15 research outputs found

    Opportunities and challenges in the use of coal fly ash for soil improvements – a review

    Get PDF
    Coal fly ash (CFA), a by-product of coal combustion has been regarded as a problematic solid waste, mainly due to its potentially toxic trace elements, PTEs (e.g. Cd, Cr, Ni, Pb) and organic compounds (e.g. PCBs, PAHs) content. However, CFA is a useful source of essential plant nutrients (e.g. Ca, Mg, K, P, S, B, Fe, Cu and Zn). Uncontrolled land disposal of CFA is likely to cause undesirable changes in soil conditions, including contamination with PTEs, PAHs and PCBs. Prudent CFA land application offers considerable opportunities, particularly for nutrient supplementation, pH correction and ameliorating soil physical conditions (soil compaction, water retention and drainage). Since CFA contains little or no N and organic carbon, and CFA-borne P is not readily plant available, a mixture of CFA and manure or sewage sludge (SS) is better suited than CFA alone. Additionally, land application of such a mixture can mitigate the mobility of SS-borne PTEs, which is known to increase following cessation of SS application. Research analysis further shows that application of alkaline CFA with or without other amendments can help remediate at least marginally metal contaminated soils by immobilisation of mobile metal forms. CFA land application with SS or other source of organic carbon, N and P can help effectively reclaim/restore mining-affected lands. Given the variability in the nature and composition of CFA (pH, macro- and micro-nutrients) and that of soil (pH, texture and fertility), the choice of CFA (acidic or alkaline and its application rate) needs to consider the properties and problems of the soil. CFA can also be used as a low cost sorbent for the removal of organic and inorganic contaminants from wastewater streams; the disposal of spent CFA however can pose further challenges. Problems in CFA use as a soil amendment occur when it results in undesirable change in soil pH, imbalance in nutrient supply, boron toxicity in plants, excess supply of sulphate and PTEs. These problems, however, are usually associated with excess or inappropriate CFA applications. The levels of PAHs and PCBs in CFA are generally low; their effects on soil biota, uptake by plants and soil persistence, however, need to be assessed. In spite of this, co-application of CFA with manure or SS to land enhances its effectiveness in soil improvements

    Développement de matériaux flexibles optiquement actifs basés sur des nanostructures hybrides chirales de modèle d’assemblage moléculaire.

    No full text
    In this work, we focused on the creation of optically active chiral nanostructures by fabricating fluorescent silica nanohelices in order to obtain optically active nanoscale soft materials for applications as nanophotonics materials. For this purpose, silica chiral nanohelices were used for grafting and organizing achiral fluorescent inorganic nanocrystals, dyes, molecules, and fluorescent polymers through different approaches. These inorganic helices were formed via sol-gel method using organic helical self–assemblies of surfactant molecules (achiral and cationic gemini surfactant, with chiral counterion, tartrate) as templates. First, the surface of helical silica was functionalized by APTES in order to graft inorganic quantum dots ZnS-AgInS2 with different capping ligands. In the second part, fluorescent anthracene derivative polymer was organized via deposition and absorption on the surface of helical silica. To investigate the chiroptical properties, circular dichroism and circularly polarised luminescence characterization were performed.In the first chapter, the bibliographic study on different chiral organic self-assembling systems and their chiroptical properties are shown. The studies on the formation of chiral self-assembled systems in different conditions, structural morphology, fabrication techniques and their applications are discussed followed by the use of fluorescent nanocrystals, i.e., quantum dots (QDs) and achiral fluorescent polymers on which chiroptical properties can be obtained and their applications in optical nanodevices, sensors, and nano-photonics.In the first part of the second chapter, different characterisation techniques such as transmission electron microscope (TEM) , high resolution transmission electron microscope (HRTEM), and confocal microscopy, UV-Vis spectroscopy and fluorescence spectroscopies, as well as circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies are described. In the second part, the synthesis of Gemini 16-2-16 as well as their self-assemblies mechanism, and their transformation to silica replica via sol-gel chemistry are described. These silica nanohelices are functionalized by 3-aminopropyltriethoxysilane (APTES). Their analysis is performed by Thermogravimetric analysis (TGA) and elementary analysis (EA).In the third Chapter, we focused on the synthesis of inorganic ((ZnS)x-1(AgInS2)x) QDs with different compositions molar ratio and its characterizations by TEM, TGA, EA, Fourier-transform infrared spectroscopy (FTIR), zeta potential measurements, absorption, and emission spectroscopy. Four types of ligands were used to cap the QDs via phase ligand exchange as follows: ammonium sulphide (AS), 3-mercaptopropionic acid (MPA), l-cysteine (L-Cys) and the fourth one is oleylamine (OLA). These QDs are grafted on the surface of amine-modified silica helices through ionic interaction. Various techniques were used to show the grafting of QDs on the surface of silica helix, and their optical properties were studied using absorption and emission spectroscopy. After grafting, in each case of ligands, different results were observed as follows: The TEM characterization shows that QDs are grafted on the surface of silica helices. In the case of AS-capped QDs, the helical morphology of silica helices after grafting is destroyed; therefore the further ananlysis was not possible. While, in the cases of QDs with three other ligands MPA, OLA and L-cys, dense and homogeneous grafting of the QDs were observed by TEM and the helical morphology was preserved after their grafting. The HRTEM images were taken on the MPA-QDs@silica helices and energy-dispersive x-ray (EDX) analysis was performed in STEM mode, confirming the QDs elements present on the silica surfaces. [...]Dans ce travail, nous nous sommes concentrés sur la création de nanostructures chirales optiquement actives en fabriquant des nanohélices de silice fluorescente afin d’obtenir des matériaux souple, nanométriques, optiquement actifs pour des applications en tant que matériaux nanophotoniques. Dans cette optique, des nanohélices de silice chirales ont été utilisées pour greffer et organiser des nanocristaux inorganiques fluorescents achiraux tels que des quantums dots, des chromophores, des molécules et des polymères fluorescents selon différentes approches. Ces hélices inorganiques ont été formées par procédé sol-gel en utilisant des auto-assemblages hélicoïdaux organiques de molécules amphiphiles (amphiphile gemini cationique, avec un contre-ion chiral le tartrate) en tant que modèles. Tout d'abord, la surface de la silice hélicoïdale a été fonctionnalisée par l’APTES afin de greffer des quantum dots inorganiques ZnS-AgInS2 possédant divers ligands. Dans la deuxième partie, le polymère de dérivé anthracénique fluorescent a été organisé par dépôt et adsorption à la surface de silice hélicoïdale. Afin d’étudier les propriétés chiroptiques, différentes caractérisations ont été réalisées telle que la spectroscopie du dichroïsme circulaire (CD) et celle de la luminescence circulairement polarisée (CPL).Le premier chapitre présente l’étude bibliographique sur différents systèmes d’auto-assemblage organiques chiraux et leurs propriétés chiroptiques. Les études sur la formation de systèmes auto-assemblés chiraux dans différentes conditions, leur morphologie structurale, les techniques de fabrication et leurs applications sont discutées suivies de l'utilisation de nanocristaux fluorescents, à savoir, les quantums dots (QD) et les polymères fluorescents achiraux sur lesquels les propriétés chiroptiques peuvent être obtenues et leurs applications dans les nanodispositifs optiques, les capteurs et la nano-photonique.Dans la première partie du deuxième chapitre, différentes techniques de caractérisation telles que le microscope électronique en transmission (TEM), le microscope électronique en transmission haute résolution (HRTEM), la microscopie confocale, la spectroscopie UV-Vis, celle de la fluorescence, du dichroïsme circulaire (CD) et de la luminescence circulairement polarisée (CPL) sont décrites. Dans la deuxième partie, la synthèse du gemini 16-2-16 ainsi que son mécanisme d'auto-assemblage, et sa transformation en réplica de silice par l'intermédiaire de la chimie sol-gel sont décrits. Ces nanohélices de silice sont fonctionnalisées par le 3-aminopropyltriéthoxysilane (APTES). Leur analyse est effectuée par analyse thermogravimétrique (TGA) et analyse élémentaire (EA).Dans le troisième chapitre, nous nous sommes concentrés sur la synthèse de QDs inorganiques ((ZnS)x-1(AgInS2)x) avec différentes compositions rapport molaire et leurs caractérisations par TEM, TGA, EA, spectroscopie infrarouge à transformée de Fourier (FTIR), mesures de potentiel zêta, spectroscopie d'absorption et d'émission. Quatre types de ligands ont été utilisés, par échange de ligand, pour recouvrir les QDs : sulfure d'ammonium (AS), acide 3-mercaptopropionique (MPA), l-cystéine (L-Cys) et l'oleylamine (OLA). Ces QDs sont greffés à la surface des hélices de silice modifiée par de l’amine suite à des interactions ioniques. Diverses techniques ont été utilisées pour confirmer leur greffage à la surface des hélices de silice, et les propriétés optiques ont été étudiées par spectroscopie d'absorption et d'émission. Après le greffage, différents résultats ont été observés selon le ligand utilisé : la caractérisation par TEM montre que les QDs sont greffés à la surface des hélices de silice. [...

    Develpment of optically active flexible materials based on molecular assembly templated chiral hybrid nanostructures.

    No full text
    Dans ce travail, nous nous sommes concentrés sur la création de nanostructures chirales optiquement actives en fabriquant des nanohélices de silice fluorescente afin d’obtenir des matériaux souple, nanométriques, optiquement actifs pour des applications en tant que matériaux nanophotoniques. Dans cette optique, des nanohélices de silice chirales ont été utilisées pour greffer et organiser des nanocristaux inorganiques fluorescents achiraux tels que des quantums dots, des chromophores, des molécules et des polymères fluorescents selon différentes approches. Ces hélices inorganiques ont été formées par procédé sol-gel en utilisant des auto-assemblages hélicoïdaux organiques de molécules amphiphiles (amphiphile gemini cationique, avec un contre-ion chiral le tartrate) en tant que modèles. Tout d'abord, la surface de la silice hélicoïdale a été fonctionnalisée par l’APTES afin de greffer des quantum dots inorganiques ZnS-AgInS2 possédant divers ligands. Dans la deuxième partie, le polymère de dérivé anthracénique fluorescent a été organisé par dépôt et adsorption à la surface de silice hélicoïdale. Afin d’étudier les propriétés chiroptiques, différentes caractérisations ont été réalisées telle que la spectroscopie du dichroïsme circulaire (CD) et celle de la luminescence circulairement polarisée (CPL).Le premier chapitre présente l’étude bibliographique sur différents systèmes d’auto-assemblage organiques chiraux et leurs propriétés chiroptiques. Les études sur la formation de systèmes auto-assemblés chiraux dans différentes conditions, leur morphologie structurale, les techniques de fabrication et leurs applications sont discutées suivies de l'utilisation de nanocristaux fluorescents, à savoir, les quantums dots (QD) et les polymères fluorescents achiraux sur lesquels les propriétés chiroptiques peuvent être obtenues et leurs applications dans les nanodispositifs optiques, les capteurs et la nano-photonique.Dans la première partie du deuxième chapitre, différentes techniques de caractérisation telles que le microscope électronique en transmission (TEM), le microscope électronique en transmission haute résolution (HRTEM), la microscopie confocale, la spectroscopie UV-Vis, celle de la fluorescence, du dichroïsme circulaire (CD) et de la luminescence circulairement polarisée (CPL) sont décrites. Dans la deuxième partie, la synthèse du gemini 16-2-16 ainsi que son mécanisme d'auto-assemblage, et sa transformation en réplica de silice par l'intermédiaire de la chimie sol-gel sont décrits. Ces nanohélices de silice sont fonctionnalisées par le 3-aminopropyltriéthoxysilane (APTES). Leur analyse est effectuée par analyse thermogravimétrique (TGA) et analyse élémentaire (EA).Dans le troisième chapitre, nous nous sommes concentrés sur la synthèse de QDs inorganiques ((ZnS)x-1(AgInS2)x) avec différentes compositions rapport molaire et leurs caractérisations par TEM, TGA, EA, spectroscopie infrarouge à transformée de Fourier (FTIR), mesures de potentiel zêta, spectroscopie d'absorption et d'émission. Quatre types de ligands ont été utilisés, par échange de ligand, pour recouvrir les QDs : sulfure d'ammonium (AS), acide 3-mercaptopropionique (MPA), l-cystéine (L-Cys) et l'oleylamine (OLA). Ces QDs sont greffés à la surface des hélices de silice modifiée par de l’amine suite à des interactions ioniques. Diverses techniques ont été utilisées pour confirmer leur greffage à la surface des hélices de silice, et les propriétés optiques ont été étudiées par spectroscopie d'absorption et d'émission. Après le greffage, différents résultats ont été observés selon le ligand utilisé : la caractérisation par TEM montre que les QDs sont greffés à la surface des hélices de silice. [...]In this work, we focused on the creation of optically active chiral nanostructures by fabricating fluorescent silica nanohelices in order to obtain optically active nanoscale soft materials for applications as nanophotonics materials. For this purpose, silica chiral nanohelices were used for grafting and organizing achiral fluorescent inorganic nanocrystals, dyes, molecules, and fluorescent polymers through different approaches. These inorganic helices were formed via sol-gel method using organic helical self–assemblies of surfactant molecules (achiral and cationic gemini surfactant, with chiral counterion, tartrate) as templates. First, the surface of helical silica was functionalized by APTES in order to graft inorganic quantum dots ZnS-AgInS2 with different capping ligands. In the second part, fluorescent anthracene derivative polymer was organized via deposition and absorption on the surface of helical silica. To investigate the chiroptical properties, circular dichroism and circularly polarised luminescence characterization were performed.In the first chapter, the bibliographic study on different chiral organic self-assembling systems and their chiroptical properties are shown. The studies on the formation of chiral self-assembled systems in different conditions, structural morphology, fabrication techniques and their applications are discussed followed by the use of fluorescent nanocrystals, i.e., quantum dots (QDs) and achiral fluorescent polymers on which chiroptical properties can be obtained and their applications in optical nanodevices, sensors, and nano-photonics.In the first part of the second chapter, different characterisation techniques such as transmission electron microscope (TEM) , high resolution transmission electron microscope (HRTEM), and confocal microscopy, UV-Vis spectroscopy and fluorescence spectroscopies, as well as circular dichroism (CD) and circularly polarised luminescence (CPL) spectroscopies are described. In the second part, the synthesis of Gemini 16-2-16 as well as their self-assemblies mechanism, and their transformation to silica replica via sol-gel chemistry are described. These silica nanohelices are functionalized by 3-aminopropyltriethoxysilane (APTES). Their analysis is performed by Thermogravimetric analysis (TGA) and elementary analysis (EA).In the third Chapter, we focused on the synthesis of inorganic ((ZnS)x-1(AgInS2)x) QDs with different compositions molar ratio and its characterizations by TEM, TGA, EA, Fourier-transform infrared spectroscopy (FTIR), zeta potential measurements, absorption, and emission spectroscopy. Four types of ligands were used to cap the QDs via phase ligand exchange as follows: ammonium sulphide (AS), 3-mercaptopropionic acid (MPA), l-cysteine (L-Cys) and the fourth one is oleylamine (OLA). These QDs are grafted on the surface of amine-modified silica helices through ionic interaction. Various techniques were used to show the grafting of QDs on the surface of silica helix, and their optical properties were studied using absorption and emission spectroscopy. After grafting, in each case of ligands, different results were observed as follows: The TEM characterization shows that QDs are grafted on the surface of silica helices. In the case of AS-capped QDs, the helical morphology of silica helices after grafting is destroyed; therefore the further ananlysis was not possible. While, in the cases of QDs with three other ligands MPA, OLA and L-cys, dense and homogeneous grafting of the QDs were observed by TEM and the helical morphology was preserved after their grafting. The HRTEM images were taken on the MPA-QDs@silica helices and energy-dispersive x-ray (EDX) analysis was performed in STEM mode, confirming the QDs elements present on the silica surfaces. [...

    Chem. Commun.,

    No full text
    We demonstrate the first example of induced CD of monoatomic anions. This was detected using chirally-arranged molecular assemblies of non-chiral cationic gemini surfactants (16-2-16) with monoatomic anions stabilized with silica-coating. Furthermore, we have also achieved multi-step transfer of a chiral environment through an in situ chemical reaction via chiralized monoatomic anions

    Generation of strong circularly polarized luminescence induced by chiral organogel based on L-glutamide

    No full text
    We manufactured a conjugated host-guest system using an organogel fabricated from L-glutamic acid derived self-assembling molecules as the host material and a non-chiral fluorescent dye as the guest molecule. On the basis of the investigation on the induced chirality (i-CD) toward non-chiral dye, we confirmed that the first circularly polarized luminescence (CPL) could be brought about through the complexation with the organogel. The intensity of the i-CD and i-CPL depended upon the amount and type of amine component added, with the intensity increasing significantly with amine content. (C) 2018 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved
    corecore