81 research outputs found

    High School Students' Proficiency and Confidence Levels in Displaying Their Understanding of Basic Electrolysis Concepts

    Get PDF
    This study was conducted with 330 Form 4 (grade 10) students (aged 15 – 16 years) who were involved in a course of instruction on electrolysis concepts. The main purposes of this study were (1) to assess high school chemistry students’ understanding of 19 major principles of electrolysis using a recently developed 2-tier multiple-choice diagnostic instrument, the Electrolysis Diagnostic Instrument (EDI), and (2) to assess students’ confidence levels in displaying their knowledge and understanding of these electrolysis concepts. Analysis of students’ responses to the EDI showed that they displayed very limited understanding of the electrolytic processes involving molten compounds and aqueous solutions of compounds, with a mean score of 6.82 (out of a possible maximum of 17). Students were found to possess content knowledge about several electrolysis processes but did not provide suitable explanations for the changes that had occurred, with less than 45 % of students displaying scientifically acceptable understandings about electrolysis. In addition, students displayed limited confidence about making the correct selections for the items; yet, in 16 of the 17 items, the percentage of students who were confident that they had selected the correct answer to an item was higher than the actual percentage of students who correctly answered the corresponding item. The findings suggest several implications for classroom instruction on the electrolysis topic that need to be addressed in order to facilitate better understanding by students of electrolysis concepts

    The Transformation of Teaching Habits in Relation to the Introduction of Grading and National Testing in Science Education in Sweden

    Get PDF
    In Sweden, a new curriculum and new methods of assessment (grading of students and national tests) in science education were introduced in grade 6 in 2012/2013. We have investigated what implications these reforms have for teachers’ teaching and assessment practices in order to explore the question of how teachers transform their teaching habits in relation to policy reforms. Interviews with 16 teachers teaching science in grade 6 (Y6), over 3 years after the reforms were introduced, were analysed. Building on the ideas of John Dewey, we consider teachers’ talk about their everyday practice as expressions of their habits of teaching. Habits of teaching are related both to individual experiences as well as institutional traditions in and about teaching. A categorisation of educational philosophies was used to teachers’ habits of teaching to a collective level and to show how habits can be transformed and developed over time in specific sociocultural contexts. The teachers were categorised as using essentialist and/or progressivist educational philosophy. In the responses to the introduction of grading and national testing, the teachers took three approaches: Their habits being reinforced, revised or unchanged in relation to the reforms. Although the responses were different, a striking similarity was that all teachers justified their responses with wanting to do what is best for students. However, how to show care for students differed, from delivering scientific knowledge in alignment with an essentialist educational philosophy, to preparing students to do well on tests, to supporting their development as individuals, which is in alignment with a progressivist educational philosophy

    Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life-Histories

    Get PDF
    Wildfire is a fundamental disturbance process in many ecological communities, and is critical in maintaining the structure of some plant communities. In the past century, changes in global land use practices have led to changes in fire regimes that have radically altered the composition of many plant communities. As the severe biodiversity impacts of inappropriate fire management regimes are recognized, attempts are being made to manage fires within a more ‘natural’ regime. In this aim, the focus has typically been on determining the fire regime to which the community has adapted. Here we take a subtly different approach and focus on the probability of a patch being burnt. We hypothesize that competing sympatric taxa from different plant functional groups are able to coexist due to the stochasticity of the fire regime, which creates opportunities in both time and space that are exploited differentially by each group. We exploit this situation to find the fire probability at which three sympatric grasses, from different functional groups, are able to co-exist. We do this by parameterizing a spatio-temporal simulation model with the life-history strategies of the three species and then search for the fire frequency and scale at which they are able to coexist when in competition. The simulation gives a clear result that these species only coexist across a very narrow range of fire probabilities centred at 0.2. Conversely, fire scale was found only to be important at very large scales. Our work demonstrates the efficacy of using competing sympatric species with different regeneration niches to determine the probability of fire in any given patch. Estimating this probability allows us to construct an expected historical distribution of fire return intervals for the community; a critical resource for managing fire-driven biodiversity in the face of a growing carbon economy and ongoing climate change

    Degradation of communal rangelands in South Africa: towards an improved understanding to inform policy

    Get PDF
    In South Africa, the relative extent of range degradation under freehold compared to communal tenure has been strongly debated. We present a perspective on the processes that drive rangeland degradation on land under communal tenure. Our findings are based on literature as well as extensive field work on both old communal lands and ‘released’ areas, where freehold farms have been transferred to communal ownership. We discuss the patterns of degradation that have accompanied communal stewardship and make recommendations on the direction policy should follow to prevent further degradation and mediate rehabilitation of existing degraded land.Keywords: communal rangelands, land degradation, rehabilitation, social systemsAfrican Journal of Range & Forage Science 2013, 30(1&2): 57–6

    A framework for teaching epistemic insight in schools

    Get PDF
    This paper gives the rationale and a draft outline for a framework for education to teach epistemic insight into schools in England. The motivation to research and propose a strategy to teach and assess epistemic insight followed research that investigated how students and teachers in primary and secondary schools respond to big questions about the nature of reality and human personhood. The research revealed that there are pressures in schools that dampen students’ expressed curiosity in these types of questions and limit their developing epistemic insight into how science, religion and the wider humanities relate. These findings prompted the construction of a framework for education for students aged 5–16 designed to encourage students’ expressed interest in big questions and develop their understanding of the ways that science interacts with other ways of knowing. The centrepiece of the framework is a sequence of learning objectives for epistemic insight, organised into three categories. The categories are, firstly, the nature of science in real world contexts and multidisciplinary arenas; secondly, ways of knowing and how they interact; and thirdly, the relationships between science and religion. Our current version of the Framework is constructed to respond to the way that teaching is organised in England. The key principles and many of the activities could be adopted and tailored to work in many other countries

    Challenging the Science Curriculum Paradigm: TeachingPrimary Children Atomic-Molecular Theory

    Get PDF
    Solutions to global issues demand the involvement of scientists, yet concern exists about retention rates in science as students pass through school into University. Young children are curious about science, yet are considered incapable of grappling with abstract and microscopic concepts such as atoms, sub-atomic particles, molecules and DNA. School curricula for primary (elementary) aged children reflect this by their limitation to examining only what phenomena are without providing any explanatory frameworks for how or why they occur. This research challenges the assumption that atomic-molecular theory is too difficult for young children, examining new ways of introducing atomic theory to 9 year olds and seeks to verify their efficacy in producing genuine learning in the participants. Early results in three cases in different schools indicate these novel methods fostered further interest in science, allowed diverse children to engage and learn aspects of atomic theory, and satisfied the children’s desire for intellectual challenge. Learning exceeded expectations as demonstrated in the post-interview findings. Learning was also remarkably robust, as demonstrated in two schools eight weeks after the intervention, and in one school, one year after their first exposure to ideas about atoms, elements and molecules

    Desert springs: deep phylogeographic structure in an ancient endemic crustacean (Phreatomerus latipes)

    Get PDF
    Extent: 13p.Desert mound springs of the Great Artesian Basin in central Australia maintain an endemic fauna that have historically been considered ubiquitous throughout all of the springs. Recent studies, however, have shown that several endemic invertebrate species are genetically highly structured and contain previously unrecognised species, suggesting that individuals may be geographically ‘stranded in desert islands’. Here we further tested the generality of this hypothesis by conducting genetic analyses of the obligate aquatic phreatoicid isopod Phreatomerus latipes. Phylogenetic and phylogeographic relationships amongst P. latipes individuals were examined using a multilocus approach comprising allozymes and mtDNA sequence data. From the Lake Eyre region in South Australia we collected data for 476 individuals from 69 springs for the mtDNA gene COI; in addition, allozyme electrophoresis was conducted on 331 individuals from 19 sites for 25 putative loci. Phylogenetic and population genetic analyses showed three major clades in both allozyme and mtDNA data, with a further nine mtDNA sub-clades, largely supported by the allozymes. Generally, each of these sub-clades was concordant with a traditional geographic grouping known as spring complexes. We observed a coalescent time between ~ 2–15 million years ago for haplotypes within each of the nine mtDNA sub-clades, whilst an older total time to coalescence (>15 mya) was observed for the three major clades. Overall we observed that multiple layers of phylogeographic history are exemplified by Phreatomerus, suggesting that major climate events and their impact on the landscape have shaped the observed high levels of diversity and endemism. Our results show that this genus reflects a diverse fauna that existed during the early Miocene and appears to have been regionally restricted. Subsequent aridification events have led to substantial contraction of the original habitat, possibly over repeated Pleistocene ice age cycles, with P. latipes populations becoming restricted in the distribution to desert springs.Michelle T. Guzik, Mark A. Adams, Nicholas P. Murphy, Steven J.B. Cooper and Andrew D. Austi

    Self-Diffusion in Polycrystalline Tin

    No full text
    • …
    corecore