Purity Index (PPI), N-FINDR and Automatic Morphological Endmember Extraction (AMEE) algorithms developed
to accomplish the task of finding appropriate image endmembers by applying them to real hyperspectral
data. In order to compare the performance of these methods a metric based on the Root Mean Square Error
(RMSE) between the estimated and reference abundance maps is used
Temporal evolution of the Evershed flow in sunspots. II. Physical properties and nature of Evershed clouds
Context: Evershed clouds (ECs) represent the most conspicuous variation of
the Evershed flow in sunspot penumbrae. Aims: We determine the physical
properties of ECs from high spatial and temporal resolution spectropolarimetric
measurements. Methods: The Stokes profiles of four visible and three infrared
spectral lines are subject to inversions based on simple one-component models
as well as more sophisticated realizations of penumbral flux tubes embedded in
a static ambient field (uncombed models). Results: According to the
one-component inversions, the EC phenomenon can be understood as a perturbation
of the magnetic and dynamic configuration of the penumbral filaments along
which these structures move. The uncombed inversions, on the other hand,
suggest that ECs are the result of enhancements in the visibility of penumbral
flux tubes. We conjecture that the enhancements are caused by a perturbation of
the thermodynamic properties of the tubes, rather than by changes in the vector
magnetic field. The feasibility of this mechanism is investigated performing
numerical experiments of thick penumbral tubes in mechanical equilibrium with a
background field. Conclusions: While the one-component inversions confirm many
of the properties indicated by a simple line parameter analysis (Paper I of
this series), we tend to give more credit to the results of the uncombed
inversions because they take into account, at least in an approximate manner,
the fine structure of the penumbra.Comment: Accepted for publication in A&
Caracteres geoquímicos y mineralógicos de los granitos mineralizados (W, As, Au) de "El Cabaco". Sur de Salamanca
- …
