1,042 research outputs found

    Towards meta-interpretive learning of programming language semantics

    Get PDF
    We introduce a new application for inductive logic programming: learning the semantics of programming languages from example evaluations. In this short paper, we explored a simplified task in this domain using the Metagol meta-interpretive learning system. We highlighted the challenging aspects of this scenario, including abstracting over function symbols, nonterminating examples, and learning non-observed predicates, and proposed extensions to Metagol helpful for overcoming these challenges, which may prove useful in other domains.Comment: ILP 2019, to appea

    Hepatic rhythmicity of endoplasmic reticulum stress is disrupted in perinatal and adult mice models of high-fat diet-induced obesity

    Get PDF
    We investigated the regulation of hepatic ER stress in healthy liver and adult or perinatally programmed diet-induced non-alcoholic fatty liver disease (NAFLD). Female mice were fed either obesogenic or control diet before mating, during pregnancy and lactation. Post-weaning, offspring from each maternal group were divided into either obesogenic or control diet. At six months, offspring were sacrificed at 4-h intervals over 24 h. Offspring fed obesogenic diets developed NAFLD phenotype, and the combination of maternal and offspring obesogenic diets exacerbated this phenotype. UPR signalling pathways (IREα, PERK, ATF6) and their downstream regulators showed different basal rhythmicity, which was modified in offspring exposed to obesogenic diet and maternal programming. The double obesogenic hit increased liver apoptosis measured by TUNEL staining, active caspase-3 and phospho-JNK and GRP78 promoter methylation levels. This study demonstrates that hepatic UPR is rhythmically activated. The combination of maternal obesity (MO) and obesogenic diets in offspring triggered altered UPR rhythmicity, DNA methylation and cellular apoptosis

    Assessment of oxidative metabolism

    Get PDF
    Oxidative metabolism is one of the central physiological processes that regulate multiple functions in a cell including cell death and survival, proliferation, gene transcription, and protein modification. There are multitudes of techniques that are used to evaluate oxidative activity. Here, we summarize how to measure oxidative activity by flow cytometry. This versatile technique allows the evaluation of the level of oxidative activity within heterogeneous populations of cells and in cell culture. Flow cytometry is a quick method that yields highly reproducible results with small sample volumes. Therefore, it is an ideal technique for evaluating changes in oxidative activity in samples from mice

    Long term benzodiazepine use for insomnia in patients over the age of 60: discordance of patient and physician perceptions

    Get PDF
    BACKGROUND: The aim of this study was to determine and compare patients' and physicians' perceptions of benefits and risks of long term benzodiazepine use for insomnia in the elderly. METHODS: A cross-sectional study (written survey) was conducted in an academic primary care group practice in Toronto, Canada. The participants were 93 patients over 60 years of age using a benzodiazepine for insomnia and 25 physicians comprising sleep specialists, family physicians, and family medicine residents. The main outcome measure was perception of benefit and risk scores calculated from the mean of responses (on a Likert scale of 1 to 5) to various items on the survey. RESULTS: The mean perception of benefit score was significantly higher in patients than physicians (3.85 vs. 2.84, p < 0.001, 95% CI 0.69, 1.32). The mean perception of risk score was significantly lower in patients than physicians (2.21 vs. 3.63, p < 0.001, 95% CI 1.07, 1.77). CONCLUSIONS: There is a significant discordance between older patients and their physicians regarding the perceptions of benefits and risks of using benzodiazepines for insomnia on a long term basis. The challenge is to openly discuss these perceptions in the context of the available evidence to make collaborative and informed decisions

    Nanoscale imaging reveals laterally expanding antimicrobial pores in lipid bilayers

    Get PDF
    Antimicrobial peptides are postulated to disrupt microbial phospholipid membranes. The prevailing molecular model is based on the formation of stable or transient pores although the direct observation of the fundamental processes is lacking. By combining rational peptide design with topographical (atomic force microscopy) and chemical (nanoscale secondary ion mass spectrometry) imaging on the same samples, we show that pores formed by antimicrobial peptides in supported lipid bilayers are not necessarily limited to a particular diameter, nor they are transient, but can expand laterally at the nano-to-micrometer scale to the point of complete membrane disintegration. The results offer a mechanistic basis for membrane poration as a generic physicochemical process of cooperative and continuous peptide recruitment in the available phospholipid matrix

    Cancer cells exploit an orphan RNA to drive metastatic progression.

    Get PDF
    Here we performed a systematic search to identify breast-cancer-specific small noncoding RNAs, which we have collectively termed orphan noncoding RNAs (oncRNAs). We subsequently discovered that one of these oncRNAs, which originates from the 3' end of TERC, acts as a regulator of gene expression and is a robust promoter of breast cancer metastasis. This oncRNA, which we have named T3p, exerts its prometastatic effects by acting as an inhibitor of RISC complex activity and increasing the expression of the prometastatic genes NUPR1 and PANX2. Furthermore, we have shown that oncRNAs are present in cancer-cell-derived extracellular vesicles, raising the possibility that these circulating oncRNAs may also have a role in non-cell autonomous disease pathogenesis. Additionally, these circulating oncRNAs present a novel avenue for cancer fingerprinting using liquid biopsies

    Shallow water marine sediment bacterial community shifts along a natural CO2 gradient in the Mediterranean Sea off Vulcano, Italy.

    Get PDF
    The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments

    Geographical distribution of publications in the field of medical education

    Get PDF
    BACKGROUND: The geographical distribution of publications as an indicator of the research productivity of individual countries, regions or institutions has become a field of interest. We investigated the geographical distribution of contributions to the two leading journals in the field of medical education, Academic Medicine and Medical Education. METHODS: PubMed was used to search Medline. For both journals all journal articles in each year from 1995 to 2000 were included into the study. Then the affiliation was retrieved from the affiliation field of the MEDLINE format. If this was not possible, it was obtained from the paper version of the journal. RESULTS: Academic Medicine published contributions from 25 countries between 1995 and 2000. Authors from 50 countries contributed to Medical Education in the same period of time. Authors from the USA and Canada wrote ca. 95% off all articles in Academic Medicine, whereas authors from the UK, Australia, the USA, Canada and the Netherlands were responsible for ca. 74% of all articles in Medical Education in the investigated period of time. CONCLUSIONS: While many countries contributed to both journals, only a few of them were responsible for the majority of all articles

    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity

    Get PDF
    MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors
    • …
    corecore