38 research outputs found

    Retinal S-antigen Th1 cell epitope mapping in patients with Behcet's disease

    Get PDF
    Background - Retinal S-antigen (S-Ag) is a most characterized autoantigen of autoimmune uveitis. The recognized immunodominant epitope of human S-Ag in patients with uveitis has not been identified. In this study, we selected certain patients with active uveitis to map the Th1 cell epitope spectrum of human S-Ag in Behcet's disease(BD). Methods - Blood samples were taken from eight active BD patients who showed an immune response to 40 mixed overlapping peptides spanning the entire sequence of human S-Ag. Peripheral blood mononuclear cells were isolated and stimulated with single S-Ag peptide at 5 mu g/ml or 20 mu g/ml. Single-cell immune responses were measured by IFN-gamma ELIspot assay. Results - BD patients heterogeneously responded to the S-Ag peptides at two concentrations. In general, the responses to 5 mu g/ml peptides were slightly stronger than those to 20 mu g/ml peptides, while the maximum SFC frequency to single peptide at the two concentrations was similar. Several peptides including P31, P35 and P40 induced a prominent response, with the frequency of S-Ag specific cells being about 0.007%. Significant reactivity pattern shift was noted in patients with different disease courses. Conclusions - Certain active BD patients have S-Ag specific Th1 cells with a low frequency. The S-Ag epitope specificity between patients is highly heterogeneous, and varies with the uveitis cours

    A Naturally Narrow Positive Parity Theta^+

    Full text link
    We present a consistent color-flavor-spin-orbital wave function for a positive parity Theta^+ that naturally explains the observed narrowness of the state. The wave function is totally symmetric in its flavor-spin part and totally antisymmetric in its color-orbital part. If flavor-spin interactions dominate, this wave function renders the positive parity Theta^+ lighter than its negative parity counterpart. We consider decays of the Theta^+ and compute the overlap of this state with the kinematically allowed final states. Our results are numerically small. We note that dynamical correlations between quarks are not necessary to obtain narrow pentaquark widths.Comment: 10 pages, 1 figure, Revtex4, two-column format, version to be published in Phys. Rev. D, includes numerical estimates of decay width

    Open data from the third observing run of LIGO, Virgo, KAGRA, and GEO

    Get PDF
    The global network of gravitational-wave observatories now includes five detectors, namely LIGO Hanford, LIGO Livingston, Virgo, KAGRA, and GEO 600. These detectors collected data during their third observing run, O3, composed of three phases: O3a starting in 2019 April and lasting six months, O3b starting in 2019 November and lasting five months, and O3GK starting in 2020 April and lasting two weeks. In this paper we describe these data and various other science products that can be freely accessed through the Gravitational Wave Open Science Center at https://gwosc.org. The main data set, consisting of the gravitational-wave strain time series that contains the astrophysical signals, is released together with supporting data useful for their analysis and documentation, tutorials, as well as analysis software packages

    Rydberg-atom-based scheme of nonadiabatic geometric quantum computation

    No full text
    Nonadiabatic geometric quantum computation provides a means to perform fast and robust quantum gates. It has been implemented in various physical systems, such as trapped ions, nuclear magnetic resonance and superconducting circuits. Another system being adequate for implementation of nonadiabatic geometric quan- tum computation may be Rydberg atoms, since their internal states have very long coherence time and the Rydberg-mediated interaction facilitates the implementation of two-qubit gate. Here, we propose a scheme of nonadiabatic geometric quantum computation based on Rydberg atoms, which combines the robustness of nonadiabatic geometric gates with the merits of Rydberg atoms.

    Fe-si-v (iron-silicon-vanadium)

    No full text
    corecore