1,000 research outputs found

    Constraints on holographic multifield inflation and models based on the Hamilton-Jacobi formalism

    Get PDF
    In holographic inflation, the 4D cosmological dynamics is postulated to be dual to the renormalization group flow of a 3D Euclidean conformal field theory with marginally relevant operators. The scalar potential of the 4D theory—in which inflation is realized—is highly constrained, with use of the Hamilton–Jacobi equations. In multifield holographic realizations of inflation, fields additional to the inflaton cannot display underdamped oscillations (that is, their wave functions contain no oscillatory phases independent of the momenta). We show that this result is exact, independent of the number of fields, the field space geometry, and the shape of the inflationary trajectory followed in multifield space. In the specific case where the multifield trajectory is a straight line or confined to a plane, it can be understood as the existence of an upper bound on the dynamical masses m of extra fields of the form m≀3H/2 up to slow roll corrections. This bound corresponds to the analytic continuation of the well-known Breitenlohner–Freedman bound found in anti–de Sitter spacetimes in the case when the masses are approximately constant. The absence of underdamped oscillations implies that a detection of “cosmological collider” oscillatory patterns in the non-Gaussian bispectrum would not only rule out single-field inflation, but also holographic inflation or any inflationary model based on the Hamilton–Jacobi equations. Hence, future observations have the potential to exclude, at once, an entire class of inflationary theories, regardless of the details involved in their model building.Article / Letter to editorLeiden Instituut Onderzoek NatuurkundeUniversity of Chil

    Localizing fields on brane in magnetized backgound

    Full text link
    To localize the scalar, fermion, and abelian gauge fields on our 3-brane, a simple mechanism with a hypothetical "magnetic field" in the bulk is proposed. This mechanism is to treat all fields in the equal footing without ad hoc consideration. In addition, the machanism can be easily realized in a flat dimension six Minkowski space and it works even in the weak coupling limit

    4D gravity on a non-BPS bent dilatonic brane

    Full text link
    We investigate the localization of metastable four-dimensional gravity around a bent dilatonic brane, embedded into a five-dimensional space, that exists only up to distances sufficiently small compared to a crossover scale. Far from such scale, five-dimensional effects strongly deviate the Newtonian potential. We study this effect by considering localization of massive gravity on a non-BPS bent dilatonic 3-brane solution of a five-dimensional supergravity. Our results show that the cosmological constant on the bent brane controls the size of the crossover scale. For sufficiently small positive cosmological constant, that is in accord with the present observations, the crossover scale becomes very large.Comment: 7 pages, version to appear in JCA

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    Search for the glueball candidates f0(1500) and fJ(1710) in gamma gamma collisions

    Full text link
    Data taken with the ALEPH detector at LEP1 have been used to search for gamma gamma production of the glueball candidates f0(1500) and fJ(1710) via their decay to pi+pi-. No signal is observed and upper limits to the product of gamma gamma width and pi+pi- branching ratio of the f0(1500) and the fJ(1710) have been measured to be Gamma_(gamma gamma -> f0(1500)). BR(f0(1500)->pi+pi-) < 0.31 keV and Gamma_(gamma gamma -> fJ(1710)). BR(fJ(1710)->pi+pi-) < 0.55 keV at 95% confidence level.Comment: 10 pages, 3 figure

    Search for supersymmetry with a dominant R-parity violating LQDbar couplings in e+e- collisions at centre-of-mass energies of 130GeV to 172 GeV

    Full text link
    A search for pair-production of supersymmetric particles under the assumption that R-parity is violated via a dominant LQDbar coupling has been performed using the data collected by ALEPH at centre-of-mass energies of 130-172 GeV. The observed candidate events in the data are in agreement with the Standard Model expectation. This result is translated into lower limits on the masses of charginos, neutralinos, sleptons, sneutrinos and squarks. For instance, for m_0=500 GeV/c^2 and tan(beta)=sqrt(2) charginos with masses smaller than 81 GeV/c^2 and neutralinos with masses smaller than 29 GeV/c^2 are excluded at the 95% confidence level for any generation structure of the LQDbar coupling.Comment: 32 pages, 30 figure

    Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy

    Full text link
    We review HB stars in a broad astrophysical context, including both variable and non-variable stars. A reassessment of the Oosterhoff dichotomy is presented, which provides unprecedented detail regarding its origin and systematics. We show that the Oosterhoff dichotomy and the distribution of globular clusters (GCs) in the HB morphology-metallicity plane both exclude, with high statistical significance, the possibility that the Galactic halo may have formed from the accretion of dwarf galaxies resembling present-day Milky Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the second-parameter problem is presented. A technique is proposed to estimate the HB types of extragalactic GCs on the basis of integrated far-UV photometry. The relationship between the absolute V magnitude of the HB at the RR Lyrae level and metallicity, as obtained on the basis of trigonometric parallax measurements for the star RR Lyrae, is also revisited, giving a distance modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are studied. Finally, the conductive opacities used in evolutionary calculations of low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and Space Scienc
    • 

    corecore