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We discuss and clarify the validity of effective single-field theories of inflation obtained by integrating

out heavy degrees of freedom in the regime where adiabatic perturbations propagate with a suppressed

speed of sound. We show by construction that it is indeed possible to have inflationary backgrounds where

the speed of sound remains suppressed and uninterrupted slow-roll persists for long enough. In this class

of models, heavy fields influence the evolution of adiabatic modes in a manner that is consistent with

decoupling of physical low- and high-energy degrees of freedom. We emphasize the distinction between

the effective masses of the isocurvature modes and the eigenfrequencies of the propagating high-energy

modes. Crucially, we find that the mass gap that defines the high-frequency modes increases with the

strength of the turn, even as the naively heavy (isocurvature) and light (curvature) modes become more

strongly coupled. Adiabaticity is preserved throughout, and the derived effective field theory remains in

the weakly coupled regime, satisfying all current observational constraints on the resulting primordial

power spectrum. In addition, these models allow for an observably large equilateral non-Gaussianity.

DOI: 10.1103/PhysRevD.86.121301 PACS numbers: 98.80.Cq, 04.62.+v

The recent observation that heavy fields can influence
the evolution of adiabatic modes during inflation [1] has
far-reaching phenomenological implications [2–5] that,
a posteriori, require a refinement of our understanding of
how high- and low-energy degrees of freedom decouple [6]
and how one splits ‘‘heavy’’ and ‘‘light’’ modes on a time-
dependent background. Provided that there is only one flat
direction in the inflaton potential, heavy fields (in the
present context, field excitations orthogonal to the back-
ground trajectory) can be integrated out. This results in a
low-energy effective field theory (EFT) for adiabatic
modes exhibiting a reduced speed of sound cs, given by

c�2
s ¼ 1þ 4 _�2=M2

eff ; (1)

where _� is the turning rate of the background trajectory in
multifield space, and Meff is the effective mass of heavy
fields, assumed to be much larger than the expansion rate
H. Depending on the nature of the trajectory, (1) can render
features in the power spectrum [3,4] and/or observably
large non-Gaussianity [1,5].

Given thatMeff is the mass of the fields we integrate, one
might doubt the validity of the EFT in the regime where
the speed of sound is suppressed [7], as this requires
_�2 � M2

eff . In this article we elaborate on this issue by

studying the dynamics of light and heavy degrees of free-
dom when c2s � 1. What emerges is a crucial distinction,
in time-dependent backgrounds, between isocurvature and
curvature field excitations, and the true heavy and light
excitations. We show that the light (curvature) mode R
indeed stays coupled to the heavy (isocurvature) modes
when strong turns take place ( _�2 � M2

eff); however,

decoupling between the physical low- and high-energy
degrees of freedom persists in such a way that the deduced
EFT remains valid. This is confirmed by a simple setup in
whichH decreases adiabatically, allowing for a sufficiently
long period of inflation. In this construction, high-energy
degrees of freedom are never excited, and yet heavy fields
do play a role in lowering the speed of sound of adiabatic
modes.
Although this is completely consistent with the prin-

ciples of EFT, it seems to have escaped previous analyses
due to some subtleties that we summarize in points i–iv
below. Furthermore, inflationary scenarios with sustained
turns and uninterrupted slow roll appear to be consistent
with all the observational constraints on the primordial
power spectrum of primordial perturbations, while predict-
ing enhanced equilateral non-Gaussianity, and we give
explicit examples at the end.
The simplest setup that allows a quantitative analysis

(see Refs. [3–5] for details) is a two-scalar system with an
action

S ¼
Z ffiffiffiffiffiffiffi�g

p �
1

2
R� 1

2
g���ab@��

a@��
b � Vð�Þ

�
; (2)

(in units 8�G ¼ 1) where R is the Ricci scalar, V is the
scalar potential and �ab is the possibly noncanonical
sigma-model metric of the space spanned by �a, with
a ¼ 1, 2. Thebackground solution to the equations ofmotion
is an inflationary trajectory �a

0ðtÞ and a Friedman-

Robertson-Walker metric ds2 ¼ �dt2 þ a2ðtÞ�ijdx
idxj,

where aðtÞ is the scale factor and H ¼ _a=a the Hubble
parameter. As usual, we take unit vectors Ta andNa tangent
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and normal to the trajectory [8] given by Ta ¼ _�a
0=

_�0 and
DtT

a ¼ � _�Na, which also defines the turning rate _�, the
angular velocity described by the bends of the trajectory.

Here Dt ¼ _�a
0ra is the covariant time derivative along

the background trajectory, and _�2
0 � �ab

_�a
0
_�b
0 [9].

Finally, we define slow-roll parameters � � � _H=H2 ¼
_�2
0=2 and 	k � � €�0=ðH _�0Þ, whose smallness ensures

that H evolves adiabatically for a sufficiently long time.
We are interested in the dynamics of scalar perturbations

��aðt; xÞ ¼ �aðt; xÞ ��a
0ðtÞ. We work in the flat gauge

and define the comoving curvature and heavy isocurvature

perturbations as R � �ðH= _�ÞTa��
a and F � Na��

a,
respectively. (A definition ofR andF valid to all orders in
perturbation theory is given in Ref. [5]). The quadratic
order action for these perturbations is

S2 ¼ 1

2

Z
a3
� _�2

0

H2
_R2 �

_�2
0

H2

ðrRÞ2
a2

þ _F 2 � ðrF Þ2
a2

�M2
effF

2 � 4 _�
_�0

H
_RF

�
: (3)

Here Meff is the effective mass of F given by

M2
eff ¼ m2 � _�2; (4)

where m2 � VNN þ �H2R and VNN � NaNararbV. R is
the Ricci scalar of the sigma-model metric �ab. Notice that
_� couples both fields and reduces the effective mass,
suggesting a breakdown of the hierarchy that permits a
single-field effective description as _�2 �m2. As we are
about to see, this expectation is somewhat premature. The
linear equations of motion in Fourier space are

€Rþ ð3þ 2�� 2	jjÞH _Rþ k2

a2
R

¼ 2 _�
H
_�0

�
_F þ

�
3� 	jj � �þ

€�

H _�

�
HF

�
; (5)

€F þ 3H _F þ k2

a2
F þM2

effF ¼ �2 _�
_�0

H
_R: (6)

Note that R ¼ constant and F ¼ 0 are nontrivial solu-
tions to these equations for arbitrary _�. Since F is heavy,
F ! 0 shortly after horizon exit, andR ! constant, as in
single-field inflation.

We are interested in (5) and (6) in the limit where _� is
constant and much greater than Meff . We first consider the
short-wavelength limit where we can disregard Hubble

friction terms and take _�0=H as a constant. In this regime,
the physical wave number p � k=a may be taken to be
constant, and (5) and (6) simplify to

€Rc þ p2Rc ¼ þ2 _� _F ;

€F þ p2F þM2
effF ¼ �2 _� _Rc;

(7)

in terms of the canonically normalized Rc ¼ ð _�0=HÞR.
The solutions are found to be [2]

Rc ¼ Rþei!þt þR�ei!�t;

F ¼ Fþei!þt þF�ei!�t;
(8)

where the two frequencies !� and !þ are given by

!2� ¼ M2
eff

2c2s
þ p2 �M2

eff

2c2s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2ð1� c2sÞ

M2
effc

�2
s

s
; (9)

with cs given by (1). The pairs ðR�;F�Þ and ðRþ;FþÞ
represent the amplitudes of both low- and high-frequency
modes, respectively, and satisfy

F� ¼ �2i _�!�
M2

eff þ p2 �!2�
R�; Rþ ¼ �2i _�!þ

!2þ � p2
Fþ:

(10)

Thus the fields in each pair oscillate coherently. Integrating
out the heavy mode consists in ensuring that the high-
frequency degrees of freedom do not participate in the
dynamics of the adiabatic modes. This requires a hierarchy
of the form !2� � !2þ, which from (9) requires

p2 � M2
effc

�2
s : (11)

This defines the regime of validity of the EFT, for which
one has !2þ ’ M2

effc
�2
s ¼ m2 þ 3 _�2 and the low-energy

dispersion relation

!2�ðpÞ ’ p2c2s þ ð1� c2sÞ2 p4

M2
effc

�2
s

: (12)

These expressions for!þ and!� imply a clear distinction
between low- and high-energy degrees of freedom. In
terms of the low-energy frequency, condition (11) may
be rewritten as !2� � M2

effc
�2
s , in light of which the scale

!2þ ’ M2
effc

�2
s evidently cuts off the low-energy regime.

Thus, we can safely consider only low-frequency modes,

in which case F is completely determined by Rc as F ¼
�2 _� _Rc=ðM2

effþp2�!2�Þ. Notice that !2� � M2
eff þ p2,

so !2� may be disregarded here.
As linear perturbations evolve, their physical wave

number p � k=a decreases and the modes enter the long-
wavelength regime p2c2s & H2, where they become
strongly influenced by the background and no longer
have a simple oscillatory behavior. Now the low-energy

contributions to F satisfy _F �HF , and because H2 �
M2

eff , we can simply neglect time derivatives in (6). On the

other hand, high-energy modes continue to evolve inde-
pendently of the low-energy modes, diluting rapidly as
they redshift. Thus for the entire low-energy regime (11),
time derivatives of F can be ignored in (6) and F may be

solved in terms of _R as
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F ¼ �
_�0

H

2 _� _R
k2=a2 þM2

eff

: (13)

Inserting (13) into (3) gives the tree-level effective action
for the curvature perturbation. To quadratic order [5],

Seff ¼ 1

2

Z
a3

_�2
0

H2

� _R2

c2sðkÞ
� k2R2

a2

�
; (14)

where c�2
s ðkÞ¼1þ4 _�2=ðk2=a2þM2

effÞ. This k-dependent
speed of sound is consistent with the modified dispersion
relation (12), where cs is given by (1). Reference [4]
studied the validity of (14) in the case where turns appear
suddenly. Consistent with the present analysis, it was found
that this EFT is valid even when _�2 � M2

eff , provided the

adiabaticity condition

j €�= _�j � Meff (15)

is satisfied. This condition states that the turn’s angular
acceleration must remain small in comparison to the
masses of heavy modes, which otherwise would be excited.
The above straightforwardly implies the more colloquial
adiabaticity condition j _!þ=!2þj � 1. If (15) is violated by
the background, high-energy modes can be produced and
the EFT does indeed break down, as confirmed by [10].

We now outline four crucial points that underpin our
conclusions:

(i) The mixing between fields R and F , and modes
with frequencies !� and !þ is inevitable when the
background trajectory bends. If one attempts a rota-
tion in field space in order to uniquely associate
fields with frequency modes, the rotation matrix
would depend on the scale p, implying a nonlocal
redefinition of the fields.

(ii) Even in the absence of excited high-frequency
modes, the heavy field F is forced to oscillate in
pace with the light fieldR at a frequency !�, so F
continues to participate in the low-energy dynamics
of the curvature perturbations.

(iii) When _�2 � M2
eff , the high- and low-energy

frequencies become !2þ ’ M2
effc

�2
s � 4 _�2 and

!2� ’ p2ðM2
eff þ p2Þ=ð4 _�2Þ. Thus the gap between

low- and high-energy degrees of freedom is ampli-
fied, and one can consistently ignore high-energy
degrees of freedom in the low-energy EFT.

(iv) In the low-energy regime, the field F exchanges
kinetic energy with R resulting in a reduction in
the speed of sound cs ofR, the magnitude of which
depends on the strength of the kinetic coupling _�.
This process is adiabatic and consistent with the
usual notion of decoupling in the low-energy
regime (11), as implied by (15).

At the core of these four observations is the simple fact
that in time-dependent backgrounds, the eigenmodes and
eigenvalues of the mass matrix along the trajectory do not
necessarily coincide with the curvature and isocurvature

fluctuations and their characteristic frequencies. With this
in mind, it is possible to state more clearly the refined sense
in which decoupling is operative: while the fieldsR andF
inevitably remain coupled, high- and low-energy degrees
of freedom effectively decouple.
We now briefly address the evolution of modes in the

ultraviolet regime p2 * M2
effc

�2
s . Here both modes have

similar amplitudes and frequencies, and so in principle
could interact via relevant couplings beyond linear order
(which are proportional to _�). Because these interactions
must allow for the nontrivial solutions R ¼ constant
and F ¼ 0 (a consequence of the background time-
reparametrization invariance), their action is very con-
strained [5]. Moreover, in the regime p2 � M2

effc
�2
s the

coupling _� becomes negligible when compared to p, and
one necessarily recovers a very weakly coupled set of
modes, whose p ! 1 limit completely decouples R
from F . This can already be seen in (13), where contribu-
tions to the effective action for the adiabatic mode at large
momenta from having integrated out F , are extremely
suppressed for k2=a2 � M2

eff , leading to high-frequency

contributions to (14) with cs ¼ 1.
We now analyze a model of uninterrupted slow-roll

inflation that executes a constant turn in field space, imply-
ing an almost constant, suppressed speed of sound for the
adiabatic mode. Take fields �1 ¼ �, �2 ¼ 
 with a metric
��� ¼ 
2, �

 ¼ 1, �
� ¼ ��
 ¼ 0 and potential

Vð�; 
Þ ¼ V0 � ��þm2ð
� 
0Þ2=2: (16)

This model would have a shift symmetry along the �
direction were it not broken by a nonvanishing �. This
model is a simplified version of one studied in Ref. [11],
where the focus instead was on the regime Meff �m�H
(see also Ref. [12] where the limit M2

eff � H2 � _�2 is

analyzed). The background equations of motion are

€�þ 3H _�þ 2 _� _
=
 ¼ �=
2;

€
þ 3H _
þ 
ðm2 � _�2Þ ¼ m2
0:
(17)

The slow-roll attractor is such that _
, €
 and €� are negli-
gible. This means that H, 
 and _� remain nearly constant
and satisfy the following algebraic equations near � ¼ 0:

3H _� ¼ �


2
; _�2 ¼ m2ð1� 
0=
Þ;

3H2 ¼ 1

2

2 _�2 þ V0 þ 1

2
m2ð
� 
0Þ2:

(18)

These equations describe a circular motion with a radius of
curvature 
 and angular velocity _�. Here M2

eff ¼ m2 � _�2,
implying the strict bound m2 > _�2. Thus the only way to
obtain a suppressed speed of sound is if _�2 ’ m2. Our aim
is to find the parameter ranges such that the background
attractor satisfies � � 1, c2s � 1 and H2 � M2

eff simulta-

neously. These are given by
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1 � 
0

4

�
m

ffiffiffiffiffiffiffiffi
3V0

p
�

�
1=2 � V0

6m2
� �

4
ffiffiffiffiffiffiffiffi
3V0

p
m
: (19)

If these hierarchies are satisfied, the solutions to (18) are
well approximated by


2 ¼ �ffiffiffiffiffiffiffiffi
3V0

p
m
; _� ¼ m�m
0

2

�
m

ffiffiffiffiffiffiffiffi
3V0

p
�

�
1=2

; (20)

and H2 ¼ V0=3, up to fractional corrections of order �, c2s
and H2=M2

eff . We note that the first inequality in (19)

implies 
 � 
0, and so the trajectory is displaced off the
adiabatic minimum at 
0. However, the contribution to the
total potential energy implied by this displacement is neg-
ligible compared to V0. After n cycles around 
 ¼ 0 one
has �� ¼ 2�n, and the value of V0 has to be adjusted to
V0 ! V0 � 2�n�. This modifies the expressions in (20)
accordingly, and allows us to easily compute the adiabatic
variation of certain quantities, such as s � _cs=ðcsHÞ ¼
��=4, and 	jj ¼ ��=2, where � ¼ ffiffiffi

3
p

�m2=ð2V3=2
0 Þ.

These values imply a spectral index nR for the power
spectrum PR ¼ H2=ð8�2�csÞ given by nR � 1 ¼
�4�þ 2	jj � s ¼ �19�=4.

It is possible to find reasonable values of the parameters
such that observational bounds are satisfied. Using (20) we
can relate the values of V0, �, m and 
0 to the measured
values PR and nR, and to hypothetical values for cs and
� � H=Meff as

V0 ¼ 96�2ð1� nRÞPRcs=19;

m2 ¼ 8�2ð1� nRÞPR=ð19cs�2Þ;
� ¼ 6ð16=19Þ2�2ð1� nRÞ2PRc2s�;


0 ¼ 16c3s�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� nRÞ=19

q
:

(21)

Following WMAP7, we take PR ¼ 2:42� 10�9 and
nR ¼ 0:98 [13]. Then, as an application of relations (21),
we look for parameters such that

c2s ’ 0:06; M2
eff ’ 250H2; (22)

(which imply H2 ’ 1:4� 10�10) according to which
V0 ’ 5:9� 10�10, � ’ 1:5� 10�13, m ’ 4:5� 10�4 and


0 ’ 6:8� 10�3, from which we note that m, 
0 and �1=4

are naturally all of the same order. In terms of the mass
scalem, the above implies that we have excited a field with
mass of order H2=m2 � 1=1450, completely consistent
with decoupling and the validity of the EFT. We have
checked numerically that the background equations of
motion are indeed well approximated by (20), up to frac-
tional corrections of order c2s . More importantly, we obtain
the same nearly scale-invariant power spectrum PR using
both the full two-field theory described by (5) and (6), and
the single-field EFT described by the action (14). The
evolution of curvature perturbations in the EFT compared
to the full two-field theory for the long-wavelength modes
is almost indistinguishable given the effectiveness with

which (11) is satisfied, with a marginal difference
�PR=PR ’ 0:008. This is of order ð1� c2sÞH2=M2

eff ,

which is consistent with the analysis of Ref. [4]. Despite
the suppressed speed of sound in this model, a fairly large
tensor-to-scalar ratio of r ¼ 16�cs ’ 0:02 is predicted.

As expected, for c2s � 1 a sizable value of f
ðeqÞ
NL is

implied. The cubic interactions leading to this were
deduced in Ref. [5], which for constant turns is given by
Ref. [14]

f
ðeqÞ
NL ¼ 125

108

�

c2s
þ 5

81

c2s
2

�
1� 1

c2s

�
2 þ 35

108

�
1� 1

c2s

�
: (23)

This result is valid for any single-field system with constant
cs obtained by having integrated out a heavy field. We note
that this prediction is cleanly distinguishable from those of
other single-field models (such as Dirac-Born-Infeld infla-
tion) through the different sign and magnitude for the M3

coefficient generated in the EFT expansion of Ref. [15], as
derived in Ref. [5].
Recalling that the spectral index nT of tensor modes is

nT ¼ �2�, for cs � 1 we find a consistency relation
between three potentially observable parameters, given

by f
ðeqÞ
NL ¼ �20:74n2T=r

2. In the specific case of the values

in (22), we have fðeqÞNL ’ �4:0. This value is both large and
negative, so future observations could constrain this type of
scenario. Finally, one can ask if the EFT corresponding to
(22) remains weakly coupled throughout. For this, one
needs to satisfy [5] !� <�sc, where �sc is the scale at
which our low-energy EFT becomes strongly coupled.
For the standard case in which !2� ¼ c2sp

2 this scale is
found to be given by �4

sc ’ 4��H2c5s=ð1� c2sÞ [15].
Nevertheless, for small values of cs the scaling properties
offered by the quartic piece in the modified dispersion
relation (12) necessarily pushes the value of �sc to a
larger value [16]. For the present case, this effect implies

a strong coupling scale given by �sc ’ ð8�c2sÞ2=5 �
½2�H2=ðM2

effc
�4
s Þ�2=5Meffc

�1
s [17]. For instance, for the

values (22) we find that �sc=Meffc
�1
s ’ 2, implying that

the EFT obtained by integrating a heavy field remains
weakly coupled all the way up to its cutoff scale Meffc

�1
s .

Furthermore, although we did not address how inflation
ends, the choice (22) allows for at least 45 e-folds of
inflation, which is necessary to solve the horizon and flat-
ness problems. We stress that various other values can be
chosen in (22) to arrive at similar conclusions. For ex-
ample, requiring 35 e-folds withM2

eff ’ 100H2, c2s ’ 0:02,
implies V0’3:4�10�10, �’8:1�10�13,m ’ 3:8� 10�4,


0 ’ 2:1� 10�4. In this case we find f
ðeqÞ
NL ’ �14.

In summary, the active ingredients of this toy example
are rather minimal and may well parametrize a generic
class of inflationary models, such as axion-driven infla-
tionary scenarios in string theory. Our results complement
those of Refs. [1–5] and emphasize the refined sense in
which EFT techniques are applicable during slow-roll
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inflation [15,18]. In particular, contrary to the standard
perspective regarding the role of ultraviolet physics during
inflation, heavy fields may influence the evolution of cur-
vature perturbations R in a way consistent with decou-
pling between low- and high-energy degrees of freedom.
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