1,157 research outputs found
Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity
We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis
Assessment of oxidative metabolism
Oxidative metabolism is one of the central physiological processes that regulate multiple functions in a cell including cell death and survival, proliferation, gene transcription, and protein modification. There are multitudes of techniques that are used to evaluate oxidative activity. Here, we summarize how to measure oxidative activity by flow cytometry. This versatile technique allows the evaluation of the level of oxidative activity within heterogeneous populations of cells and in cell culture. Flow cytometry is a quick method that yields highly reproducible results with small sample volumes. Therefore, it is an ideal technique for evaluating changes in oxidative activity in samples from mice
Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments
Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity
MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors
Cancer cells exploit an orphan RNA to drive metastatic progression.
Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
  Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
  corrections to match published versio
Comorbidades físicas e psicológicas antes e depois da cirurgia bariátrica : um estudo longitudinal
Introduction: Morbid obesity has multiple implications for
psychological and physical health. Bariatric surgery has been
selected as the treatment of choice for this chronic disease,
despite the controversial impact of the surgery on psychosocial
health. The objective of this study was to describe candidates
for bariatric surgery and analyze changes in weight, psychopathology,
personality, and health problems and complaints at
6- and 12- month follow-up assessments.
Methods: Thirty obese patients (20 women and 10 men) with a
mean age of 39.17±8.81 years were evaluated in different dimensions
before surgery and 6 and 12 months after the procedure.
Results: Six and 12 months after bariatric surgery, patients
reported significant weight loss and a significant reduction in
the number of health problems and complaints. The rates of
self-reported psychopathology were low before surgery, and
there were no statistically significant changes over time. The
conscientiousness, extraversion, and agreeableness dimensions
increased, but neuroticism and openness remained unchanged.
All changes had a medium effect size.
Conclusions: Our results suggest that patients experience
significant health improvements and some positive personality
changes after bariatric surgery. Even though these findings
underscore the role of bariatric surgery as a relevant treatment
for morbid obesity, more in-depth longitudinal studies
are needed to elucidate the evolution of patients after the
procedure.Introdução: A obesidade mórbida tem várias implicações para
a saúde psicológica e física. A cirurgia bariátrica tem sido o
tratamento de escolha para essa doença crônica, apesar da
controvérsia sobre o impacto da cirurgia na saúde psicossocial.
O objetivo deste estudo foi descrever candidatos a cirurgia bariátrica e analisar mudanças no peso, psicopatologia personalidade,
problemas e queixas de saúde desses pacientes em avaliações
realizadas 6 e 12 meses após a cirurgia.
Métodos: Trinta pacientes obesos (20 mulheres e 10 homens)
com idade média de 39,17±8,81 anos foram avaliados em diferentes
dimensões antes da cirurgia e 6 e 12 meses após.
Resultados: Aos 6 e 12 meses após a cirurgia bariátrica, os
pacientes relataram significativa perda de peso e significativa
redução no número de problemas e queixas de saúde. As taxas
de psicopatologia autorrelatada foram baixas antes da cirurgia e
não sofreram mudanças significativas com o tempo. As dimensões
conscienciosidade, extroversão e agradabilidade aumentaram,
mas o neuroticismo e a abertura permaneceram inalteradas.
Todas as mudanças apresentaram um tamanho de efeito médio.
Conclusões: Os nossos resultados sugerem que os pacientes
experimentam melhoras significativas em saúde e algumas mudanças
positivas de personalidade após a cirurgia bariátrica.
Embora esses achados reforcem o papel da cirurgia bariátrica
como um tratamento relevante para a obesidade mórbida, mais
estudos longitudinais e aprofundados são necessários para elucidar
a evolução dos pacientes após a realização do procedimento.(undefined
TMFoldRec: a statistical potential-based transmembrane protein fold recognition tool.
BACKGROUND: Transmembrane proteins (TMPs) are the key components of signal transduction, cell-cell adhesion and energy and material transport into and out from the cells. For the deep understanding of these processes, structure determination of transmembrane proteins is indispensable. However, due to technical difficulties, only a few transmembrane protein structures have been determined experimentally. Large-scale genomic sequencing provides increasing amounts of sequence information on the proteins and whole proteomes of living organisms resulting in the challenge of bioinformatics; how the structural information should be gained from a sequence. RESULTS: Here, we present a novel method, TMFoldRec, for fold prediction of membrane segments in transmembrane proteins. TMFoldRec based on statistical potentials was tested on a benchmark set containing 124 TMP chains from the PDBTM database. Using a 10-fold jackknife method, the native folds were correctly identified in 77 % of the cases. This accuracy overcomes the state-of-the-art methods. In addition, a key feature of TMFoldRec algorithm is the ability to estimate the reliability of the prediction  and to decide with an accuracy of 70 %, whether the obtained, lowest energy structure is the native one. CONCLUSION: These results imply that the membrane embedded parts of TMPs dictate the TM structures rather than the soluble parts. Moreover, predictions with reliability scores make in this way our algorithm applicable for proteome-wide analyses. AVAILABILITY: The program is available upon request for academic use
Fermi Large Area Telescope observations of PSR J1836+5925
The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly
unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments
of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic
plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8
million years, a spindown luminosity of 1.1 erg s, and a
large off-peak emission component, making it quite unusual among the known
gamma-ray pulsar population. We present an analysis of one year of LAT data,
including an updated timing solution, detailed spectral results and a long-term
light curve showing no indication of variability. No evidence for a surrounding
pulsar wind nebula is seen and the spectral characteristics of the off-peak
emission indicate it is likely magnetospheric. Analysis of recent XMM
observations of the X-ray counterpart yields a detailed characterization of its
spectrum, which, like Geminga, is consistent with that of a neutron star
showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa
Amyloid precursor protein drives down-regulation of mitochondrial oxidative phosphorylation independent of amyloid beta
Amyloid precursor protein (APP) and its extracellular domain, soluble APP alpha (sAPPα) play important physiological and neuroprotective roles. However, rare forms of familial Alzheimer’s disease are associated with mutations in APP that increase toxic amyloidogenic cleavage of APP and produce amyloid beta (Aβ) at the expense of sAPPα and other non-amyloidogenic fragments. Although mitochondrial dysfunction has become an established hallmark of neurotoxicity, the link between Aβ and mitochondrial function is unclear. In this study we investigated the effects of increased levels of neuronal APP or Aβ on mitochondrial metabolism and gene expression, in human SH-SY5Y neuroblastoma cells. Increased non-amyloidogenic processing of APP, but not Aβ, profoundly decreased respiration and enhanced glycolysis, while mitochondrial DNA (mtDNA) transcripts were decreased, without detrimental effects to cell growth. These effects cannot be ascribed to Aβ toxicity, since higher levels of endogenous Aβ in our models do not cause oxidative phosphorylation (OXPHOS) perturbations. Similarly, chemical inhibition of β-secretase decreased mitochondrial respiration, suggesting that non-amyloidogenic processing of APP may be responsible for mitochondrial changes. Our results have two important implications, the need for caution in the interpretation of mitochondrial perturbations in models where APP is overexpressed, and a potential role of sAPPα or other non-amyloid APP fragments as acute modulators of mitochondrial metabolism
- …
